人教版高中数学必修二第一章 空间几何体全章教案

合集下载

数学必修2立体几何第一章全部教(学)案

数学必修2立体几何第一章全部教(学)案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计一、背景介绍人教版高中数学教材中,空间几何体是必修2的第一章内容,通过本章的学习,可以帮助学生建立三维空间的思维模型,进一步提高他们的数学学习能力。

本课程设计旨在通过有趣的教学方法和补充教材,提高学生对空间几何体的理解和掌握。

二、学习目标1.了解空间几何体的基本概念;2.掌握空间几何体的相关参数计算方法;3.能够进行空间几何体的分类和比较;4.能够在现实问题中应用空间几何体的相关知识。

三、教学内容1. 立体图形与空间几何体•立体图形的特点;•空间几何体的基本概念;•空间几何体的种类及特点。

2. 空间几何体的参数计算•空间几何体的体积计算;•空间几何体的表面积计算;•空间几何体的其他参数计算。

3. 空间几何体的分类•空间几何体的分类;•不同空间几何体的比较;•在实际问题中应用空间几何体的分类知识。

四、教学方法1. PBL教学法本课程采用问题驱动学习(PBL)教学法,通过引入实际问题,激发学生的学习兴趣,提高学生的自主学习能力和解决问题的能力。

2. 案例教学法在教学中引入具体案例,让学生在解决问题时更能理解和掌握所学知识。

同时,在案例解决过程中,要求学生能够进行创新和自主思考,培养他们的实际应用能力。

3. 交互式教学法教师与学生通过互动、讨论、合作等形式,共同探究问题,激发学生的学习兴趣,提高其学习效果。

五、教学流程第一部分:引入教学•介绍本章学习目标;•引入立体图形和空间几何体的概念;•通过图片、视频等形式展现空间几何体的特点和应用场景。

第二部分:教学过程•在课堂上呈现具体的例子,让学生更好地理解空间几何体的概念和应用;•引入问题来激发学生的学习兴趣,同时培养学生的自主思考和解决问题的能力;•给予学生足够的时间,让他们自主探索和发现,鼓励他们进行创新和思考。

第三部分:总结归纳•进行知识点的总结,强化学生对空间几何体的理解和掌握;•借助案例,让学生更深入地理解和掌握空间几何体的相关知识。

新人教版高中数学必修二教案:1.1空间几何体

新人教版高中数学必修二教案:1.1空间几何体

1.1空间几何体【知识要点】1. 认识几何体:a. 棱柱的结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

b. 棱锥的结构特征:有一个面是多边形,其余各面都是一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。

c. 圆柱、圆锥、圆台、棱台的结构特征:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱;以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的几何体叫做圆锥;用一个平行于圆锥地面的平面去截圆锥,底面与截面之间叫做圆台;用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

d. 球:半圆以它的直径为旋转轴,旋转一周所成的曲面叫做球面。

球面所围成的几何体叫做球体,简称球。

半圆的圆心叫做球心。

连接球心和球面上任意一点的线段叫做球的半径。

连接球面上的两点并且经过球心的线段叫做球的直径。

2. 圆柱、圆锥、圆台的侧面展开图a. 圆柱:如图1-1-2,在矩形1OO BA 中,在1OO =AB=h=l ,AO=r 。

圆柱的侧面展开图是一个矩形,在矩形ABCD 中,AD=BC=2r π,BD 是从B 绕圆柱侧面一周到A 的最短距离。

b. 圆锥:如图1-1-3,在Rt 三角形OPA 中,222l h r =+,圆锥的侧面展开图是一个扇形,在扇形PAA '中,AA '=C=2r π。

AA '为从A 出发绕圆锥侧面一周再回到A 的最短距离。

c. 圆台:如图1-1-4,在直角梯形OO A A ''中,222()l h r r '=+-。

圆台的侧面展开图是一个扇环,在扇环AA B B ''中,2;2A B r AB r ππ'''==。

3. 几何体的侧面积a. 直棱柱的侧面展开图是矩形,直棱柱侧面面积计算公式:S ch =直棱柱侧面积 即直棱柱的侧面积等于它的底面周长和高的乘积。

高中数学必修2《空间几何体》教案

高中数学必修2《空间几何体》教案

高中数学必修2《空间几何体》教案高中数学必修2《空间几何体》教案第一章空间几何体一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。

(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积④圆台的表面积⑤球的表面积⑥扇形的面积公式 (其中表示弧长,表示半径)2、空间几何体的体积①柱体的体积②锥体的体积③台体的体积④球体的体积二、练习与巩固(1)空间几何体的结构特征及其三视图1.下列对棱柱说法正确的是( )A.只有两个面互相平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行2.一个等腰三角形绕它的底边所在的直线旋转360。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。

