初三圆的有关概念性质

合集下载

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义知识图谱圆的相关概念知识精讲知识精讲一.圆的相关概念1.圆的概念(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径;(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,定点叫做圆心,定长叫做半径;(3)圆的表示方法:用符号 表示圆,定义中以O为圆心,OA为半径的圆记作“O”,读作“圆O”;(4)同圆、同心圆、等圆:①圆心相同且半径相等的圆叫同圆;②圆心相同,半径不相等的两个圆叫做同心圆;③能够重合的两个圆叫做等圆.2.弦与弧的相关概念:(1)弦:连结圆上任意两点的线段叫做弦;(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍;(3)弦心距:从圆心到弦的距离叫做弦心距;(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作 AB,读作弧AB;(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧;(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角与圆周角(1)圆心角:顶点在圆心的角叫做圆心角;①将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧;②圆心角的度数和它所对的弧的度数相等;(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三点剖析一.考点:圆的相关概念二.重难点:1.圆的两种定义的理解;2.弦心距、优弧、圆周角等陌生概念的理解与记忆.三.易错点:1.圆是一条封闭曲线并不包含所围成图形内部部分;2.弓形只是由弧和弦所构成不包含半径;3.同圆、等圆、同心圆的联系与区别.圆的相关概念例题例题1、判断:(1)直径是弦,弦是直径()(2)半圆是圆弧()(3)长度相等的弧是等弧()(4)能够重合的弧是等弧()(5)圆弧分为优弧和劣弧()(6)优弧一定大于劣弧()(7)半径相等的圆是等圆()例题2、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了15米,并使得铁丝均匀地离开地面.则下面说法中比较合理的是()A.你只能塞过一张纸 B.你只能塞过一只书包C.你能钻过铁丝 D.你能直起身体走过铁丝随练随练1、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随练2、过圆上一点可以做出圆的最长弦的条数是()A.1条 B.2条 C.3条D.无数条随练3、如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,74AOC ∠=︒,则E ∠=.垂径定理知识精讲一.垂径定理1.定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论1:(1)平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.补充说明:做题过程中,定理与推论1(1)可以直接使用,而推论1(2)、(3)需证明后再使用.三点剖析一.考点:垂径定理二.重难点:利用垂径定理求圆的半径、弦长和弦心距.三.易错点:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题垂径定理例题例题1、在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为()A.40cmB.60cmC.80cmD.100cm例题2、如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O 的直径,弦AB CD ⊥于E ,1CE =寸,10AB =寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸例题3、如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD =,6EM =,求O 的半径.例题4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm例题5、⊙O 的半径为10,两平行弦AC ,BD 的长分别为12,16,则两弦间的距离是()A.2B.14C.6或8D.2或14随练随练1、如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA=30°,OC=3cm ,则弦AB 的长为()A.9cmB.3cmC.cmD.cm随练2、如图,ABC ∆内接于O ,D 为线段AB 的中点,延长OD 交O 于点E ,连接AE ,BE ,则下列五个结论AB DE AE BE OD DE AEO C ⊥==∠=∠①,②,③,④, 12AE AEB=⑤,正确结论的是随练3、如图,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰为半圆.当水面上涨1米时,桥孔中的水面宽度A B ''为()15米 B.215米 C.217米 D.不能计算随练4、如图,在梯形ABCD 中,AB DC ∥,AB BC ⊥,2cm AB =,4cm CD =.以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离是多少?弧,弦,圆心角之间的关系知一推二知识精讲一.圆心角、弧、弦之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弧也相等.若AOB A OB ''∠=∠,则 AB A B ''=,AB A B ''=,AM A M ''=.2.推论:同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.二.应用1.在解答圆的问题时,若遇弧相等常转化为它们所对的圆心角相等或弦相等来解答;2.有弦的中点时常作弦心距,利用垂径定理及圆心角、弧、弦、弦心距之间的关系来证题;另外,证明两弦相等也常作弦心距;3.在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角;4.有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:(1)连过弧中点的半径;(2)连等弧对的弦;(3)作等弧所对的圆心角三点剖析一.考点:弧、弦、圆心角、弦心距的关系二.重难点:弧、弦、圆心角、弦心距的关系三.易错点:1.两条弧存在倍数关系,但所对应的弦并不是存在相同的倍数关系;2.判断题中,注意题中前提条件,必须是在等圆或同圆中.弧,弦,圆心角之间的关系知一推二例题例题1、下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A.①③ B.②④ C.①④ D.②③例题2、如图,以ABC ∆的边BC 为直径的O 分别交AB AC 、于点D E 、,连结OD OE 、,若65A ∠=︒,则DOE ∠=.例题3、如图,AB 、CD 为⊙O 的直径, AC CE=,(1)试说明BD CE =;(2)若连结BE ,问BE 与CD 平行吗?请说明理由.随练随练1、如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定正确的是()A.CD ⊥ABB.∠OAD=2∠CBDC.∠AOD=2∠BCDD.弧AC=弧BC随练2、如图,A ,B ,C ,D 均为⊙O 上的点,且AB CD =,则下列说法不正确的是()A.AOB COD ∠=∠B.AOC BOD ∠=∠C.AC BD =D.OC CD=随练3、如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC ,则∠ABC=___________.拓展拓展1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.45()cm B.9cm C.45 D.62cm拓展2、下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤拓展3、如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,则OP的长度范围为____cm≤OP≤____cm.拓展4、如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与A、B重合),当PA=时,△PAD为等腰三角形.拓展5、在⊙O中,AB是⊙O的直径,AB=8cm,^^^AC CD BD==,M是AB上一动点,CM+DM的最小值是__________.拓展6、如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.拓展7、在⊙O 中,点C 是劣弧AB 的中点,则线段AB 和线段AC 的大小为()A.2AB AC =B.2AB AC >C.2AB AC< D.无法确定拓展8、如图,在⊙O 中,∠AOB 的度数为m ,C 是弧ACB 上一点,D 、E 是弧AB 上不同的两点(不与A 、B 两点重合),则D E ∠+∠的度数为()A.mB.1802m︒-C.902m ︒+D.2m 拓展9、如图,在半径为2的⊙O 中,弦AB=2,⊙O 上存在点C ,使得弦AC=22BOC=______________°.拓展10、如图9A 、B 是⊙O 上的两点,∠AOB =120°,C 是弧 AB 的中点,求证四边形OACB 是菱形.图9。

