数据分析知识点总复习含答案0001
数据的分析知识归纳、经典例题及答案

数据的分析知识点归纳、经典例题及答案【知识梳理】1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式'x x a =+,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2];方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是____机床。
数值分析复习题及答案

数值分析复习题及答案数值分析复习题及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】数值分析复习题⼀、选择题1. 和分别作为π的近似数具有()和()位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++?,则A =()A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗⽇插值基函数()()01,l x l x 满⾜()A .()00l x =0,()110l x = B .()00l x =0,()111l x =l x = D .()00l x =1,()111l x =4. 设求⽅程()0f x =的根的⽜顿法收敛,则它具有()敛速。
A .超线性B .平⽅C .线性D .三次5. ⽤列主元消元法解线性⽅程组1231231 220223332x x x x x x x x ++=??++=??--=?作第⼀次消元后得到的第3个⽅程().A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+=D .230.5 1.5x x -=-⼆、填空1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设⼀阶差商()()()21122114,3=---,()()()322332615,422f x f x f x x x x --===-- 则⼆阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
4.求⽅程2 1.250x x --= 的近似根,⽤迭代公式 1.25x x =+,取初始值 01x =,那么1______x =。
5.解初始值问题 00'(,)()y f x y y x y =??=?近似解的梯形公式是 1______k y +≈。
数据分析知识点总复习含答案0001

数据分析知识点总复习含答案一、选择题1 . (11大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为S 甲2= 0.002、S 乙2= 0.03,贝y ()A. 甲比乙的产量稳定B. 乙比甲的产量稳定【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好 .【详解】因为S 甲=0.002<s 乙=0.03, 所以,甲比乙的产量稳定. 故选A【点睛】本题考核知识点:方差 .解题关键点:理解方差意义2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是 (【分析】按照笔试与面试所占比例求出总成绩即可C.甲、乙的产量一样稳定【答案】A D .无法确定哪一品种的产量更稳定20名学生,他A . 85, 90【答案】B B . 85, 87.5C. 90, 85D . 95, 90【解析】试题解析:85分的有8人,人数最多,故众数为 处于中间位置的数为第 10、11两个数, 为85分,90分,中位数为87.5分. 故选B .85分;考点:1.众数;2.中位数3.某单位招考技术人员,考试分笔试和面试两部分,成绩,若小李笔试成绩为 80分,面试成绩为90分,则他的总成绩为(笔试成绩与面试成绩按6: 4记入总A . 84 分【答案】A【解析】 B . 85 分 C. 86 分D . 87 分80 — 10 故选A 【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义4.在某次训练中,甲、乙两名射击运动员各射击 本次训练,有如下结论:①s | s 乙 ;②s 甲10发子弹的成绩统计图如图所示,对于 s乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是(■ - ~ -厲=■ = = =■'I■■■ ■ n*.■… 八〉‘乍忍■- :T -~........... T ■■L-——jl b ----- -----——L ——-------------------.—— ------------ 卜I 」耳环$ 67輻m “匸【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为 7, 7, 8, 9, 8, 9, 10, 9, 9, 9, 乙的成绩为8, 9,乙8, 10,乙9, 10, 7, 10,X 甲 = ( 7+7+8+9+8+9+10+9+9+9)十 10=8.5 X 乙 = ( 8+9+7+8+10+7+9+10+7+10) - 10=8.5甲的方差 S 甲 2=[2 ( 7-8.5) 2+2 X( 8-8.5) 2+ (10-8.5) 2+5 X( 9-8.5) 2] - 10=0.85 乙的方差 S 乙2=[3 ( 7-8.5) 2+2 X( 8-8.5) 2+2 X( 9-8.5) 2+3 X( 10-8.5) 2] - 10=1.45S 2甲 V S 2乙,•••甲的射击成绩比乙稳定; 故选:C. 【点睛】本题考查方差的定义与意义:一般地设n 个数据,X 1, X 2,…x 的平均数为X ,则方差S 2=~ [ ( x i - x ) 2+ ( x 2- x ) 2+…+ (X n -x ) 2],它反映了一组数据的波动大小,方差越大,波 n动性越大,反之也成立.A .①③ 【答案】C【解析】 B .①④C.②③D .②④【详解】根据题意, 按照笔试与面试所占比例求出总成绩:90 — 84 (分)10II in■ ,■甲5.对于一组统计数据:1 , 1, 4, 1, 3,下列说法中错误的是( A .中位数是1 B .众数是1 C.平均数是1.5D .方差是1.6【答案】C 【解析】 【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案. 【详解】解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数 1, A 选项正确; 众数是1 , B 选项正确;11134平均数为=2, C 选项错误;51方差为一X[ 1 - 2)2X 3+( 3- 2) 2+ (4 - 2) 2] = 1.6, D 选项正确;5故选:C. 【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及 方差的定义与计算公式.【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击 和方差,进而可得答案. 【详解】前 10 次平均数:(6X 3+7X 1+8X 2+9X 1+10X^10= 8, 方差:S^=丄[(6 - 8)2X 3+( 7 - 8) 2+ (8 - 8)2X 2+(9 - 8) 2+3 X( 10-8)2] = 2.6,101、 1、 1、 3、 10次相比,小明12次射击的成绩A .平均数变大,方差不变 C. 平均数不变,方差变大【答案】D 【解析】 B. 平均数不变,方差不变 D .平均数不变,方差变小2次后的平均数6.小明参加射击比赛,10次射击的成绩如表:( )再射击 2 次后的平均数::(6X 3+7X 1+8X 2+9X 1 + 10X 3+7+312= 8, 方差:S^= —[( 6 - 8)2X 3+( 7 - 8) 2 X 2(8 - 8) 2X 2+(9 - 8) 2X 2+3 入 10- 8) 2]=-,123平均数不变,方差变小, 故选:D . 【点睛】1 - -S 2= — [ ( X 1- X ) 2+ (X 2 - X ) nA. 