第五章轴向受力构件2
合集下载
《建筑力学》第五章-轴向拉伸和压缩

总结词
随着科技的发展,新型材料不断涌现,对新 型材料的轴向拉伸和压缩性能进行研究,有 助于发现更具有优良力学性能的材料,为工 程应用提供更多选择。
详细描述
近年来,碳纤维复合材料、钛合金等新型材 料在轴向拉伸和压缩方面的性能表现引起了 广泛关注。通过深入研究这些材料的力学特 性,可以进一步挖掘其潜在应用价值,为建 筑、航空航天、汽车等领域提供更轻质、高
2. 弹性模量计算
根据应力-应变曲线的初始直线段,计算材料的弹性模量,用于评估材料的刚度和抵抗弹性变形的能力 。
实验步骤与实验结果分析
3. 泊松比分析
通过测量试样在拉伸和压缩过程中的 横向变形,计算材料的泊松比,了解 材料在受力时横向变形的性质。
4. 强度分析
根据应力-应变曲线中的最大应力值, 评估材料的抗拉和抗压强度,为工程 实践中选择合适的材料提供依据。
供理论支持,确保结构的安全性和稳定性。
智能化技术在轴向拉伸和压缩领域的应用研究
要点一
总结词
要点二
详细描述
随着智能化技术的不断发展,其在轴向拉伸和压缩领域的 应用研究逐渐成为热点,有助于提高测试精度和效率,为 实验研究和工程应用提供有力支持。
例如,利用智能传感器和机器学习技术对轴向拉伸和压缩 实验进行数据采集和分析,可以提高实验的精度和效率。 同时,智能化技术的应用还可以为实验数据的处理、分析 和预测提供新的方法和手段,为实验研究和工程应用提供 更加全面和准确的数据支持。
特性
轴向拉伸和压缩时,物体在垂直 于轴线方向上的尺寸保持不变, 而在轴线方向上的尺寸发生改变 。
轴向拉伸和压缩的分类
按变形程度
可分为弹性变形和塑性变形。弹性变形是指在外力撤销后,物体能够恢复原状的 变形;塑性变形是指外力撤销后,物体不能恢复原状的变形。
工程力学第五章

第5章 轴向拉伸与压缩
工程力学第五章
5.1 材料力学基础
5.1.1 材料力学的任务
机械及工程结构中的基本组成部分,统称为 构件。
为了保证构件正常工作,每一构件都要有足 够的承受载荷作用的能力,简称为承载能力。
工程力学第五章
构件的承载能力,通常由下列三个方面来衡 量:
(1)强度。构件抵抗破坏的能力叫作强度。
分布的密集程度(简称集度)较大造成的。由此
可见,内力的集度是判断构件强度的一个重
要物理量。通常将截面上内力的集度称为应
力。
工程力学第五章
工程力学第五章
应力的单位是帕斯卡(Pascal)(国际单位), 简称帕(Pa)。1Pa=1N/m2。由于帕斯卡这 一单位太小,工程中常用兆帕(ΜΡa)或吉帕 ( GΡa)作为应力单位。 1MPa=106Pa=106N/m2;1G Ρa=109 Ρa。
5.3.3 斜截面上的应力分析
由截面法求得斜截面上的轴力,
工程力学第五章
依照横截面上正应力分布的推理方法,可得 斜截面上应力 也是均匀分布的,其值为
工程力学第五章
式中 ——斜截面面积。 若横截面面积为A,则
工程力学第五章
5.2 轴向拉伸和压缩
5.2.1 拉伸和压缩的概念
拉伸和压缩是指直杆在两端受到沿轴线作用 的拉力或压力而产生的变形。
杆件的受力特点是:作用在杆端各外力的合 力作用线与杆件轴线重合
变形特点是:杆件沿轴线方向伸长或缩短
工程力学第五章
5.2.2 拉压杆的内力
5.2.2.1 内力的概念
材料力学中所说的内力,则是指构件受到外 力作用时所引起的构件内部各质点之间相互 作用力的改变量,称为“附加内力”。材料 力学所研究的这种附加内力,以后均简称为 内力。
工程力学第五章
5.1 材料力学基础
5.1.1 材料力学的任务
机械及工程结构中的基本组成部分,统称为 构件。
为了保证构件正常工作,每一构件都要有足 够的承受载荷作用的能力,简称为承载能力。
工程力学第五章
构件的承载能力,通常由下列三个方面来衡 量:
(1)强度。构件抵抗破坏的能力叫作强度。
分布的密集程度(简称集度)较大造成的。由此
可见,内力的集度是判断构件强度的一个重