初三数学圆的知识点

初三数学圆的知识点

初三数学圆的知识点1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。

直径等于半径的2倍。

(3)弧:圆上任意两点间的部分叫做圆弧。

(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半;③同弧或等弧所对的圆周角相等;④半圆(或直径)所对的圆周角相等;⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

九年级第三章圆知识点总结

九年级第三章圆知识点总结

九年级第三章圆知识点总结九年级的数学学科中,第三章圆是一个重要的知识点。

圆是一个几何图形,是由平面上的所有与定点距离相等的点组成的。

在这个章节中,学生需要掌握圆的性质、圆的表达式和圆与直线的关系等内容。

下面将从不同的角度对这些知识点进行总结。

一、圆的定义和性质圆是一个几何图形,它由平面上的所有与定点距离相等的点组成。

圆的性质有以下几点:1. 圆的半径:圆的半径是从圆心到圆周上任意一点的距离,用字母r表示。

2. 圆的直径:圆的直径是通过圆心并在圆上的一条直线段,它的长度是圆的两倍,用字母d表示。

3. 圆的周长:圆的周长是圆周上的一段弧所对应的长度,用字母C表示。

圆的周长可以通过公式C = 2πr来计算,其中π是一个常数,约等于3.14。

4. 圆的面积:圆的面积是圆内部所包围的区域的大小,用字母A表示。

圆的面积可以通过公式A = πr^2来计算。

二、圆的表达式在数学中,我们常常需要用到圆的表达式来描述一个圆。

圆的表达式一般有两种形式:标准方程和一般方程。

1. 标准方程:标准方程是以圆心和半径为依据的表达式形式。

标准方程的一般形式为:(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径的长度。

2. 一般方程:一般方程是以圆的一般性质为依据的表达式形式。

一般方程的一般形式为:x^2 + y^2 + Dx + Ey + F = 0,其中D、E、F为常数。

三、圆与直线的关系圆与直线之间有一些重要的关系。

下面将介绍一些常见的关系:1. 切线:切线是与圆相切并且只与圆相交于切点的直线。

切线与半径的关系是垂直关系,切线与圆的切点处的切线段等于半径的长度。

2. 弦:弦是连接圆上任意两点的直线段。

弦的长度小于等于直径的长度。

3. 弧:弧是圆上的一段曲线。

圆周上的任意两点可以确定一个弧。

4. 正切线:正切线是一条通过圆外一点且与圆相切的直线。

正切线的长度等于该点到圆心的距离。

综上所述,九年级第三章圆是一个重要且有趣的数学知识点。

九年级上册圆的知识点

九年级上册圆的知识点

九年级上册圆的知识点圆的知识点圆是我们数学学科中一个重要的几何概念。

它是由与一个固定点的距离相等的所有点组成的集合。

无论在三维立体世界还是二维平面中,圆都扮演着重要的角色。

在九年级的上册,我们将学习许多和圆相关的知识点,包括圆的定义、性质、相关定理以及应用等。

一、圆的定义圆是平面上所有与一个固定点的距离相等的点的集合。

这个固定点称为圆心,而这个相等的距离称为半径。

我们可以通过圆心和半径来确定一个圆,记作O(r),其中O代表圆心,r代表半径。

二、圆的性质1. 圆的直径:圆上任意两个点之间的最大距离被定义为圆的直径,它等于半径的两倍。

2. 弧:圆上两个点之间的线段被称为弧。

圆的弧可以是一个小弧、一条半圆或者整个圆。

通常用字母来表示一个弧。

3. 圆的周长和面积:圆的周长是指围绕圆的边界的长度,记作C。

圆的面积是指圆所覆盖的平面的大小,记作A。

周长和面积的计算公式分别为C = 2πr和A = πr²,其中π是一个数学常量,约等于3.14。

三、圆的相关定理1. 圆的同位角定理:在同一个圆或等圆上,对圆心的两个弧所对应的角是相等的。

2. 弧度和角度的关系:弧度是表示角度大小的单位,1弧度等于180°/π。

利用弧度的概念,我们可以更精确地描述圆的性质和定理。

3. 切线与半径的关系:在一个圆上,切线与半径垂直相交。

这就意味着切线和半径所形成的角是直角。

4. 切线定理:如果从切点作一条直线与切线相交,那么该条直线与半径所形成的角是相等的。

四、圆的应用圆不仅仅是一个几何概念,它在现实生活中有着广泛的应用。

以下是一些常见的圆的应用场景:1. 建筑设计:许多建筑结构都离不开圆的概念,如圆形建筑、拱形结构和圆形窗户等。

圆的几何性质和稳定性使得它成为建筑设计中常用的元素。

2. 车轮:车轮通常是圆形的,这是因为圆形能够提供更好的平衡和稳定性。

无论是自行车还是汽车,理解圆的几何特性对于设计和制造车轮至关重要。

圆的知识点初三

圆的知识点初三

圆的知识点初三圆是初中数学中重要的几何图形之一,它具有许多独特的性质和特点。

本文将从圆的定义、圆的元素、圆的性质和圆的应用等方面进行探讨。

一、圆的定义和元素圆是平面上的一个几何图形,它由平面上距离某一点固定距离的所有点组成。

这个固定距离叫做圆的半径,记作r。

圆心是到圆上任意一点的距离都等于半径的点。

圆的元素有圆心、半径、直径和弧长等。

圆心是圆的中心点,通常用字母O表示。

半径是圆心到圆上任意一点的距离,用字母r表示。

直径是通过圆心的一条线段,它的两个端点在圆上,直径的长度等于半径的两倍,即d=2r。

弧长是圆上两点之间的弧所对应的弧长,用字母l表示。

二、圆的性质1. 圆的任意两点之间的距离都等于半径的长度,即圆上任意两点之间的距离是固定的。

2. 圆的直径是圆的特殊性质之一,它等于半径的两倍。

直径是圆的最长的线段,且通过圆心。

3. 圆的弧长是圆的另一个重要性质,弧长与圆心角的大小成正比。

当圆心角为360度时,弧长等于圆的周长。

4. 圆的周长是圆上所有点到圆心的距离之和,也称为圆的周长。

周长的计算公式为C=2πr,其中π≈3.14。

5. 圆的面积是圆所包围的平面区域的大小,面积的计算公式为A=πr^2,其中^2表示半径的平方。

三、圆的应用圆在生活中有着广泛的应用。

以下列举几个常见的例子:1. 圆形的轮胎和车轮:汽车、自行车等的轮胎和车轮都是圆形的,这是因为圆形的轮胎和车轮能更好地保证车辆的稳定性和平衡性。

2. 圆形的钟表和计时器:钟表和计时器通常都是圆形的,因为圆形的刻度能更直观地显示时间的流逝。

3. 圆形的光学器件:如镜片和透镜等,它们的表面通常是圆形的,这是因为圆形的表面能更好地聚焦光线。