队员1【答案】B 【解析】 【分析】根据方差的意义先比较出 4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出 答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员 2成绩好又发挥稳定.故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据 偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较 集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数 么甲、乙两班的优秀率的关系是( )又发挥稳定的运动员参加比赛,应选择(此题主要考查了方差和平均数,关键是掌握方差计算公式:7. 2022年将在北京--张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表 记录了某校4名同学短道速滑成绩的平均数X 和方差S 2,根据表中数据,要选一名成绩好27名女生进行一> 105次的为优秀,那【解析】9. 一组数据3、2、1、2、2的众数,中位数,方差分别是:(【解析】 【分析】根据众数,中位数,方差的定义计算即可 【详解】122 23 平均数为:52出现的次数最多,众数为: 中位数为:方差为: 故选:D【点睛】 本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方 法.10.在5轮 中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩A .甲优V 乙优【答案】A C.甲优=乙优 D .无法比较【分析】根据中位数可得甲班优秀的人数最多有 13人,乙班优秀的人数最少有 14人,据此可得答案. 【详解:由表格可知,每班有 •••甲班的中位数是 104, •••甲班优秀的人数最多有 27人,则中位数是排序后第 14名学生的成绩,乙班的中位数是 106, 13人,乙班优秀的人数最少有 14人,••甲优v 乙优, 故选:A .【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.A . 2, 1, 2【答案】DB . 3, 2, 0.2C. 2, 1 , 0.4D . 2, 2, 0.4将这组数据重新由小到大排列为:1、2、2、2、30.4B .甲优 >乙优方差是15,乙的成绩的方差是 3,下列说法正确的是()A. 甲的成绩比乙的成绩稳定 C. 甲、乙两人的成绩一样稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】•.•乙的成绩方差V 甲成绩的方差, •••乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离 散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2 4所以这组数据是:2, 2, 4, 8,则中位数是3.2•/ 2在这组数据中出现 2次,出现的次数最多,•••众数是故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数 据的总个数;据此先求得 X 的值,再将数据按从小到大排列,将中间的两个数求平均值即 可得到中位数,众数是出现次数最多的数.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了 学,结果如下表所示:B .乙的成绩比甲的成绩稳定 D .无法确定甲、乙的成绩谁更稳定11. 若数据4, X , 2, 8,的平均数是 A . 3 和 2B . 2 和 3【答案】A【解析】 4,则这组数据的中位数和众数是()C. 2 和 2D . 2 和 4【分析】根据平均数的计算公式先求出 X 的值,【详解】 再根据中位数和众数的概念进行求解即可.•••数据2,X , 4, 8的平均数是4,•••这组数的平均数为2 X 4 84,解得:x=2;420名同5 出现了6 次,出现的次数最多,则众数是故选 D . 【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那 个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最 多的数.答案】 D 解析】故选 D .14. 已知一组数据 a 2 , 4 2a , 6, 8 3a , 9,其中 a 为任意实数,若增加一个数据 5,则该组数据的方差一定()A.减小B .不变 【答案】 A 【解析】【分析】 先把原来数据的平均数算出来,再把方差算出来,接着把增加数据 来,从而可以算出方差,再把两数进行比较可得到答案 . 【详解】这些同学平均每月阅读课外书籍本数的中位数和众数为A . 5, 5 【答案】 D 【解析】 【分析】 根据中位数和众数的定义分别进行解答即可. 【详解】 把这组数据从小到大排列中间的两个数都是B .6,6( )C . 5, 6D .6,56,则这组数据的中位数是 6;5.13. 下列说法正确的是( ) 要调查人们对 “低碳生活 ”的了解程度,宜采用普查方式 一组数据: 3, 4, 必然事件的概率是 若甲组数据的方差 A .B .C .D .稳定4,6,8,5 的众数和中位数都是 3 100%,随机事件的概率是 50% S 甲2=0.128,乙组数据的方差是 S 乙2=0.036,则乙组数据比甲组数据A 、B 、C 、D 、故不宜采取普查方式,故 A 选项错误; 8, 5的众数是4,中位数是4.5,故B 选项错误; 100%,随机事件的概率是 50%,故C 选项错误;D 选项正确.由于涉及范围太广, 数据3, 4, 4, 6, 必然事件的概率是 方差反映了一组数据的波动情况,方差越小数据越稳定,故D .不确定C 增大 5 以后的平均数算出a 2 4 2a 6 8 3a 9 25= ------- 5 石 5,(a 25)2 (4 5)2 (2a 6 5)2 (8 3a 5)2 (9 5)2增加数据 5后的平均数 a24 2a 68 3a95305 (平均数没变化),5增加数据 5后的方差=2 5)2(4 5)2 (2a 6 5)2(8 3a 5)2(9 5)2 (5 5)262 2比较S 2, S 发现两式子分子相同,因此 S 2> S (两个正数分子相同,分母大的反而 小), 故答案为A.【点睛】 本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的 方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较 . 15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了 表所示: 20名学生,调查结果如 关于这20名学生课外阅读名著的情况,下列说法错误的是 () A .中位数是10本的同学点70% 【答案】A B .平均数是10.25 C.众数是11 D .阅读量不低于10【解析】 【分析】根据中位数、平均数、众数的定义解答即可. 【详解】 解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是 10+ 11 10.5,故本选项错误; B 、C 、 平均数是:(8 X 3+9 X 3+10 X 4+11 X 6+12->20=10.25此选项不符合题意;众数是11,此选项不符合题意; D 、 ,4 + 6 + 4 阅读量不低于10本的同学所占百分比为 _肓—X 100%=70%此选项不符合题意; 故选:A .【点睛】解:原来数据的平均数原来数据的方差=s2本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度•中位数是将 一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均 数)•众数是一组数据中出现次数最多的数. 16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩 如表: 则下列关于这组数据的说法,正确的是( A .众数是2.3C.中位数是2.5 【答案】B 【解析】 B .平均数是2.4 D .