掌握空间几何体的结构特征,如表面积、体积等。

1.2 教学内容柱体、锥体、球体的定义及性质。

空间几何体的结构特征的计算方法。

1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。

3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。

1.4 课堂练习完成课本练习题,巩固所学知识。

1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。

第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。

掌握点、线、面的位置关系的判定方法。

2.2 教学内容点、线、面的位置关系的定义及判定方法。

2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。

2.4 课堂练习完成课本练习题,巩固所学知识。

2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。

第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。

掌握空间角的计算方法。

3.2 教学内容空间角的定义及性质。

空间角的计算方法。

3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。

3.4 课堂练习完成课本练习题,巩固所学知识。

3.5 课后作业完成课后作业,加深对空间角的计算的理解。

第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。

掌握空间向量的应用方法。

空间向量的定义及性质。

空间向量的应用方法。

4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。

4.4 课堂练习完成课本练习题,巩固所学知识。

4.5 课后作业完成课后作业,加深对空间向量的应用的理解。

第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。

5.2 教学内容立体几何中的综合问题的解题策略。

5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。

人教版高中数学必修二1.1空间几何体的结构教案(1)

人教版高中数学必修二1.1空间几何体的结构教案(1)

课题:§1.1.1柱、锥、台、球的结构特征(1)一.教学任务分析:(1)通过观察模型、实物,图片,使学生理解并能归纳出棱柱,棱锥,棱台的结构特征;(2)通过对棱柱,棱锥,棱台的结构特征的观察分析,培养学生的观察能力和抽象概括能力;(3)通过教学活动,逐步培养学生探索问题的精神。

二.教学重点与难点:教学重点:让学生感受大量空间实物及模型,重点分析棱柱的结构特征.进而概括出棱锥,棱台的结构特征.教学难点:棱柱结构特征的概括.三.教学基本流程:↓↓↓↓四.教学情境设计:(一)创设情景,揭示课题1.本章开头语:2.利用计算机展示教课书P2中的图1.1-1中的(2)、(5)、(7)及有关实物,图片,引导学生观察,交流、讨论,这些几何体的各自的特点是什么?它们的共同特点是什么?(组织学生讨论,交流,在这个过程中,教师引导学生从围成几何体的面的特征去观察,让学D 1C 1B 1A 1D CBA(二)棱柱的结构特征:(1)有两个面互相平行; (2)其余各面都是平行四边形; (3)每相邻两个四边形的公共边互相平行。

(三)棱柱的有关概念及棱柱的分类与表示方法:(教师与学生结合图形概括出棱柱的概念及相关概念)(1)棱柱的定义;(2)底面;(3)侧棱;(4)侧面;(5)顶点:(6)棱柱的分类和表示方法.(1)三棱柱 (2)四棱柱 (3) 五棱柱 (四)棱柱概念的深化:问题1: 如图,过BC 的截面截去长方体的一角,所得的几何体是不是棱柱?为什么?棱锥的底面棱锥的侧面棱锥的顶点棱锥的侧棱棱锥的高BCDO的概念返回(引导学生如何利用棱柱的概念来判断一个几何体是不是棱柱;即看所给的几何体是否符合棱柱定义的三个条件)问题2:观察长方体和六棱柱, 各共有多少平行平面?能作为底面的各有几对?问题3:如图:是一个“有两个面互相平行,其余各面都是平行四边形”的几何体,这个几何体是棱柱吗?(五)棱锥的结构特征及相关概念利用计算机展示教课书P 2中的图1.1-1中的(14)、(15)及有关实物,图片,引导的有关概念和表示.(六)棱台的结构特征及相关概念.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台。

人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。

2.培养学生善于通过观察实物形状到归纳其性质的能力。

教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。

请列举一些空间几何体的实例。

二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。

那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。

思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。

人教版高中数学必修2《空间几何体的结构》教学设计

人教版高中数学必修2《空间几何体的结构》教学设计

人教版高中数学必修2《空间几何体的结构》教学设计《人教版高中数学必修2《空间几何体的结构》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.1空间几何体的结构第一章:空间几何体第一课时§1.1.柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,课件展示,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、棱台、(圆柱、圆锥、圆台、球)的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台、的几何结构特征.来源:学科网](2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.[来源:Z。