4. 圆形的篮球场和足球场:篮球场和足球场的形状通常是圆形的,这是为了保证比赛的公平性和平衡性,使运动员能够更好地进行比赛。

圆是初中数学中的重要知识点之一。

通过对圆的定义、元素、性质和应用的了解,我们可以更好地理解和应用圆的相关概念,为日常生活和学习中的问题提供解决方案。

圆的概念及性质

圆的概念及性质

一、圆的相关概念1. 圆的定义(1) 描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. (2) 集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径. (3) 圆的表示方法:通常用符号⊙表示圆,定义中以O 为圆心,OA 为半径的圆记作”O ⊙“,读作”圆O “. (4) 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆. 注意:注意:同圆或等圆的半径相等. 2. 弦和弧(1) 弦:连结圆上任意两点的线段叫做弦. (2) 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. (3) 弦心距:从圆心到弦的距离叫做弦心距.(4) 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作AB ,读作弧AB . (5) 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. (6) 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. (7) 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. (8) 弓形:由弦及其所对的弧组成的图形叫做弓形.3. 圆心角和圆周角(1) 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. (2) 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.二、圆的对称性1. 旋转对称性(1) 圆是中心对称图形,对称中心是圆心;圆是旋转对称图形,无论绕圆心旋转多少度角,总能与自身重合. (2) 圆的旋转对称性⇒圆心角、弧、弦、弦心距之间的关系. 2. 轴对称性(1) 圆是轴对称图形,经过圆心的任一条直线是它的对称轴. (2) 圆的轴对称性⇒垂径定理.三、圆的性质定理1. 圆周角定理(1) 定理:一条弧所对的圆周角等于它所对的圆心角的一半. (2) 推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 2. 圆心角、弧、弦、弦心距之间的关系(1) 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(2) 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,圆的概念及性质A注意:①前提条件是在同圆或等圆中;②在由等弦推出等弧时应注意:优弧与优弧相等;劣弧与劣弧相等.3. 垂径定理(1) 定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2) 推论1: ①平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (3) 推论2:圆的两条平行线所夹的弧相等.注意:若“过圆心的直线”、“垂直于弦”、“平分弦(非直径)”、“平分弦所对的优弧”、“平分弦所对的劣弧”中的任意两个成立,则另外三个都成立.注意:应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.一、圆的相关概念及性质【例1】 判断题:(1)直径是弦 ( )(2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( ) (7)两个劣弧之和等于半圆( )D(8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( )(10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【巩固】如图,在两半径不同的同心圆中,''60AOB A OB ∠=∠=︒,则( )A .''AB A B =B .''AB A B >C .AB 的度数=''A B 的度数D .AB 的长度=''A B 的长度【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>【巩固】如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为____________.【例3】 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .图1图2ON MHGFE DCB A二、圆的性质定理1. 圆周角定理【例4】 如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是( )A .40︒B .45︒C .50︒D .80︒【巩固】如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.【例5】 如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BA【例6】 如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.【巩固】如图,量角器外缘边上有A P Q,,三点,它们所表示的读数分别是180︒,70︒,30︒,则PAQ∠的大小为()A.10︒B.20︒C.30︒D.40︒【例7】如图,O⊙是ABC∆的外接圆,已知60B∠=︒,则CAO∠的度数是()A.15︒B.30︒C.45︒D.60︒OA【巩固】如图,AB是O的直径,CD是⊙O的弦,连接AC AD,,若35CAB∠=︒,则ADC∠的度数为.【例8】如图所示的半圆中,AD是直径,且32AD AC==,,则sin B的值是________.DCABCOA【巩固】如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.