方差是0.01 【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数•它是反映数据集中趋势的一项 指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中 间位置的数就是这组数据的中位数•如果这组数据的个数是偶数,则中间两个数据的平均 数就是这组数据的中位数; 一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 这组数据中出现次数最多的是 2.4,众数是2.4,选项A 不符合题意; •••( 2.3+2.4+2.5+2.4+2.4) +5 =12+5 =2.4 •••这组数据的平均数是2.4, •••选项B 符合题意. 17.下列关于统计与概率的知识说法正确的是( ) 武大靖在2018年平昌冬奥会短道速滑 500米项目上获得金牌是必然事件 检测100只灯泡的质量情况适宜采用抽样调查 A .B . C.了解北京市人均月收入的大致情况,适宜采用全面普查 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的平均数大于乙组数D 据的平均数 【答案】B 【解析】 【分析】根据事件发生的可能性的大小,可判断A ,根据调查事物的特点,可判断B ;根据调查事物的特点,可判断 C;根据方差的性质,可判断 D . 【详解】解:A 、武大靖在2018年平昌冬奥会短道速滑 500米项目上可能获得获得金牌,也可能不 获得金牌,是随机事件,故 A 说法不正确;B 、 灯泡的调查具有破坏性,只能适合抽样调查,故检测抽样调查,故B 符合题意;C 、 了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故 D 说法错误;故选B . 【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概 念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不 发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事 件.方差越小波动越小.18. 一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是 ( )B.中位数C.众数 D .方差【详解】解:A .原来数据的平均数是 2,添加数字2后平均数仍为2,故A 与要求不符;B. 原来数据的中位数是 2,添加数字2后中位数仍为2,故B 与要求不符;C. 原来数据的众数是 2,添加数字2后众数仍为2,故C 与要求不符;2 2 2D. 原来数据的方差=一2 (2 2)__ =-,2故方差发生了变化. 故选D .19. 某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还 未登记,只好重新算一次.已知原平均分和原方差分别为100只灯泡的质量情况适宜采用A .平均数【答案】D 【解析】 42 2 2添加数字2后的方差=(1 2) 3 (22)(32)=^5s 2,新平均分和新方差分别【答案】 【解— 2为X1 , S1 ,若此同学的得分恰好为X,则()一 2 2 一 2 2A. X X1 , s S1B. X X1 , S S1— 2 2 — 2 2 C. X X1 , S S1 D. X X1 , s S1B【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a i ,a 2,…a …,a , 第i 个同学没登录, 第一次计算时总分是(n-1) x ,、、, 1方差是 s 2= ----- [(a 1-x)2+…(a 1 -x)2+(a i+1-x)2+…+(a- x)2] n 1第二次计算时,x = n 1 x x =x ,n方差 S 12=1[(a 1-x)2+^ (a 1 -x)2+(a i - x)2+(a i+1- x)2+^ +(a- x)2]= —_-n n 故 s 2 s 2, 故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法. 20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位 数和众数分别是()温度f 口 A403020100 A .中位数31,众数是22 C. 中位数是26,众数是22【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22, 22, 23, 26, 28, 30, 31所以中位数为26,众数为22故选:C.【点睛】s 2, 2呂2$ 22 22 S0^ W 12^ im 时间B .中位数是22,众数是31D .中位数是22,众数是26此题考查中位数,众数的定义,解题关键在于看懂图中数据。
数据分析全集汇编附解析0001

数据分析全集汇编附解析一、选择题1 .某地区汉字听写大赛中,10名学生得分情况如下表:分数50 85 90 95人数 3 4 2 1那么这10名学生所得分数的中位数和众数分别是(【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是组数据的中位数是85 ;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义•解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数•如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.【解析】B.中位数是82.某射击运动员在训练中射击了10次,成绩如图所示:A.众数是8 【答案】D C.平均数是8.2 D.方差是1.2A. 85 和85【答案】A【解析】B. 85.5 和85C. 85 和82.5D. 85.5 和8085,那么由中位数的定义可知,这【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差 .【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得 10方差是 2 (10 8.2)22 (9 8.2)23 (8 8.2)2 2 (78.2)2 (6 8.2)2〔丸工 10.故选D 【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念 的公式.3. 某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是 (4. 2022年将在北京--张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表 记录了某校4名同学短道速滑成绩的平均数X 和方差S 2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择() 众数是8,中位数是8,平均数是10 2+92+8 3+72+6 1=8.2.特别是方差20名学生,他A . 85, 90【答案】B 【解析】试题解析:85分的有8人, 处于中间位置的数为第 10、 为85分,90分,中位数为 故选B . 考点:1.众数;2.中位数B . 85, 87.5C. 人数最多,故众数为 11两个数, 87.5 分.90, 8585分;D . 95, 90【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员 2成绩好又发挥稳定.故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据 偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较 集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形; ②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是 0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是(【解析】 【分析】根据平行四边形的判定去判断 ①;根据必然事件的定义去判断 断③;根据圆内接正多边形的相关角度去计算 ④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形, 会发生的事件,遇到红灯是随机事件, ②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是 60,所以构成等边三角形, ④结论正确.