xx。

](2)课件四、教学过程(一)课题导入1.展示世界经典建筑,教师提出问题:经典的建筑给人以美的享受,你知道其中的奥秘吗?引出几何学,空间几何体的概念.2.所举的建筑物由哪些几何体组合而成?(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察,根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)新知探研(1)多面体、旋转体:1.引导学生总结多面体及多面体的面、棱、顶点的定义;旋转体及旋转体的轴的定义. 给出实物图片让学生按多面体、旋转体给几何体分类,老师评价.(2)棱柱 :概念:2. 观察课件展示出的棱柱的图片,回答以下问题:A B C E E′ D′ C′ B′ A′C A B一、(1)中面ABC与面的位置关系如何?在(2)和(3)中能找到具有同样位置关系的两个面吗?找出它们.二、(1)中其余各面是几边形?(2)和(3)中其余各面是几边形?三、(1)中其余各面的公共边位置关系如何?(2)、(3)中也有同样的特征吗?3.由学生自由讨论,选出一名同学发表意见,根据情况可选1-2名学生补充.在此基础上得出棱柱的主要结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱的有关概念:(出示下图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.分类及表示:4.如果按底面多边形边数给棱柱分类,下面三个棱柱应该分别叫做什么?答:三棱柱、四棱柱、五棱柱.表示:用底面各顶点的字母表示,如课本上图1.1-4所示的六棱柱表示为:棱柱ABCDEF-A'B'C'D'E'F'对定义的理解:引导启发,让学生完成以下三个练习,加深对棱柱概念的理解:①棱柱两个互相平行的面以外的面都是平行四边形吗?②长方体按如图截去一角后所得的两部分还是棱柱吗?③下面的几何体中,哪些是棱柱?(3)棱锥:让学生观察拿破仑广场的玻璃金字塔、埃及金字塔的图片,指出它们结构上的共同点.仿照棱柱的定义给出棱锥的定义1)定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.2)棱锥的有关概念:(出示下图模型,边对照模型边介绍)棱锥中,这多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边棱锥的侧棱 .3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.三棱锥又叫四面体图中所示四棱锥表示为:棱锥S-ABCD(4)棱台:观察两个具有棱台结构的实物,并对比以下两个多面体,思考:II中多面体与I中四棱锥有何关系?I II(1) 棱台的概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分叫做棱台.(2) 棱台的有关概念:(出示模型,边对照模型边介绍)棱台的上底面、下底面、侧面、棱、侧棱、顶点;(3) 棱台的分类:三棱台、四棱台、五棱台、六棱台;(4) 棱台的表示方法:棱台ABCD-A'B'C'D'(5 ) 棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点.引导学生完成课堂练习.(5).圆柱的结构特征:出示圆柱的几何体,和学生一起,观察总结出圆柱的定义及其相关概念.(1) 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱.(2)圆柱的有关概念:在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.(3) 圆柱的表示方法:圆柱用表示它的轴的字母表示,例如P5 图1.1-7中的圆柱表示为圆柱OO',圆柱和棱柱统称为柱体.(6)圆锥的结构特征:出示圆锥的几何体,和学生一起,观察总结出圆锥的定义及其相关概念(1) 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫圆锥.(2) 圆柱的有关概念:在圆锥中,旋转的轴叫做圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线.(3) 圆锥的表示方法:圆锥用表示它的轴的字母表示,例如P5 图1.1-8中的圆锥表示为圆锥SO.(7)圆台的结构特征:出示圆台的几何体,和学生一起,观察总结出圆台的定义及其相关概念(1) 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.想一想:圆台能否用旋转的方法得到?若能,请指出用什么图形?怎样旋转?(2) 圆台的有关概念:结合图形认识圆台的上、下底面、侧面、母线、轴.要求在课本P5图1.1-9中标出它们.(3) 圆台的表示方法:圆台用表示它的轴的字母表示,例如P5 图1.1-9中的圆台表示为圆台OO',圆台和棱台统称为台体.7.球的结构特征:(1) 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球.列举生活中的实例,并找出图1.1-1中哪些物体是球体?(2)结合课本图1.1-10认识:球心、半径、直径.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.探究:棱柱、棱锥、棱台之间有什么关系?当底面发生变化时它们能否互相转化?圆柱、圆锥、圆台之间呢?让学生观察课件上的柱、锥、台的图像,引导他们从动态的角度寻求柱、锥、台的关系,老师评价总结.(3) 球的表示:球常用表示球心的字母表示,例如图1.1-10中的球表示为球O.(4) 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)(三)小结:柱体锥体台体球简单几何体的结构特征圆柱棱柱棱锥圆锥棱台圆台(四)作业:人教版高中数学必修2《空间几何体的结构》教学设计这篇文章共8299字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修二教案
思考7:一般地,怎样定义旋转体?
由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有那些特
两底面是全等的多边形,各侧面都是平行四边形
思考4:有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?