【例9】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.E【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠的度数.D【例10】 如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.【巩固】如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.O PFEDCB A【例11】 如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )B.4D.5CA【巩固】如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠=︒=,,则O ⊙的半径为______cm .【巩固】如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD 的长.【例12】如图,ABC,重合),△是O的内接三角形,点C是优弧AB上一点(点C不与A B 设OABα∠=,Cβ∠=.(1)当35α=︒时,求β的度数;【巩固】如图,O⊙分成度数比为12⊙相交于B、C两点,BC是P⊙与P⊙的直径,且把O∶的两条弧,A是BmC上的动点(不是B、C重合),连结AB、AC分别交P⊙于D、E两点.(1)当ABC∆是钝角三角形时,判断PDE∆的形状.(2)当ABC∆是直角三角形时,判断PDE∆的形状.(3)当ABC∆是锐角三角形时,判断PDE∆的形状.这种情况加以证明.【例13】 圆1S 及2S 相交于点A 及B .圆1S 的圆心O 落在2S 的圆周上,圆1S 的弦AC 交2S 于点D(如图),证明:线段OD 与BC 是互相垂直的.ABCD OS 1S 2【巩固】两圆相交于A 、B ,P 是大圆O 上一点,过A 、P 和B 、P 分别作直线交小圆于C 、D ,过O 、P 作直径PE .求证:PE CDPG FEDCBA【例14】 如图,已知AB 是O ⊙的直径,点C 是O ⊙上一点,连结BC AC 、,过点C 作直线CD AB⊥于点D ,点E 是AB 上一点,直线CE 交O ⊙于点F ,连结BF ,与直线CD 交于点G .求证:2BC BG BF =⋅.B【巩固】如图,已知:在O ⊙中,直径4AB =,点E 是OA 上任意一点,过E 作弦CD AB ⊥,点F 是BC 上一点,连接AF 交CE 于H ,连接AC CF BD OD 、、、.⑴ 求证:ACH AFC ∆∆∽;⑵ 猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; ⑶ 探究:当点E 位于何处时,:1:4AEC BOD S S ∆∆=?并加以说明.B【例15】 如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB AC AE ==.请你说明以下各式成立的理由:(1)2CAD DBE ∠=∠;(2)22AD AB BD DC -=⋅.E DCBA【巩固】在ABC ∆中,60ABC ∠=︒,点O 、H 分别是ABC ∆的外心、垂心.点D 、E 分别在边BC 、AB 上,使得BD BH =,BE BO =,已知1BO =.求BDE ∆的面积.图 12HOFE DCBA2. 圆内接四边形【例16】 如图,AB 为O 的直径,AC 交O 于E 点,BC 交O 于D 点,CD BD =,70C ∠=︒. 现给出以下四个结论:①45A ∠=︒; ②AC AB =; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④BA【巩固】已知:如图,面积为2的四边形ABCD 内接于O ⊙,对角线AC 经过圆心,若45BAD ∠=︒,CD AB 的长等于 .【例17】 已知AD 是O ⊙的直经,AB AC 、是弦,若2AD AB AC ===,求由A B C D ,,,四点构成的四边形的周长.图1【巩固】如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD 的交点P,AB BD=,且0.6PC=,求四边形ABCD的周长.CA【例18】如图,四边形ABCD为正方形,O过正方形的顶点A和对角线的交点P,分别交AB AD,于点F E,.(1)求证:DE AF=(2)若O,1AB=,求AEED的值.【例19】圆内接四边形ABCD,AC BD⊥,AC交BD于E,EG CD⊥于G,交AB于F.求证:AF BF=.GEF A BCD【巩固】圆内接矩形CEDF,过D作圆的切线AB,分别与CE、CF的延长线相交于A、B,求证:33BF BCAE AC=.A3.圆心角、弧、弦、弦心距之间的关系【例20】在同圆中,CD的度数小于180︒,且2=,那么弦AB和弦CD的大小关系为()AB CDA.AB CD< D.无法确定= C.AB CD> B.AB CD【巩固】如图所示在O=,那么()AB CD⊙中,2<> B.2AB CDAB CDA.2AB CD= D.AB与2CD的大小关系不能确定C.2【例21】已知AB AC∥交AC于P,求证:OP⊙于D,弦DE AB、是O⊙的弦,AD平分BAC∠交O平分APD∠.C【巩固】如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴ BEC ADF =;⑵AM BN =.A【例22】 已知点A 、B 、C 、D 顺次在O ⊙上,AB BD =,BM AC ⊥于点M ,求证:AM DC CM =+.dN cb aN【巩固】在ABC ∆中,AC BC >,M 是它的外接圆上包含点C 的弧AB 的中点,AC 上的点X 使得MX AC ⊥,求证:AX XC CB =+.【例23】 如图,ABC ∆是O ⊙的内接三角形,AC BC =,D 为O ⊙中AB 上一点,延长DA 至点E ,使CE CD 、是关于x 的方程()22123412904x m x m m --+-+=的两根. ⑴ 求证:AE BD =;⑵若ACBC ⊥,求证:AD BD +.使得BFC BAD∠=∠.若2BAD DFC∠=∠,求BEDE的值.图 4FEDCBA【例24】已知:如图,D是Rt ABC∆中直角边BC上的一点,以BD为直径的圆交斜边AB于点E,连结EC交此圆于点F,BF交AC于点G.求证:GF CA CF EA⋅=⋅.