要物理量。通常将截面上内力的集度称为应
力。
工程力学第五章
工程力学第五章
应力的单位是帕斯卡(Pascal)(国际单位), 简称帕(Pa)。1Pa=1N/m2。由于帕斯卡这 一单位太小,工程中常用兆帕(ΜΡa)或吉帕 ( GΡa)作为应力单位。 1MPa=106Pa=106N/m2;1G Ρa=109 Ρa。
5.3.3 斜截面上的应力分析
由截面法求得斜截面上的轴力,
工程力学第五章
依照横截面上正应力分布的推理方法,可得 斜截面上应力 也是均匀分布的,其值为
工程力学第五章
式中 ——斜截面面积。 若横截面面积为A,则
工程力学第五章
5.2 轴向拉伸和压缩
5.2.1 拉伸和压缩的概念
拉伸和压缩是指直杆在两端受到沿轴线作用 的拉力或压力而产生的变形。
杆件的受力特点是:作用在杆端各外力的合 力作用线与杆件轴线重合
变形特点是:杆件沿轴线方向伸长或缩短
工程力学第五章
5.2.2 拉压杆的内力
5.2.2.1 内力的概念
材料力学中所说的内力,则是指构件受到外 力作用时所引起的构件内部各质点之间相互 作用力的改变量,称为“附加内力”。材料 力学所研究的这种附加内力,以后均简称为 内力。
受压 构件

径的0. 25倍;当搭接钢筋为受拉时,其箍筋间距不应大于5d (d 为受力钢筋中的最小直径),且不应大于100 mm;当搭接钢筋 为受压时,其箍筋间距不应大于l0d,且不应大于200 mm。 当搭接的受压钢筋直径大于25mm时,应在搭接接头两个端 面外100 mm范围内各设置两根箍筋。
上一页 返回
第二节轴心受压构件承载力计算
或
式中
NNNee'11f1cffbccbxbx(h(x02x2xfay)'s'
As' s As
f
' y
As'
(h0
) s As (h0
as' ) as'
)
e'
h 2
ei
as'
s --钢筋As的应力。
s
1 b 1
fy
当混凝强度等级小于等于C50时:
s
0.8 b 0.8
fy
(5-10) (5-11) (5-12) (5-13) (5-14)
上一页 下一页 返回
第一节受压构件概述
箍筋末端应做成135o弯钩且弯钩末端平直段长度不应小于箍 筋直径的10倍;箍筋也可焊成封闭环式。当截面短边不大于 400 mm,且纵筋不多于4根时,可不设置复合箍筋;
当构件截面各边纵筋多于3根时,应设置复合箍筋。 在纵筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋直
第三节偏心受压构件承载力计算
2)适用条件。
①为了保证截面为大偏心受压破坏,满足下列条件:
b
(5-7a)
即
bh0
(5-7b)
②为了保证截面破坏时受压钢筋应力能达到其抗压强度设计
值,必须满足下列条件:
上一页 返回
第二节轴心受压构件承载力计算
或
式中
NNNee'11f1cffbccbxbx(h(x02x2xfay)'s'
As' s As
f
' y
As'
(h0
) s As (h0
as' ) as'
)
e'
h 2
ei
as'
s --钢筋As的应力。
s
1 b 1
fy
当混凝强度等级小于等于C50时:
s
0.8 b 0.8
fy
(5-10) (5-11) (5-12) (5-13) (5-14)
上一页 下一页 返回
第一节受压构件概述
箍筋末端应做成135o弯钩且弯钩末端平直段长度不应小于箍 筋直径的10倍;箍筋也可焊成封闭环式。当截面短边不大于 400 mm,且纵筋不多于4根时,可不设置复合箍筋;
当构件截面各边纵筋多于3根时,应设置复合箍筋。 在纵筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋直
第三节偏心受压构件承载力计算
2)适用条件。
①为了保证截面为大偏心受压破坏,满足下列条件:
b
(5-7a)
即
bh0
(5-7b)
②为了保证截面破坏时受压钢筋应力能达到其抗压强度设计
值,必须满足下列条件:
受拉构件承载力计算

上一页 下一页 返回
第一节 收入
通常,所有权上的风险和报酬的转移伴随着所有权凭证的转移或实物的交 付而转移,例如大多数零售交易。但有些情况下,企业已将所有权凭证 或实物交付给买方,但商品所有权上的主要风险和报酬并未转移。可能 有以下几种情况:
企业销售的商品在质量、品种、规格等方面不符合合同规定的要求,又未 根据正当的保证条款予以弥补,因而仍负有责任。
上一页 返回
图5-1矩形截面大偏心受拉构件 正截面受拉承载力示意图
返回
图5-2矩形截面小偏心受拉构件 正截面受拉承载力示意图
返回
第十一章 收入、费用和利润
第一节 收入 第二节 费用 第三节 利润
第一节 收入
一、收入的基本内容
1.收入的含义 我们所熟悉的收入是指企业在日常活动中形成的、会导致所有者权益增加
(2)收入只包括本企业经济利益的流入,不包括企业为第三方或客户代收 的款项 企业为第三方或客户代收的款项,如代收利息、增值税、代收代 缴的税金等。代收的款项,一方由增加企业的资产,一方面增加企业的 负债,同此不能作为本企业的收入。
上一页 下一页 返回
第一节 收入
(3)收入能导致企业所有者权益的增加 根据"资产-负债=所有者权益"这 一静态会计等式不难看出,由于取得收入能导致企业的资产增加或者负 债减少,或二者兼而有之,所以进而必然会使所有者权益增加。但是, 这里所说的收入能增加所有者权益,仅指收入本身的影响,而收入扣除 相关成本与费用后,则可能增加所有者权益,也可能减少所有者权益。
的、与所有者投入资本无关的经济利益的总流入,包括销售商品的收入、 提供劳务收入和让渡资产使用权收入。企业代第三方收取的款项,应当 作为负债处理,不应当确认为收入。
第一节 收入
通常,所有权上的风险和报酬的转移伴随着所有权凭证的转移或实物的交 付而转移,例如大多数零售交易。但有些情况下,企业已将所有权凭证 或实物交付给买方,但商品所有权上的主要风险和报酬并未转移。可能 有以下几种情况:
企业销售的商品在质量、品种、规格等方面不符合合同规定的要求,又未 根据正当的保证条款予以弥补,因而仍负有责任。
上一页 返回
图5-1矩形截面大偏心受拉构件 正截面受拉承载力示意图
返回
图5-2矩形截面小偏心受拉构件 正截面受拉承载力示意图
返回
第十一章 收入、费用和利润
第一节 收入 第二节 费用 第三节 利润
第一节 收入
一、收入的基本内容
1.收入的含义 我们所熟悉的收入是指企业在日常活动中形成的、会导致所有者权益增加
(2)收入只包括本企业经济利益的流入,不包括企业为第三方或客户代收 的款项 企业为第三方或客户代收的款项,如代收利息、增值税、代收代 缴的税金等。代收的款项,一方由增加企业的资产,一方面增加企业的 负债,同此不能作为本企业的收入。
上一页 下一页 返回
第一节 收入
(3)收入能导致企业所有者权益的增加 根据"资产-负债=所有者权益"这 一静态会计等式不难看出,由于取得收入能导致企业的资产增加或者负 债减少,或二者兼而有之,所以进而必然会使所有者权益增加。但是, 这里所说的收入能增加所有者权益,仅指收入本身的影响,而收入扣除 相关成本与费用后,则可能增加所有者权益,也可能减少所有者权益。
的、与所有者投入资本无关的经济利益的总流入,包括销售商品的收入、 提供劳务收入和让渡资产使用权收入。企业代第三方收取的款项,应当 作为负债处理,不应当确认为收入。
轴向受力构件

d 2u h d 2 M 1 - EI 1 2 EI 1 2 dz 2 dz dM 1 h d 3 V1 EI 1 dz 2 dz 3 h 2 d 3 V1h EI 1 2 dz 3 I1h 2 / 2
● 对剪心的极回转半径
I t dF
设满足边界条件 (两端铰)的解为:
mz u A sin l mz v B sin l m z C sin l
代入平衡微分方程,并令
m 2 2 EIY N EY 2 l m 2 2 EI X N EX 2 l 1 m 2 2 EI GIt N Z 2 2 i l 0