思考1:我们把下面的多面体取名为棱锥,你能说一说棱锥的结构有那些特思考2:参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?
例2: 一个三棱柱可以分割成几个三棱锥?
1.下列几何体中是棱柱的是()
高一数学必修二教案
思考1:现实生活中有哪些物体是球状几何体?
思考2:从旋转的角度分析,球是由什么图形绕哪条直线旋转而成的?
高一数学必修二教案
思考4:一般地,简单组合体的构成有那几种基本形式?拼接,截割思考5:试说明如图所示的几何体的结构特征.
例4:下面这个几何体是由哪些简单几何体构成的?
思考总结:例3和例4都是由简单几何体挖去一部分而成,由此我们总结出:简单组合体的构成,第二种基本形式是由简单几何体挖去一部分而成.
至此,我们发现,简单组合体的构成有两种基本形式:
1.由简单几何体拼接而成;
下面这个几何体是由哪些简单几何体构成的?
下面这个几何体是由哪些简单几何体构成的?
下面这个几何体是由哪些简单几何体构成的?
◇简单组合体的构成有两种基本形式:
1.由简单几何体拼接而成;
2.简单几何体挖去一部分而成.
高一数学必修二教案
光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?
思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?
思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?
思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?
把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角
思考3:圆柱、圆锥、圆台的三视图分别是什么?
思考5:球的三视图是什么?下列三视图表示一个什么几何体?
例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同.
1.空间几何体的三视图:正视图、侧视图、俯视图;
2.三视图的特点:一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样;
高一数学必修二教案
思考4:如图,桌子上放着一个长方体和一个圆柱,若把它们看作一个整体,你能画出它们的三视图吗?
一个空间几何体都对应一组三视图,若已知一个几何体的三视图,
思考2:下列两图分别是两个简单组合体的三视图,想象它们表示的组合体的结构特征,并作适当描述.
例2:将一个长方体挖去两个小长方体后剩余的部分如图所示,试画出这个组合体的三视图.
例3:说出下面的三视图表示的几何体的结构特征.
画出下面几何体的三视图
2.画出左下图几何体的三视图.
3.画出者个组合体的三视图
本节我们主要学习了
1、画简单组合体的三视图
2、根据三视图还原几何体
高一数学必修二教案
思考1:把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些
思考2:把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段
思考4:你能用上述方法画水平放置的正六边形的直观图吗?
思考5:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,对于水平放置的多边形,常用斜二测画法画它们的直观图.斜二测画法是一种特殊的平行投影画法.你能概括出斜二测画法的基本步骤和规则吗?
思考6:斜二测画法可以画任意多边形水平放置的直观图,如果把一个圆水平
思考1:对于柱、锥、台等几何体的直观图,可用斜二测画法或椭圆模板画出
思考2:怎样画长、宽、高分别为4cm、3cm、2cm的长方体ABCD-A′B′C′D′的直观图?
思考5:已知一个几何体的三视图如下,这个几何体的结构特征如何?试用斜
例1:如图,一个平面图形的水平放置的斜二测直观图是一个等腰梯形,它的底角为45°,两腰和上底边长均为1,求这个平面图形的面积.
空间几何体的直观图的作法:
1.斜二测画法:画多边形
2.正等测画法:画圆形
空间几何体的直观图的特点:
3、保持平行关系和竖直关系不变.
高一数学必修二教案
思考3:圆柱、圆锥、圆台的底面都是圆面,侧面都是曲面,怎样求它们的侧面面积?
思考4:圆柱的侧面展开图的形状有哪些特征?如果圆柱的底面半径为r,母线长为l,那么圆柱的表面积公式是什么?
思考6:圆台的侧面展开图的形状有哪些特征?如果圆台的上、下底面半径分别为r′、r,母线长为l,那么圆台的表面积公式是什么?
思考1:你还记得正方体、长方体和圆柱的体积公式吗?它们可以统一为一个
思考3:关于体积有如下几个原理:
(1)相同的几何体的体积相等;
(2)一个几何体的体积等于它的各部分体积之和;
思考6:在台体的体积公式中,若S′=S,S′=0,则公式分别变形为什么?
例1:求各棱长都为a的四面体的表面积.
例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆. 已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)?
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式,用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。

高一数学必修二教案
思考3:如图,对一个半径为R的半球,其体积与上述圆柱和圆锥的体积有何
思考4:根据上述圆柱、圆锥的体积,你猜想半球的体积是什么?
思考5:由上述猜想可知,半径为R的球的
思考2:把球面任意分割成n个“小球面片”,它们的面积之和等于什么?
思考3:以这些“小球面片”为底,球心为顶点的“小锥体”近似地看成棱锥,那么这些小棱锥的底面积和高近似地等于什么?它们的体积之和近似地等
思考5:经过球心的截面圆面积是什么?它与球的表面积有什么关系?
球的表面积等于球的大圆面积的4倍
例1:如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的;
例3:有一种空心钢球,质量为142g(钢的密度为7.9g/cm3),测得其外径为5cm,求它的内径(精确到0.1cm).
将一个气球的半径扩大
已知A、B、C为球面上三点,
本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题。

相关文档
最新文档