【巩固】AB是半圆的直径,C点在圆上,过点A、B分别作过C点的切线的垂线AD、BE,D、E为垂足,求证:24=⋅.DE AD DEA三、垂径定理【例25】如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对【巩固】下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦A .80︒B .50︒C .40︒D .20︒D【巩固】如图,ABC △内接于O ,点D 是CA 延长线上一点,若120BOC ∠=︒,则BAD ∠等于( )A .30︒B .60︒C .75︒D .90︒【例27】 如图,AB O ⊙是的直径,弦CD AB ⊥于E ,30CDB ∠=°,O ,则弦CD的长为( ) A .3cm 2B .3cmC .D .9cmC ABOE D半径为2,则结论错误的是( )A .AD DB = B .AE EB =C .1OD = D.ABE【例28】 如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( )A .4cmB .5cmC .6cmD .8cm【巩固】如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ) A .3B .4C .6D .9【例29】 如图所示,同心圆中,大圆的弦AB 交小圆于C ,D 两点,试证明:AC BD =.B 【巩固】如图,同心圆中,大圆的弦AB交小圆于C D、两点,42AB CD==,,AB的弦心距等于1,那么,大圆半径与小圆半径之比是_________.【例30】在半径为4cm的圆中,垂直平分半径的弦长是_______.【巩固】O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则O的半径长为()A.3cmB.4cmC.5cmD.6cm【巩固】若O⊙中等于120︒的劣弧所对的弦长为,则O⊙的半径是_______.【例31】如图,已知O⊙的半径是5,点A到圆心O的距离为3,求过点A的所有弦中最短弦的长度.【巩固】如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【例32】如图,O是等边三角形ABC的外接圆,O的半径为2,则等边三角形ABC的边长为()A BC.D.【巩固】如图所示,ABC∆中,10AB AC==,12BC=,求其外接圆的半径.CBA【例33】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米 B.8米 C.7米 D.DCBA【巩固】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽16cmAB=,水面最深地方的高度为4cm,求这个圆形截面的半径.【例34】如图所示,在Rt ABC∆中90C∠=︒,AC1BC=,若以C为圆心、CB的长为半径的圆交AB 于P ,则AP = .PCBA【巩固】如图所示,在O ⊙与三角形所组成的图形中,OA OB =,求证AC BD =.DC B AO【例35】 在半径为1的O ⊙中,弦AB AC 、BAC ∠的度数为________.【巩固】如图所示,已知O ⊙的直径AB 和弦CD 相交于点E ,6cm AE =,2cm EB =,30BED ∠=︒,求CD 的长.BA【例36】 已知O ⊙的直径是50cm ,O ⊙的两条平行弦40cm AB =,48cm CD =,求弦AB 与CD 间的距离.【巩固】已知在O ⊙中,半径5r =,AB CD 、是两条平行弦,且86AB CD ==,,求AC 的长.图(4)图(3)图(2)图(1)【例37】 如图,AB 是O ⊙的弦,OD AB ⊥,垂足为C ,交O ⊙于点D ,点E 在O ⊙上.(1)若52AOD ∠=︒,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.【巩固】如图所示,已知AB 为O ⊙的直径,CD 是弦,且AB CD ⊥于点E .连接AC OC BC ,,.(1)求证:ACO BCD ∠=∠.(2)若8cm 24cm EB CD ==,,求O ⊙的直径.B【例38】 如图,M N 、分别是O ⊙中长度相等但不平行的两条弦AB CD 、的中点.求证:AMN CNM ∠=∠.【巩固】如图,O ⊙中,AB 是直径,弦GE EF HF EF ⊥⊥,,GE HF 、交AB 于C D 、.求证:AC BD =.B【例39】 如图,AE CD ,是O 的两条直径,弦AB CD ⊥,BC DE ,交于点F ,求证:OF AB ∥.OF EDCBA【巩固】当AB CD ,是O 的直径,弦CF AP ∥,BF PD ,相交于点E ,求证:OE PA ∥.OPFEDCBA【例40】 如图,AB 是O ⊙的直径,且10AB =,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A B ,到MN 的距离分别为12h h ,,则12h h -等于( ) A .5 B .6 C .7 D .8B【巩固】如图,O 的直径15AB cm =,有一条定长为9cm 的动弦CD 在AmB 上滑动(点C 与A ,点D与点B不重合),且CE CD⊥交AB于E,DF CD⊥交AB于F.(1)求证:AE BF=.(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若为定值,请求出这个定值;若不是,请说明理由.【例41】如图,半径为O⊙内有互相垂直的两条弦AB CD、相交于P点.(1)求证:PA PB PC PD⋅=⋅;(2)设BC的中点为F,连结FP并延长交AD于E,求证:EF AD⊥;(3)若86AB CD==,,求OP的长.B【巩固】如图,已知:在O中,直径4AB=,点E是OA上的任意一点,过E作弦CD AB⊥,点F是BC上一点,连接AF交CE于H连接AC CF BD OD,,,.(1)求证:ACH AFC △∽△;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并说明你的猜想; (3)探究:当点E 位于何处时,:1:4AEC BOD S S =△△?并加以说明.FB【例42】 (1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.A【例43】 如图,AM 是O ⊙的直径,过O ⊙上一点B 作BN AM ⊥,垂足为N ,其延长线交O ⊙于点C ,弦CD 交AM 于点E .