0.3~0.6 f y
纵向残余应力简化图
各段中点的外力平衡条件
n N i Ai 0 i 1 n A y N y y 0 i i i 0 i 1
求出l一定的 N u 后, Nu 由 与可得柱子曲线 fyA 上的一个点, 变化l重复 计算可得绕x轴的柱子 曲线。
◆轴心压杆极限承载力和多柱子曲线 对于无初始弯曲的弹性和弹塑性屈曲均属 于分枝屈曲,即发生屈曲时才有挠度,称为分 枝点失稳,也称第一类稳定问题。对于实际存 在初始弯曲缺陷的构件,则不会发生平衡形式 的分枝,自始至终都处于压弯平衡中,屈曲的 发生是杆件丧失承载力,这种失稳称为极值点 失稳,也称第二类稳定问题。 工程上大多属第二类稳定问题。
◆扭转曲屈 扭转曲屈一般发生于截面抗扭刚度较差的 双轴对称薄壁型轴心受压构件。其弹性临界力 可在弯扭屈曲的推导中得到:
2 EI 1 NZ 2 GI t 2 i0 l 2 EA 令 Nz 2
《建筑力学》第五章轴向拉伸和压缩研究报告

断裂时 曲线最高点所对应的应力称为抗拉强度 b 。
材料压缩时的力学性质 材料压缩试验的试样通常采用圆截面(金属材料)或方截面(混凝土、石料等非金 属材料)的短柱体如图 5-19 所示.为避免压弯、试样的长度与直径 d 或截面边长 b 的 比值一般规定为 1—3 倍。
图 5-19
图 5-20
(1)低碳钢的压缩试验
○ 2 断面收缩率
设试样试验段的原面积为 A,断裂后断口的最小横截面的面积为 A1 ,则比值
A A1 100%
A
(5-8)
称为断面收缩率。低碳钢 Q235 的断面收缩串为 60% 。
2、其他塑性材料拉伸时的性质 如图 5-16 所示为几种塑性材料拉伸时的应力一应变因。它们的共同特点是断裂 时均具有较大的塑性变形,不同的是有些金属材料没有明显的屈服阶段。对于不存在 明显屈服阶段的塑性材料,工程规定其产生 0. 2%的塑性应变时所对应的应力作为屈
N2 3P 2P 0 N2 P (压力) N2 得负号,说明原先假设为拉力是不正确的,应为压力,同时又表明轴力是负的。
同理,取截面 3-3 如图 5-6(d),由平衡方程 x 0 得:
N3 P 3P 2P 0 N3 2P
如果研究截面 3-3 右边一段 [图 5-6(e)],由平衡方程 x 0 得:
• 第一,假想用一横截面将物体截为两部分,研究其 中一部分,弃去另一部分。
• 第二,用作用于截面上的内力代替弃去部分对研究 部分的作用。
• 第三,建立研究部分的平衡条件,确定未知的内力 。
A
2、应力
现在假定在受力杆件中沿任意截面 m—m 把杆件截开,取出左边部分进行分析(图
5-2),围绕截面上任意一点 M 划取一块微面积 A,如果作用在这一微面积上的内力为 p ,那么 p 对 A的比值,称为这块微面积上的平均应力,即
材料压缩时的力学性质 材料压缩试验的试样通常采用圆截面(金属材料)或方截面(混凝土、石料等非金 属材料)的短柱体如图 5-19 所示.为避免压弯、试样的长度与直径 d 或截面边长 b 的 比值一般规定为 1—3 倍。
图 5-19
图 5-20
(1)低碳钢的压缩试验
○ 2 断面收缩率
设试样试验段的原面积为 A,断裂后断口的最小横截面的面积为 A1 ,则比值
A A1 100%
A
(5-8)
称为断面收缩率。低碳钢 Q235 的断面收缩串为 60% 。
2、其他塑性材料拉伸时的性质 如图 5-16 所示为几种塑性材料拉伸时的应力一应变因。它们的共同特点是断裂 时均具有较大的塑性变形,不同的是有些金属材料没有明显的屈服阶段。对于不存在 明显屈服阶段的塑性材料,工程规定其产生 0. 2%的塑性应变时所对应的应力作为屈
N2 3P 2P 0 N2 P (压力) N2 得负号,说明原先假设为拉力是不正确的,应为压力,同时又表明轴力是负的。
同理,取截面 3-3 如图 5-6(d),由平衡方程 x 0 得:
N3 P 3P 2P 0 N3 2P
如果研究截面 3-3 右边一段 [图 5-6(e)],由平衡方程 x 0 得:
• 第一,假想用一横截面将物体截为两部分,研究其 中一部分,弃去另一部分。
• 第二,用作用于截面上的内力代替弃去部分对研究 部分的作用。
• 第三,建立研究部分的平衡条件,确定未知的内力 。
A
2、应力
现在假定在受力杆件中沿任意截面 m—m 把杆件截开,取出左边部分进行分析(图
5-2),围绕截面上任意一点 M 划取一块微面积 A,如果作用在这一微面积上的内力为 p ,那么 p 对 A的比值,称为这块微面积上的平均应力,即
《轴向受力构》课件

安全注意事项
安全防护
在制造和施工过程中,应采取必要的安全防护措施,如佩戴安全 帽、安全带等。
遵守操作规程
操作人员应严格遵守操作规程,避免发生意外事故。
安全警示标识
在施工现场设置明显的安全警示标识,提醒人员注意安全。
06
轴向受力构件的应用与发展
应用领域
建筑业
01
轴向受力构件广泛应用于高层建筑、大跨度桥梁等大型建筑结
则和结构安全性的平衡。
案例三
机械零件:以某机械关键零件为 例,介绍如何通过参数优化和实 验验证等方法对其轴向受力构件 进行优化,提高其性能和寿命。
05
轴向受力构件的制造与施工
制造工艺
制造流程
轴向受力构件的制造通常 包括材料准备、下料、成 型、组装和焊接等步骤。
材料选择
选择合适的材料是制造轴 向受力构件的关键,通常 选用高强度钢材。
轴向受力构件的类型
01
02
03
拉杆
主要承受拉力作用,用于 连接两个或多个构件,保 持其相对位置。
压力杆
主要承受压力作用,用于 支撑和稳定结构,传递荷 载。
柱
是一种常见的轴向受力构 件,主要承受轴向力作用 ,用于构建高耸结构或高 层建筑。
02
轴向受力构件的受力分析
轴向拉伸与压缩
总结词
描述轴向拉伸与压缩的基本概念和特点。
特点
轴向受力构件具有较高的承载能 力和稳定性,适用于承受拉力或 压力的场合,如桥梁、高层建筑 、塔架等。
轴向受力构件的重要性
结构安全
轴向受力构件是结构中的重要组成部 分,其承载能力和稳定性直接关系到 整体结构的稳定性和安全性。
经济效益
合理设计轴向受力构件可以降低结构 自重,减少材料用量,降低成本,提 高经济效益。
第5章 轴心受力构件

An1 b n1 d0 t
螺栓错列布置可能沿正交截面(I -I)破坏,也可能沿齿状截面 (Ⅱ- Ⅱ)破坏,取截面的较小面 积计算:
2 An 2c4 n2 1 c12 c2 n2 d 0 t
Steel Structure
对于高强螺栓的摩擦型连接,可以认为连接传力所依靠的摩擦力均匀分 N 布于螺孔四周,故在孔前接触面已传递一半的力。 N
试计算此拉杆所能承受的最大拉力及容许达到的最大计算长度。
Steel Structure
【解】 查型钢表附表13,2∟100×10角钢:ix= 3.05cm,iy=4.52cm。 f=215N/mm2,角钢的厚度为10mm,在确定危险截面之前先把它按中面展 开如图5.8 (b) 所示。 (1)容许承受的最大拉力 齿状净截面(I—I)的面积为:
缀条用斜杆组成或斜杆与横杆共同
组成,它们与分肢翼缘组成桁架体 系;缀板常用钢板,与分肢翼缘组
成刚架体系。
Steel Structure
5.2 轴心受压构件的强度和刚度
◆ 在进行轴心受力构件的设计时,应同时满足第一类极限状态和
第二类极限状态的要求。 ◆ 对于承载能力的极限状态,受拉构件一般以强度控制,而受压 构件需同时满足强度和稳定的要求。 ◆ 对于正常使用的极限状态,是通过保证构件的刚度-限制其长 细比来达到的。 ◆ 轴心受拉构件的设计需分别进行强度和刚度的计算; 而轴心受压构件的设计需分别进行强度、稳定和刚度的计算。
Steel Structure
『关键知识』 1.轴心受压构件的整体稳定计算; 2.轴心受压构件的局部稳定计算;
3.实腹式和格构式轴心受压构件的设计方法;
4.轴心受压柱铰接柱脚的设计。 『重点讲解』