所以正确1个,答案选A . 【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事 件等的区分;掌握方差的意义;会计算圆内接正多边形相关.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:B .队员2C 队员3D .队员4A .队员1【答案】B 【解析】 【分析】根据方差的意义先比较出 4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出 答案.A . 1个【答案】A B . 2个C. 3个D . 4个②;根据方差的意义去判①错误;必然事件是一定则这15运动员的成绩的众数和中位数分别为()2【解析】 【分析】7.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:C ), 小明将测量结果绘制成如下统计表和如图所示的扇形统计图•下列说法错误的是(体温(C )36.1 36.2 36.3 36.4 36.5 36.6人数 (人)4 8 8 10 x 2故B 正确•故选A .考点:①扇形统计图;②众数;③中位数.A . 1.75, 1.70【答案】AB . 1.75, 1.65 C. 1.80, 1.70 D . 1.80, 1.65'36. FCA .这些体温的众数是 8B .这些体温的中位数是 36.35 C.这个班有40名学生【答案】A 【解析】 D . x=8【分析】解:由扇形统计图可知:体温为3636.1 C 所占的百分数为—X360100%=10%则九(1)班学 4生总数为一=40,故C 正确; 则 x=40-( 4+8+8+10+2) =8,故D 正确;由表可知这些体温的众数是36.4C,故A 错误; 由表可知这些体温的中位数是(C),367芝36.5368.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述A .众数是110 C.平均数是109.5【答案】A 【解析】 B .方差是16 D .中位数是109【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和 方差. 【详解】 解:这组数据的众数是 110, A 正确;1-x( 110+106+109+111+108+110 )= 109, C 错误;6S 2-[(110 - 109) 2+ ( 106 - 109) 2+ ( 109 - 109) 2+ (111 - 109) 2+ ( 108 - 109) 2+6 8(110 - 109) 2] = 8, B 错误;3中位数是109.5 , D 错误; 故选A . 【点睛】那么,这10名选手得分的中位数和众数分别是(A . 85.5 和 80【答案】D【解析】B . 85.5 和 85 C. 85 和 82.5 D . 85 和 85正确的是( )9.某校组织 国学经典”诵读比赛,参赛10名选手的得分情况如表所示:【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据 85出现了 4 次,最多,故为众数; 按大小排列第 5 和第 6 个数均是 85,所以中位数是 85. 故选: D . 【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清 楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根 据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶 数个则找中间两位数的平均数.说法错误; 故选: C .【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关 定义是解题关键.11.一组数据 -2, 3, 0, 2, 3的中位数和众数分别是( A .0, 3B .2, 2【答案】 D 【解析】【分析】 根据中位数和众数的定义解答即可. 【详解】将这组数据从小到大的顺序排列为:-10. 下列说法正确的是 ( )要调查现在人们在数学化时代的生活方式,宜采用普查方式 一组数据 3,4,4,6,8,5 的中位数是 4 必然事件的概率是 100%,随机事件的概率大于2若甲组数据的方差 S 甲=0.128,乙组数据的方差A .B .C .D . 0 而小于 1 2S 乙 =0.036,则甲组数据更稳定答案】 C 解析】 【分析】直接利用概率的意义以及全面调查和抽样调查的意义、 中位数、方差的意义分别分析得出答案.【详解】A 、B 、C 、D 、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;一组数据 3, 4, 4, 6, 8, 5 的中位数是 4.5,故此选项错误; 必然事件的概率是 100%,随机事件的概率大于 0而小于 1,正确;若甲组数据的方差 S 甲2=0.128,乙组数据的方差 S 乙2=0.036,则乙组数据更稳定,故原 C .3,3 D .2,32,0,2, 3,3,最中间的数是 2,则中位数是 2;在这一组数据中3是出现次数最多的,故众数是 3.故选D . 【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中 间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握 得不好,不把数据按要求重新排列,就会出错.【答案】D 【解析】.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:A .平均数【答案】D 【解析】 【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据 离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.12.下列说法正确的是()要调查人们对 低碳生活”的了解程度,宜采用普查方式 一组数据:3, 4, 必然事件的概率是 若甲组数据的方差 A . B . C. D .稳定4, 6, 8, 5的众数和中位数都是 3100%,随机事件的概率是 50%S 甲2=0.128,乙组数据的方差是 S 乙2=0.036,则乙组数据比甲组数据A 、B 、C 、由于涉及范围太广, 数据 3, 4, 4, 6, 必然事件的概率是 故不宜采取普查方式,故 A 选项错误;8, 5的众数是4,中位数是4.5,故B 选项错误; 100%,随机事件的概率是 50%,故C 选项错误;D 选项正确.方差反映了一组数据的波动情况,方差越小数据越稳定,故故选D .D 、 该店主决定本周进货时,增加一些 41码的衬衫,影响该店主决策的统计量是()C.中位数B .方差14. 校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40 名同学进行了捐款,已知该班同学捐款的平均金额为10 元,A.10 元是该班同学捐款金额的平均水平二小慧捐款11 元,下列说法错误的是( ) B.班上比小慧捐款金额多的人数可能超过20 人C.班上捐款金额的中位数一定是10兀【答案】C【解析】D .班上捐款金额数据的众数不一定是10元【分析】根据平均数,中位数及众数的定义依次判断【详解】•••该班同学捐款的平均金额为10元,••• 10元是该班同学捐款金额的平均水平,故A 正确;•••九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,•••班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10 元,故D 正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键15. 在一次体检中,甲、乙、丙、丁四位同学的平均身高为学的平均身高为1.63 米,下列说法一定正确的是( )A.