⑴ 如果CD AB ⊥,求证:EN NM =;⑵ 如果弦CD 交AB 于点F ,且CD AB =,求证:2CE EF ED =⋅ .M【例44】 如图,Rt ABC ∆内接于O ⊙,AC BC =,BAC ∠的平分线AD 与O ⊙交于点D ,与BC 交于点E ,延长BD 与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结OG . ⑴判断OG 与CD 的位置关系,写出你的结论并证明;⑵求证:AE BF =;⑶若(32OG DE ⋅=,求O ⊙的面积.B1.如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.A2.如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( ) A .40︒B .50︒C .80︒D .100︒3.如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P4.如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是( ) A .25︒B .40︒C .30︒D .50︒E 5.如图,已知AB为⊙O的直径,20∠=______.∠=︒,则CBEDBC∠=︒,50E6.如图,AB是O的直径,点C,D,E都在O上,若C D E∠∠∠,求A B==+∠∠.AB 7.如图,AB是O 的直径,点C,D,E都在O上,若CD E∠∠∠,求A B==∠∠.+BA8.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65︒.为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器 台.9.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.B10.已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.11.已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .12.如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.PEC B A13.如图,O ⊙外接于正方形ABCD ,P 为弧AD 上一点,且1AP =,PB =求PC 的长.P DCBA14.如图,AB CD ,是O ⊙的两条弦,它们相交于点P ,连结AD BD 、,已知4AD BD ==,6PC =,求CD 的长.15.已知A D 、是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足为B C 、,E 是BC 上一动点,连结AD AE DE 、、,且90AED ∠=︒. ⑴如图⑴,如果616AB BC ==,,且:1:3BE CE =,求AD 的长;⑵如图⑵,若点E 恰为这段圆弧的圆心,则线段AB BC CD 、、之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A D 、分别在直线l 两侧且AB CD ≠,而其余条件不变时,线段AB BC CD 、、之间又有怎样的等量关系?请直接写出结论,不必证明.图(2)lE DCBA图(1)lEDC B A16.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60° B. 90° C. 120° D. 150°mOBA17.如图所示,AB 是O 的直径,AD DE =,AE 与BD 交于点C ,则图中与BCE ∠相等的角有( )OEDCBAA .2个B .3个C .4个D .5个18.O ⊙的半径为1,AB 是O ⊙的一条弦,且3AB =,则弦AB 所对圆周角的度数为_____________.19.若O ⊙中等于120︒的劣弧所对的弦长为123,则O ⊙的半径是_______.20.如图,AB 是O ⊙的弦,OD AB ⊥于D 交O ⊙于E ,则下列说法错误..的是( )A .AD BD =B .ACB AOE ∠=∠C .AE BE =D .OD DE =OED CB A21.O ⊙的半径为5,P 为圆内一点,P 点到圆心O 的距离为4,则过P 点的弦长的最小值是__________.22.如图,矩形ABCD 与圆心在AB 上的O ⊙交于点G B F E 、、、,8cm GB =,1cm AG =,2cm DE =,则EF =_________.OGFE B23.如图,已知AB 是半圆O 的直径,C 为半圆周上一点,M 是AC 的中点,MN AB ⊥于N ,则MN 与AC 的关系是___________.ONMCA24.已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.25.把正ABC ∆的外接圆对折,使点A 落在BC 的中点'A 上,若5BC =,则折痕在ABC ∆内的部分长为( )A .B .103C D .5226.如图,O 的半径为5,BC OA OD AB ⊥⊥,,求22OD CD +的值.27.如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD AB∥,且24mCD=,OE CD⊥于点E.已测得12 sin13DOE∠=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?BA28.如图,P为O⊙外一点,过点P引两条割线PAB和PCD,点M N,分别是AB CD,的中点,连结MN交AB,CD与E F,.求证:PEF∆为等腰三角形.MD 29.如图,AD是O⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3BB C 230.已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.AMNA31.如图,在O 中,60ACB BDC ∠=∠=︒,AC =.(1)求BAC ∠的度数;(2)求O的周长.D32.如图,AB是O⊙的直径,BC是弦,OD BC⊥于E,交BC于D.(1)请写出五个不同类型的正确结论;(2)若8⊙的半径.BC=,2ED=,求OD33.圆内接四边形两条对角线互相垂直,则一边的弦心距等于它的对边的一半.A34.如图,在O的内接ABCAD=,设O的半径⊥于D,且3AB AC△中,12+=,AD BC为y,AB的长为x.(1)求y与x的函数关系式.(2)当AB的长为多少时,O的面积最大?并求出O最大面积.。