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小偏心受压时,即 b
s 650 800
f
' y
s
fy
大偏心受压时,即 b
s f y x h0
组合砖砌体受压构件的构造要求
a. 面层混凝土强度等级宜采用C20。面层水泥砂浆强度等级 不宜低于M10。砌体砂浆的强度等级不宜低于M7.5;
b. 竖向受力钢筋的混凝土保护层厚度,不应小于表中的规定。 竖向受力钢筋距砌体表面的距离不应小于5mm。
asn
n
1
12
e
h
1
1 12
1
on
2
1
on
1
1
1 3
2
667
计算要求
1) 对于矩形截面构件,当轴向力偏心方向的截面边 长大于另一方向的边长时,除按偏心受压计算外, 还应对较小边方向按轴心受压进行计算。
2) 当网状配筋砌体构件下端与无筋砌体交接时,尚 应验算无筋砌体的局部受压承载力。
计算时,对于砖墙与组合砌体一同砌筑的T形截面 构件,可按矩形截面组合砌体构件计算。但构件的 高厚比仍按T形截面考虑。
偏心受压构件
N
fA'
fc Ac'
s
f
' y
As'
s As
或
NeN
fS s
fc Sc,s
s
f
' y
As'
h0 a's
受压区高度x可按下式确定
— —在x方向的附加偏心距
0 eb eh
b h
eih
h 12
1
1
eh h
— —在y方向的附加偏心距
0 eb eh
b h
当一个方向的偏心率不大于另一个方向的偏心率的5% 时,可简化为按另一个方向的单向偏心受压。
3. 无筋砌体构件的承载力计算
当A0 / Al 1时,内拱作用消失。
d. 计算公式
N0 N l fAl 1.5 0.5 A0 / Al — 上部荷载折减系数,当A0 / Al 3时,取为0
N0 0 Al — 局部受压面积内上部轴向力设计值(N) 0 — 上部平均压应力设计值(N / mm 2)
c. 当现浇垫块与梁端整体浇筑时,垫块可在梁高范围内 设置(垫块底面与梁底面平齐)。
2)垫块下砌体的局部受压承载力计算公式 垫块下的砌体既有局压的特点,又有偏压的特点
N 0 N l 1 fAb — N0和N l 合力的影响系数,按 3、e / ab时计算 1 0.8 1.0 — 垫块外砌体面积的有利影响系数 N0 0 Ab — 垫块面积内上部轴压力设计值
N l — 梁端支承压力设计值(N) Al a0b
a0 10
hc a — 梁端有效支承长度(mm ) f
b — 梁宽;hc — 梁高
— 梁端底面压应力图形的完整系数,
可取0.7,对于过梁和墙梁可取1.0
计算梁端荷载传至下部砌体的偏心距时,梁端的支 承压力Nl的作用点为:
3. 梁端下设有刚性垫块的砌体局部受压承载力计算 当梁端局压强度不满足要求或墙上搁置较大的梁、
1. 局部均匀受压的承载力计算
砌体局压分为 两种情况:
砌体局压破坏 形态:
竖向裂缝发展
劈裂破坏 垫板下块体受压
计算公式 N l fAl
1 0.35 A0 1 ——局部抗压强度提高系数
Al Al—局部受压面积;A0—局部受压计算面积
对于多孔砖砌 体和要求灌孔 的砌块砌体, 在(a)(b) (c)三种情 况下,尚应符 合γ≤1.5。
梁端局部承压面积为:
Al=a0b
假设:局压砌体各点的压缩 变形与压应力成正比,砌体 的变形系数为K
Nl Ka0 tana0b — 压应力不均匀系数
取K / f 0.7mm 1
简支梁N l
1 ql,tan
2
1 24Bc
ql 3
近似取Bc 0.3Ec Ic , 按C 20混凝土计算
fS N
fc Sc,N
s
f
' y
As'
e
' N
s AseN
0
eN e ea h 2 as
e
' N
e ea
h
2
a
' s
ea
2h 1 0.022
2200
钢筋的应力σ s的计算
组合砖砌体构件受压区相 对高度的界限值ξb,对于 HPB235级钢筋,应取 0.55;对于HRB335级钢 筋,应取0.425。