四位同学身高的中位数一定是其中一位同学的身高1.65 米,而甲、乙、丙三位同B•丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数- 定是 1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C 、丁同学的身高为1.65 4 1.63 3 1.71米,正确;D •四位同学身高的众数一定是 1.65,错误.故选:C •【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本 题.详解:由图可得,极差是:30-20=10 C ,故选项 A 错误, 众数是28 C ,故选项B 正确, 这组数按照从小到大排列是: 20、22、24、26、 28、28、30,故中位数是26 C,故选项 C错误, 平均数是: 20 22 24 26 28 28 30325- C,故选项D 错误,7故选B .点睛:本题考查折线统计图、极差、众数、中位数、 平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.17.为参加学校举办的 诗意校园?致远方”朗诵艺术大赛,八年级 选拔赛,这五次选拔赛中,小明五次成绩的平均数是 数也是90,方差是14.8 .下列说法正确的是(屈原读书社”组织了五次90,方差是2;小强五次成绩的平均 )A. 小明的成绩比小强稳定B. 小明、小强两人成绩一样稳定C. 小强的成绩比小明稳定D. 无法确定小明、小强的成绩谁更稳定【答案】A16.如图是成都市某周内日最高气温的折线统计图,关于这 的是()7天的日最咼气温的说法正确3230 28 2624亠八A .极差是8C【答案】B【解析】B .众数是28 CC.中位数是24 CD .平均数是26 Cr.L __L J-lA _【分析】方差是反映一组数据的波动大小的一个量•方差越大,则平均值的离散程度越大,稳定性 也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】•••小明五次成绩的平均数是 90,方差是2;小强五次成绩的平均数也是 90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析容易题•失分原因是方差的意义掌握不牢.18.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论: 【解析】 【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较 方差的大小. 【详解】从表中可知,平均字数都是 135,①正确;甲班的中位数是149,乙班的中位数是 151,比甲的多,而平均数都要为 135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以 ①②③都正确. 故选:A .① 甲、乙两班学生平均成绩相同;② 乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数 ③ 甲班成绩的波动比乙班大. 上述结论中正确的是()A .①②③B .①② 【答案】A 150为优秀)C.①③ D .②③③也正确.此题考查平均数,中位数,方差的意义•解题关键在于掌握平均数表示一组数据的平均程 度•中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中 间两个数的平均数);方差是用来衡量一组数据波动大小的量.19.某班有40人,一次体能测试后,老师对测试成绩进行了统计. 集体测试因此计算其他 39人的平均分为90分,方差s 2= 41. 为90分,关于该班40人的测试成绩,下列说法正确的是(A .平均分不变,方差变大 C.平均分和方差都不变【答案】B 【解析】 【分析】根据平均数、方差的定义计算即可 【详解】•••小亮的成绩和其它 39人的平均数相同,都是90分,••• 40人的平均数是90分,•/ 39人的方差为41,小亮的成绩是90分,40人的平均分是90分,• 40 人的方差为[41 X 39+(90-9(0]十 40<4,1 •••万差变小,•••平均分不变,方差变小 故选B. 【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.20.对于两组数据 A , B,如果SA 2>S B 2,且X A X B ,【解析】试题解析:方差越小,波动越小2 2Q S A S B ,数据B 的波动小一些. 故选B.点睛:本题考查方差的意义•方差是用来衡量一组数据波动大小的量,方差越大,表明这 组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分 布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.A .这两组数据的波动相同 C.它们的平均水平不相同 【答案】B B .数据 D .数据B 的波动小一些 A 的波动小一些由于小亮没有参加本次 后来小亮进行了补测,成绩 )B .平均分不变,方差变小 D .平均分和方差都改变则( )。
(必考题)初中八年级数学下册第二十章《数据的分析》知识点总结(答案解析)

一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差 C .众数 D .平均数 2.数据2-,1-,0,1,2的方差是( )A .0B .2C .2D .43.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1004.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分. 人数 2 5 13 10 7 3 成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是( ) A .75,70B .70,70C .80,80D .75,808.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”9.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( ) A .4B .0C .3D .-110.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁11.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++12.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( ) A .平均数是-2B .中位数是-2C .众数是-2D .方差是513.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .814.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,3815.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.17.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.18.数据-1,2,0,1,-2的方差是____.19.已知一组数据为1-、x 、0、1、2-的平均数为0,则x =__________这组数据的标准差为___________.20.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.21.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.22.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.23.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.24.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.25.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 977880初二(3)班90 78 85(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?28.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.29.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 30.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg ),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg.。