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质

初中数学知识归纳圆的概念与性质圆是初中数学中的重要概念,在本文中将对圆的概念与性质进行归纳和总结。

文章将从圆的定义开始,逐步介绍圆的基本要素、圆心角、内接外接等重要性质,并辅以相关的定义、公式和图示,以便读者更好地理解和掌握。

1. 圆的定义圆是由平面上所有距离固定点(圆心)的点构成的集合。

圆的平面被称为圆面,圆上的每一个点到圆心的距离都相等,这个相等的距离被称为圆的半径。

2. 圆的基本要素(1)圆心:圆心是圆的中心点,通常用字母O表示。

(2)半径:圆心到圆上任一点的距离为圆的半径,通常用字母r表示。

(3)直径:直径是通过圆心且两端在圆上的线段,直径的长度为半径的两倍。

(4)弦:连接圆上两点的线段被称为弦,弦的长度可以小于或等于直径。

3. 圆的性质(1)圆的周长:圆的周长是圆上一周的长度,用C表示,可通过公式C = 2πr计算,其中π是一个常数,近似值为3.14。

(2)圆的面积:圆的面积是圆内部的所有点构成的区域,用S表示,可通过公式S = πr²计算。

(3)圆心角:以圆心为顶点的角被称为圆心角,圆心角所对的弧称为圆心角所对的弧。

(4)弧长:弧长是圆的一部分,通常通过弧度来度量,弧长的计算公式是L = rθ,其中θ是圆心角的弧度数。

(5)切线和法线:切线是与圆相切于一点并且与圆的切点的切线垂直的直线,而法线是与切线垂直的直线。

4. 圆的内接和外接(1)内接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为内接多边形,内接多边形的顶点都落在圆上。

(2)外接:如果一个多边形的每条边都与圆的圆周相切,那么称该多边形为外接多边形,外接多边形的每个顶点都在圆上。

综上所述,圆是一种特殊的几何图形,其定义、基本要素、性质和内接外接等概念是初中数学中必须掌握的内容。

通过对圆的学习,我们可以应用圆的性质解决实际问题,如计算圆的周长、面积,进行内接外接多边形的相关计算等。

深入理解和掌握圆的概念和性质能够夯实数学基础,为进一步学习和应用提供坚实的基础。

九年级圆的知识点难点

九年级圆的知识点难点

九年级圆的知识点难点圆是数学中重要的几何概念之一,在九年级的学习中,我们需要掌握圆的定义、性质以及相关的定理和公式。

本文将从这些方面进行论述,以帮助同学们更好地理解和掌握圆的知识。

一、圆的定义圆是由平面上距离一个固定点(圆心)相等的所有点组成的集合。

圆心到圆上任意点的距离称为半径,用字母r表示。

二、圆的性质1. 圆心角的度数等于所对弧的度数:圆心角是以圆心为顶点的角,对应的弧是在圆上的一段弧。

圆心角的度数等于所对弧的度数,即∠AOB = 弧AB的度数。

2. 圆上任意两点到圆心的距离相等:对于圆上的任意两点A、B,它们到圆心的距离都相等,即OA = OB。

3. 弦的性质:弦是圆上连接两点的线段。

在同一个圆或等圆上,两个弦AB和CD相等的充分必要条件是它们所对的弧相等(即弧AB = 弧CD)。

4. 切线的性质:切线是与圆只有一个交点的直线,与该交点处的切点垂直。

切线与半径的夹角为90度。

三、圆的定理和公式1. 圆的周长和面积计算公式:周长C = 2πr面积A = πr²2. 切线与半径的关系:切线长的平方等于从该切点到圆心的半径与与该切点所对的弧相乘,即t² = r * 弧AB。

3. 相交弦的性质:当两条弦AB和CD在圆的内部相交时,两弦的和乘积等于内接四边形ACBD的对角线的乘积,即AB * CD = AC * BD。

四、圆的难点对于九年级学生来说,圆的难点主要有以下几个方面:1. 圆心角和弧的度数之间的关系不易理解:学生需要通过具体的示例和练习,加深对圆心角和弧的度数之间的理解,并能在具体问题中正确运用。

2. 相交弦的性质的应用:学生在解题时需要辨别图中的相交弦,正确运用相交弦的性质来解题。

3. 切线与半径的关系:学生需要理解切线长的平方等于半径与切点所对弧的乘积这一关系,并能够运用到具体问题中。

4. 圆的推理证明题:学生需要通过大量的实践,熟练掌握圆的定理和性质,并能够灵活运用到推理证明题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的有关概念和性质【课前展练】1.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB =60︒,则∠BDC 的度数是 ° ° ° D. 40°2.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( ) A .28° B .56° C .60° D .62°DCBAO3.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( ) ¥A .45°B .85°C .90°D .95°4.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为π9,则弦AB 的长为( ) A .3 B .4 C .6 D .95.在⊙O 中,直径AB ⊥CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD .求∠D 的度数.6.如图,圆内接四边形ABCD ,AB 是⊙O 的直径,OD ⊥BC 于E 。