组合砖砌体承载力计算公式
轴心受压构件
N com
fA
fc Ac
s
f
' y
As'
fc — 混凝土或面层砂浆的轴心抗压强度设计值。 当砂浆为M15时,取5.2MPa;M 2时取3.5MPa;
M 7.5时取2.6MPa
s — 受压钢筋的强度系数,当为混凝土面层时取1.0;
为砂浆面层时取0.9
M2.5时,取0.002;fc 0时,取0.009
2.无筋砌体矩形截面双向偏心受压构件承载力的影响系数
1
1 12
eb
eib
2
eh
eih
2
b h
eb 0.5x eh 0.5 y
eib
b 12
1
1
eb b
2.梁端支承处砌体的局部受压承载力计算
a. 梁端支承处砌体的局部受压情况
压应力分布与梁的刚度和支座构造有关,有均匀分布
和非均匀分别两种。
压应力均匀分
梁与上部砌 体共同工作,
布时,仍按上 节公式计算
形成组合梁,
弯曲变形很
小
墙梁与过梁
中心传力构 造装置
b. 梁支承在砌体墙柱上时,梁端的有效支承长度a0
偏心距超过截面核心范围,对于矩形截面即e/h>0.17时,或偏 心距未超过截面核心范围,但构件的高厚比β >16时,均不宜 采用网状配筋砖砌体。
承载力计算公式
N n fnA
fn
f
21
2e y
100
fy
Vs V 100 — 横向钢筋的体积配筋率
方格网配筋时, 2As 100
当
3时,
1 1 12
e
2
h
当 3时,
1
12
e
h
1
1 12
1
0
2
1
0
1
1
2
e —轴向力的偏心距; h — 矩形截面轴向力所在偏心方向的边长;
—构件的高厚比;
— 与砂浆强度有关的影响系数 M5时,取0.0015
受压承载力计算式 N fA
构件的高厚比 矩形截面 H0 h T形截面 H0 hT
hT 3.5i T形截面的折算厚度
高厚比修正系数γ β
砌体材料类别
烧结普通砖、烧结多孔砖
1.0
混凝土及轻骨料混凝土砌块
1.1
蒸压灰砂砖、蒸压粉煤灰砖、细石料、半石料
1.2
桁架时,常在其下设置垫块。
梁和屋架搁置在较厚的壁柱上而未伸入墙内时,必 须设置刚性垫块。
1)刚性垫块的构造要求
a. 刚性垫块的高度tb不宜小于180mm,自梁边算起的垫 块挑出长度不宜大于垫块高度tb;
b. 在带壁柱墙的壁柱内设置刚性垫块时,其计算面积应 取壁柱范围内的面积,而不应计算翼缘部分,同时壁 柱上垫块伸入翼墙内的长度不应小于120mm;
a. 对砖砌体为4.8m; b. 对砌块和料石砌体为4.2m; c. 对毛石砌体为3.9m。
4. 柔性垫梁下砌体的局部受压承载力
类似弹性地基梁 受集中荷载作用
ymax
垫梁下砌体处 max 0.306Nl / bb 3 Ehb /( Eb Ib )
Nl下深度为h0处 max1 2Nl / bbh0
5) 网状配筋砖砌体所用的砂浆强度等级不应低于M7.5; 钢筋网应设置在砌体的水平灰缝中,灰缝厚度应保 证钢筋上下至少各有2mm厚的砂浆层。
2. 组合砖砌体构件
1) 砖砌体和钢筋混凝土面层或钢筋砂浆面层的组合 砌体构件
适用情况:轴向力的偏心距e>0.6y时;对于厂房跨度不 超过18m、柱距为4~6m、轨顶标高不超过8m、吊车吨 位不超过20t的排架柱,一般可采用组合砖砌体。
刚性方案 刚弹性方案 弹性方案 S<32 32≤s≤72 S>72
S<20 20≤s≤48 S>48 S<16 16≤s≤36 S>36
构件截面面积A
对于各类砌体均应按毛截面计算;对带壁柱墙,其 翼缘宽度bf可按下列规定采用: ① 多层房屋,当有门窗洞口时,可取窗间墙宽度; 当无门窗洞口时,每侧翼墙宽度可取壁柱高度的 1/3; ② 单层房屋,可取壁柱宽加2/3墙高,但不大于窗 间墙宽度和相邻壁柱间距离;
假设:hc / l 1 / 11
假设为抛物线
a0 10
hc f
c. 梁端下部砌体非均匀局部受压承载力
梁端底部砌体承
受的荷载由两部
分组成:梁传来 的局部压力Nl; 上部砌体传来的 压力N0