《数据的分析》中考中总复习(知识点复习+题型分类练习)

数据的分析单元复习一、基本概念:1.总体、个体、样本及样本容量总体是指考察的对象的全体;个体是总体中的每一个考察的对象;样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.2.平均数:算数平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为 nx x x x n+++=213.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.众数:一组数据中出现次数最多的数据就是这组数据的众数。
5.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
极差反映的是数据的变化范围。
代表的意义:平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
(受极端值影响) 中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
则N 为奇数时,N 为偶数时,众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
(中位数,众数不受极端值影响)6.方差:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x nS n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
二、方差、标准差的计算设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x nS n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差。
定性数据分析课后答案0001

第二章课后作业【第 1 题】解:由题可知消费者对糖果颜色的偏好情况(即糖果颜色的概率分布) ,调查者取500 块糖果作为研究对象,则以消费者对糖果颜色的偏好作为依据,500 块糖果的颜色分布如下表 1.1 所示:表 1.1 理论上糖果的各颜色数由题知r=6 ,n=500,我们假设这些数据与消费者对糖果颜色的偏好分布是相符,所以我们进行以下假设:原假设:H0:类A i所占的比例为p i p i0(i 1, (6)6其中A i为对应的糖果颜色,p i0(i 1,...,6)已知,i61p i0 1 则2检验的计算过程如下表所示:在这里r 6。
检验的p值等于自由度为5的2变量大于等于18.0567 的概率。
在Excel 中输入“ chidist (18.0567,5) ”,得出对应的p 值为p 0.0028762 0.05,故拒绝原假设,即这些数据与消费者对糖果颜色的偏好分布不相符。
【第 2 题】解:由题可知,r=3 ,n=200,假设顾客对这三种肉食的喜好程度相同,即顾客选择这三种肉食的概率是相同的。
所以我们可以进行以下假设:原假设H 0 : p i1(i 1,2,3)0i3则2检验的计算过程如下表所示:在这里r 3。
检验的p值等于自由度为2的2变量大于等于15.72921 的概率。
在Excel 中输入“ chidist (15.72921,2) ”,得出对应的p 值为p 0.0003841 0.05 ,故拒绝原假设,即认为顾客对这三种肉食的喜好程度是不相同的。
【第 3 题】解:由题可知,r=10,n=800,假设学生对这些课程的选择没有倾向性,即选各门课的人数的比例相同, 则十门课程每门课程被选择的概率都相等。
所以我们可以进行以下假设:原假设H 0 : p i 0.1(i 1,2, (10)则2检验的计算过程如下表所示:在这里r 10 。
检验的p值等于自由度为9的2变量大于等于 5.125 的概率。
数据分析知识点总复习含答案

故选:C. 【点睛】
本题考查方差的定义与意义:一般地设 n 个数据,x1,x2,…xn 的平均数为 x ,则方差
S2=
1 n
[(x1-
x
)2+(x2-
x
)2+…+(xn-
x
)2],它反映了一组数据的波动大小,方差越大,波
动性越大,反之也成立.
5.对于一组统计数据:1,1,4,1,3,下列说法中错误的是( )
故选 D.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那
个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最
多的数.
13.下列说法正确的是( ) A.要调查人们对“低碳生活”的了解程度,宜采用普查方式 B.一组数据:3,4,4,6,8,5 的众数和中位数都是 3 C.必然事件的概率是 100%,随机事件的概率是 50% D.若甲组数据的方差 S 甲 2=0.128,乙组数据的方差是 S 乙 2=0.036,则乙组数据比甲组数据 稳定 【答案】D 【解析】 A、由于涉及范围太广,故不宜采取普查方式,故 A 选项错误; B、数据 3,4,4,6,8,5 的众数是 4,中位数是 4.5,故 B 选项错误; C、必然事件的概率是 100%,随机事件的概率是 50%,故 C 选项错误; D、方差反映了一组数据的波动情况,方差越小数据越稳定,故 D 选项正确. 故选 D.
本次训练,有如下结论:① s甲2 s乙2 ;② s甲2 s乙2 ;③甲的射击成绩比乙稳定;④乙的射
击成绩比甲稳定.由统计图可知正确的结论是( )
A.①③ 【答案】C 【解析】
B.①④
C.②③
D.②④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析知识点总复习含答案一、选择题1 . (11大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为S 甲2= 0.002、S 乙2= 0.03,贝y ()A. 甲比乙的产量稳定B. 乙比甲的产量稳定【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好 .【详解】因为S 甲=0.002<s 乙=0.03, 所以,甲比乙的产量稳定. 故选A【点睛】本题考核知识点:方差 .解题关键点:理解方差意义2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是 (【分析】按照笔试与面试所占比例求出总成绩即可C.甲、乙的产量一样稳定【答案】A D .无法确定哪一品种的产量更稳定20名学生,他A . 85, 90【答案】B B . 85, 87.5C. 90, 85D . 95, 90【解析】试题解析:85分的有8人,人数最多,故众数为 处于中间位置的数为第 10、11两个数, 为85分,90分,中位数为87.5分. 故选B .85分;考点:1.众数;2.中位数3.某单位招考技术人员,考试分笔试和面试两部分,成绩,若小李笔试成绩为 80分,面试成绩为90分,则他的总成绩为(笔试成绩与面试成绩按6: 4记入总A . 84 分【答案】A【解析】 B . 85 分 C. 86 分D . 87 分80 — 10 故选A 【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义4.在某次训练中,甲、乙两名射击运动员各射击 本次训练,有如下结论:①s | s 乙 ;②s 甲10发子弹的成绩统计图如图所示,对于 s乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是(■ - ~ -厲=■ = = =■'I■■■ ■ n*.■… 八〉‘乍忍■- :T -~........... T ■■L-——jl b ----- -----——L ——-------------------.