(1)请你写出四个不同类型的正确结论; (2)若BE=4,AC=6,求DE 。

<【要点提示】圆的基本性质应用要点:垂径定理,圆周角定理。

垂径定理是圆中利用勾股定理进行计算的基础,圆周角定理是圆中角度转换的基本依据。

【考点梳理】1.圆的有关概念:(1)圆:(2)圆心角: (3)圆周角: (4)弧: (5)弦: 2.圆的有关性质:(1)圆是轴对称图形,其对称轴是 ;垂径定理:垂直于弦的直径 ,并且 . *推论:平分弦(不是直径)的直径 ,并且 .(2)圆是中心对称图形,对称中心为 .圆是旋转对称图形,圆绕圆心旋转任意角度,都能和原来的图形重合(这就是圆的旋转不变性).弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所 对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是 ;900的圆周角所对的弦是 . 3.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆. )(2)三角形的外心: (3)三角形的内心: 4. 圆周角定理同圆或等圆中,同弧或等弧所对的圆周角都相等,等于它所对的圆心角的一半. 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角. 【课堂小结】垂径定理、圆心角与弧关系定理、圆周角定理是证明和解决圆中线段之间、弧之间、圆心角、圆周角这间和差倍分关系的基本理论依据.与圆有关的位置关系【课前展练】 .1.⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A . 相交 B . 相切 C . 相离 D . 无法确定2.如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映 出的两圆位置关系有( ) A .内切、相交 B .外离、相交 C .外切、外离 D .外离、内切3. 已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm5. 已知⊙O 的半径是3,圆心O 到直线AB 的距离是3,则直线AB 与⊙O 的位置关系是 . 《【要点提示】点、直线、圆与圆的位置关系可以由相关的数据关系来确定,反过来,由相关的数据关系可以确定点、直线、圆与圆的位置关系。

这是考查的重点所在。

【知识梳理】1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为:①d r ,②d r ,③d r .2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d r ,②d r ,③d r.3. 圆与圆的位置关系共有五种:(两圆圆心距为d ,半径分别为21,r r )/相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<切线的性质与判定【课前展练】1. 如图,两个同心圆的半径分别为4cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为( )QPAOA . 3cmB . 4cmC . 6cmD . 8cm2. …3. 如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R Rπαα B.(90),sin 180R R R απα-- C.(90),sin 180R R R απα+- D.(90),cos 180R R R απα-- 4. 如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN =70°,则A ∠= .5. 如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦与小半圆N 相切于点F ,且AB ∥CD ,AB =4,设CD 、CE 的长分别为x 、y ,线段ED 的长为z ,则()z x y +的值为____________.6. 如图,正方形ABCD 中,半圆O 以正方形ABCD 的边BC 为直径,AF 切半圆O 于点F ,AF 的延长线交CD 于点E ,则DE :CE = 。

7. 如图,在直角坐标系中,四边形OABC 是直角梯形,BC ∥OA ,⊙P 分别与OA 、OC 、BC 相切于点E 、D 、B ,与AB 交于点F .已知A (2,0),B (1,2),则tan ∠FDE = .8. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 则EDF ∠等于( ) :A .40°B .55°C .65°D .70° 【考点梳理】考点1:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的判定常用方法有三种:(1)和圆只有一个公共点的直线是圆的切线。

(2)和圆心的距离等于圆的半径的直线是圆的切线。

(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 ~辅助线的作法:证明一条直线是圆的切线的常用方法有两种:(1)当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径,记为“点已知,连半径,证垂直。

”应用的是切线的判定定理。

(2)当直线和圆的公共点没有明确时,过圆心作直线的垂线,再证圆心到直线的距离(d )等于半径(r),记为“点未知,作垂直,证半径”。

应用的是切线的判定方法(2)。

考点2:切线的性质定理:圆的切线垂直于过切点的半径。

辅助线的作法:第1题图 ! D E C F B AN M 第4题图 F E O C第5题图 》OA FB EMPCBA O~A ABBC C DD OOE图2 图1有圆的切线时,常常连接圆心和切点得切线垂直半径。

记为“见切线,连半径,得垂直。

”…考点3:切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 对于切线长定理,应明确:(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补; (5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

【要点提示】切线的判定和性质在中考中是重点内容,试题题型灵活多样,多以填空、选择、解答题出现,在孝感市历年中考中,几何的考查基本集中在考查切线的性质和判定定理。

【典型例题】 例1:如图15,以Rt △ABC 的直角边AC 为直径作⊙O ,交斜边AB 于点D ,E 为BC 边的中点,连DE .⑴请判断DE 是否为⊙O 的切线,并证明你的结论. ⑵当AD :DB=9:16时,DE=8cm 时,求⊙O 的半径R . 例2:如图,AB 为O 的直径,PQ 切O 于T ,AC PQ⊥于C ,交O 于D .(1)求证:AT 平分BAC ∠;(5分) ,(2)若2AD=,TC =O 的半径.(5分)例3:如图,等边△ABC 内接于⊙O ,P 是AB上任一点(点P 不与点A 、B 重合),连AP 、BP ,过点C 作CM ∥BP 交的延长线于点M.(1)填空:∠APC =______度,∠BPC =_______度; (2)求证:△ACM ≅△BCP ;(3)若PA =1,PB =2,求梯形PBCM 的面积.例4:如图1,⊙O 是边长为6的等边△ABC 的外接圆,点D 在BC ⌒上运动(不与点B 、C 重合),过点D 作DE ∥BC 交AC 的延长线于点E ,连接AD 、CD . (1)在图1中,当AD =210时,求AE 的长. (2)如图2,当点D 为BC ⌒的中点时:①DE 与⊙O 的位置关系是 ;②求△ACD 的内切圆半径r .。

相关文档
最新文档