—— ------------ 卜I 」耳环$ 67輻m “匸【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为 7, 7, 8, 9, 8, 9, 10, 9, 9, 9, 乙的成绩为8, 9,乙8, 10,乙9, 10, 7, 10,X 甲 = ( 7+7+8+9+8+9+10+9+9+9)十 10=8.5 X 乙 = ( 8+9+7+8+10+7+9+10+7+10) - 10=8.5甲的方差 S 甲 2=[2 ( 7-8.5) 2+2 X( 8-8.5) 2+ (10-8.5) 2+5 X( 9-8.5) 2] - 10=0.85 乙的方差 S 乙2=[3 ( 7-8.5) 2+2 X( 8-8.5) 2+2 X( 9-8.5) 2+3 X( 10-8.5) 2] - 10=1.45S 2甲 V S 2乙,•••甲的射击成绩比乙稳定; 故选:C. 【点睛】本题考查方差的定义与意义:一般地设n 个数据,X 1, X 2,…x 的平均数为X ,则方差S 2=~ [ ( x i - x ) 2+ ( x 2- x ) 2+…+ (X n -x ) 2],它反映了一组数据的波动大小,方差越大,波 n动性越大,反之也成立.A .①③ 【答案】C【解析】 B .①④C.②③D .②④【详解】根据题意, 按照笔试与面试所占比例求出总成绩:90 — 84 (分)10II in■ ,■甲5.对于一组统计数据:1 , 1, 4, 1, 3,下列说法中错误的是( A .中位数是1 B .众数是1 C.平均数是1.5D .方差是1.6【答案】C 【解析】 【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案. 【详解】解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数 1, A 选项正确; 众数是1 , B 选项正确;11134平均数为=2, C 选项错误;51方差为一X[ 1 - 2)2X 3+( 3- 2) 2+ (4 - 2) 2] = 1.6, D 选项正确;5故选:C. 【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及 方差的定义与计算公式.【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击 和方差,进而可得答案. 【详解】前 10 次平均数:(6X 3+7X 1+8X 2+9X 1+10X^10= 8, 方差:S^=丄[(6 - 8)2X 3+( 7 - 8) 2+ (8 - 8)2X 2+(9 - 8) 2+3 X( 10-8)2] = 2.6,101、 1、 1、 3、 10次相比,小明12次射击的成绩A .平均数变大,方差不变 C. 平均数不变,方差变大【答案】D 【解析】 B. 平均数不变,方差不变 D .平均数不变,方差变小2次后的平均数6.小明参加射击比赛,10次射击的成绩如表:( )再射击 2 次后的平均数::(6X 3+7X 1+8X 2+9X 1 + 10X 3+7+312= 8, 方差:S^= —[( 6 - 8)2X 3+( 7 - 8) 2 X 2(8 - 8) 2X 2+(9 - 8) 2X 2+3 入 10- 8) 2]=-,123平均数不变,方差变小, 故选:D . 【点睛】1 - -S 2= — [ ( X 1- X ) 2+ (X 2 - X ) nA. 队员1【答案】B 【解析】 【分析】根据方差的意义先比较出 4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出 答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员 2成绩好又发挥稳定.故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据 偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较 集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数 么甲、乙两班的优秀率的关系是( )又发挥稳定的运动员参加比赛,应选择(此题主要考查了方差和平均数,关键是掌握方差计算公式:7. 2022年将在北京--张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表 记录了某校4名同学短道速滑成绩的平均数X 和方差S 2,根据表中数据,要选一名成绩好27名女生进行一> 105次的为优秀,那【解析】9. 一组数据3、2、1、2、2的众数,中位数,方差分别是:(【解析】 【分析】根据众数,中位数,方差的定义计算即可 【详解】122 23 平均数为:52出现的次数最多,众数为: 中位数为:方差为: 故选:D【点睛】 本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方 法.10.在5轮 中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩A .甲优V 乙优【答案】A C.甲优=乙优 D .无法比较【分析】根据中位数可得甲班优秀的人数最多有 13人,乙班优秀的人数最少有 14人,据此可得答案. 【详解:由表格可知,每班有 •••甲班的中位数是 104, •••甲班优秀的人数最多有 27人,则中位数是排序后第 14名学生的成绩,乙班的中位数是 106, 13人,乙班优秀的人数最少有 14人,••甲优v 乙优, 故选:A .【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.A . 2, 1, 2【答案】DB . 3, 2, 0.2C. 2, 1 , 0.4D . 2, 2, 0.4将这组数据重新由小到大排列为:1、2、2、2、30.4B .甲优 >乙优方差是15,乙的成绩的方差是 3,下列说法正确的是()A. 甲的成绩比乙的成绩稳定 C. 甲、乙两人的成绩一样稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】•.•乙的成绩方差V 甲成绩的方差, •••乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离 散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2 4所以这组数据是:2, 2, 4, 8,则中位数是3.2•/ 2在这组数据中出现 2次,出现的次数最多,•••众数是故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数 据的总个数;据此先求得 X 的值,再将数据按从小到大排列,将中间的两个数求平均值即 可得到中位数,众数是出现次数最多的数.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了 学,结果如下表所示:B .乙的成绩比甲的成绩稳定 D .无法确定甲、乙的成绩谁更稳定11. 若数据4, X , 2, 8,的平均数是 A . 3 和 2B . 2 和 3【答案】A【解析】 4,则这组数据的中位数和众数是()C. 2 和 2D . 2 和 4【分析】根据平均数的计算公式先求出 X 的值,【详解】 再根据中位数和众数的概念进行求解即可.•••数据2,X , 4, 8的平均数是4,•••这组数的平均数为2 X 4 84,解得:x=2;420名同5 出现了6 次,出现的次数最多,则众数是故选 D . 【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那 个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最 多的数.答案】 D 解析】故选 D .14. 已知一组数据 a 2 , 4 2a , 6, 8 3a , 9,其中 a 为任意实数,若增加一个数据 5,则该组数据的方差一定()A.减小B .不变 【答案】 A 【解析】【分析】 先把原来数据的平均数算出来,再把方差算出来,接着把增加数据 来,从而可以算出方差,再把两数进行比较可得到答案 . 【详解】这些同学平均每月阅读课外书籍本数的中位数和众数为A . 5, 5 【答案】 D 【解析】 【分析】 根据中位数和众数的定义分别进行解答即可. 【详解】 把这组数据从小到大排列中间的两个数都是B .6,6( )C . 5, 6D .6,56,则这组数据的中位数是 6;5.13. 下列说法正确的是( ) 要调查人们对 “低碳生活 ”的了解程度,宜采用普查方式 一组数据: 3, 4, 必然事件的概率是 若甲组数据的方差 A .B .C .D .稳定4,6,8,5 的众数和中位数都是 3 100%,随机事件的概率是 50% S 甲2=0.128,乙组数据的方差是 S 乙2=0.036,则乙组数据比甲组数据A 、B 、C 、D 、故不宜采取普查方式,故 A 选项错误; 8, 5的众数是4,中位数是4.5,故B 选项错误; 100%,随机事件的概率是 50%,故C 选项错误;D 选项正确.由于涉及范围太广, 数据3, 4, 4, 6, 必然事件的概率是 方差反映了一组数据的波动情况,方差越小数据越稳定,故D .不确定C 增大 5 以后的平均数算出a 2 4 2a 6 8 3a 9 25= ------- 5 石 5,(a 25)2 (4 5)2 (2a 6 5)2 (8 3a 5)2 (9 5)2增加数据 5后的平均数 a24 2a 68 3a95305 (平均数没变化),5增加数据 5后的方差=2 5)2(4 5)2 (2a 6 5)2(8 3a 5)2(9 5)2 (5 5)262 2比较S 2, S 发现两式子分子相同,因此 S 2> S (两个正数分子相同,分母大的反而 小), 故答案为A.【点睛】 本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的 方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较 . 15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了 表所示: 20名学生,调查结果如 关于这20名学生课外阅读名著的情况,下列说法错误的是 () A .中位数是10本的同学点70% 【答案】A B .平均数是10.25 C.众数是11 D .阅读量不低于10【解析】 【分析】根据中位数、平均数、众数的定义解答即可. 【详解】 解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是 10+ 11 10.5,故本选项错误; B 、C 、 平均数是:(8 X 3+9 X 3+10 X 4+11 X 6+12->20=10.25此选项不符合题意;众数是11,此选项不符合题意; D 、 ,4 + 6 + 4 阅读量不低于10本的同学所占百分比为 _肓—X 100%=70%此选项不符合题意; 故选:A .【点睛】解:原来数据的平均数原来数据的方差=s2本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度•中位数是将 一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均 数)•众数是一组数据中出现次数最多的数. 16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩 如表: 则下列关于这组数据的说法,正确的是( A .众数是2.3C.中位数是2.5 【答案】B 【解析】 B .平均数是2.4 D .方差是0.01 【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数•它是反映数据集中趋势的一项 指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中 间位置的数就是这组数据的中位数•如果这组数据的个数是偶数,则中间两个数据的平均 数就是这组数据的中位数; 一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 这组数据中出现次数最多的是 2.4,众数是2.4,选项A 不符合题意; •••( 2.3+2.4+2.5+2.4+2.4) +5 =12+5 =2.4 •••这组数据的平均数是2.4, •••选项B 符合题意. 17.下列关于统计与概率的知识说法正确的是( ) 武大靖在2018年平昌冬奥会短道速滑 500米项目上获得金牌是必然事件 检测100只灯泡的质量情况适宜采用抽样调查 A .B . C.了解北京市人均月收入的大致情况,适宜采用全面普查 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的平均数大于乙组数D 据的平均数 【答案】B 【解析】 【分析】根据事件发生的可能性的大小,可判断A ,根据调查事物的特点,可判断B ;根据调查事物的特点,可判断 C;根据方差的性质,可判断 D . 【详解】解:A 、武大靖在2018年平昌冬奥会短道速滑 500米项目上可能获得获得金牌,也可能不 获得金牌,是随机事件,故 A 说法不正确;B 、 灯泡的调查具有破坏性,只能适合抽样调查,故检测抽样调查,故B 符合题意;C 、 了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故 D 说法错误;故选B . 【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概 念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不 发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事 件.方差越小波动越小.18. 一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是 ( )B.中位数C.众数 D .方差【详解】解:A .原来数据的平均数是 2,添加数字2后平均数仍为2,故A 与要求不符;B. 原来数据的中位数是 2,添加数字2后中位数仍为2,故B 与要求不符;C. 原来数据的众数是 2,添加数字2后众数仍为2,故C 与要求不符;2 2 2D. 原来数据的方差=一2 (2 2)__ =-,2故方差发生了变化. 故选D .19. 某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还 未登记,只好重新算一次.已知原平均分和原方差分别为100只灯泡的质量情况适宜采用A .平均数【答案】D 【解析】 42 2 2添加数字2后的方差=(1 2) 3 (22)(32)=^5s 2,新平均分和新方差分别【答案】 【解— 2为X1 , S1 ,若此同学的得分恰好为X,则()一 2 2 一 2 2A. X X1 , s S1B. X X1 , S S1— 2 2 — 2 2 C. X X1 , S S1 D. X X1 , s S1B【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a i ,a 2,…a …,a , 第i 个同学没登录, 第一次计算时总分是(n-1) x ,、、, 1方差是 s 2= ----- [(a 1-x)2+…(a 1 -x)2+(a i+1-x)2+…+(a- x)2] n 1第二次计算时,x = n 1 x x =x ,n方差 S 12=1[(a 1-x)2+^ (a 1 -x)2+(a i - x)2+(a i+1- x)2+^ +(a- x)2]= —_-n n 故 s 2 s 2, 故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法. 20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位 数和众数分别是()温度f 口 A403020100 A .中位数31,众数是22 C. 中位数是26,众数是22【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22, 22, 23, 26, 28, 30, 31所以中位数为26,众数为22故选:C.【点睛】s 2, 2呂2$ 22 22 S0^ W 12^ im 时间B .中位数是22,众数是31D .中位数是22,众数是26此题考查中位数,众数的定义,解题关键在于看懂图中数据。