第3章 实数综合测试题(一)
七年级数学上册《第三章 实数》单元综合测试题

《第三章、实数》单元测试题 一、假设,30,3b a ==那么7.2等于( ) A.10a b - B.10a b - C.a 103 D.b 103 二、设20002001-=x ,19992000-=y ,y x ,的大小关系是( ) A.y x > B.y x = C.y x < D.无法确信3、如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为( )A.222-B.222+C.27-D.23+4、某位教师在讲“实数”时,画了一个图(如图),即“以数轴上的单位长线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交x 轴于一点A ”,作如此的图用来讲明_____。
5、一个数的平方是625-,那么那个数的立方是_____。
6、设15+=m ,那么mm 1+的整数部份是_____。
7、_______357153)37(1998199819981998999=++。
8、古希腊数学家把数⋅⋅⋅,21,15,10,6,3,1叫做三角形数,它有必然的规律性,那么第24个三角形数与第22个三角形数的差为_____。
9、已知b 为正数,a 为b 的小数部份,,2722=+b a 则_____=+b a 。
10、已知,121+=x 则_____145254323=+++x x x 。
11、求356356++-的值。
题图)(第3)4(题图第1二、求)532)(532)(532)(532(+++--+++-的值。
13、已知,523,253-=--=+y x y x 求xy 的值。
14、化简100999910013223121121++⋅⋅⋅+++⋅+1五、某市对费作了调整,原市话费为每3分钟0.2元(不足3分钟按3分钟计算),调整后,前3分钟为0.2元,以后每分钟加收0.1元(不足1分钟按1分钟计算),设通话时刻为x 分钟,调整前的话费为1y 元,调整后的话费为2y 元。
第三章 实数综合测试(含答案)

第三章 实数本章综合测试一、选择题(本题共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请将正确的答案选出来! 1.下列各组数中,不相等的一组是( )A 、(-2)3和-23B 、(-2)2和-22C 、+(-2)和-2D 、|-2|3和|2|3A .11B .-11C .11±D .11± 3.下列各数0,,57, 3.14-,2π中,是无理数的有( )A .5个B .4个C .个D .2个 4.估计-10的值在( )A 、-1至-2之间B 、-2至-3之间C 、-3至-4之间D 、-4至-5之间 5.下列说法错误的是( )A 、一个数的平方与这个数互为相反数的是0和-1B 、一个数的立方等于这个数的倒数的是1和-1C 、一个数的倒数小于这个数那么这个数大于1D 、一个数的算术平方根等于它本身的数是0和1 6.下列各式,正确的是( ) A 、3273-=- B4=±C、2=±D4=-7.下列说法正确的是( ) A 、81-的立方根是-12B 、 16 的平方根是±4C 、一个数的算术平方根必定是正数D 、 5的平方根是 58.如图,网格中的每个小正方形的边长为1,如果把阴影部分剪拼成一个正方形,那么这 第8题A .6B .7C .8D .39.下列叙述正确的是( )①数轴上的点与实数一一对应;②若b a <则b a <;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由a 四舍五入得到的,则a 的范围为705.3695.3<≤a ;⑤连结两点的线段叫两点间的距离。
A 、①②③⑤ B 、①②④ C 、②④⑤ D 、①④10.若a ,b 互为相反数,m ,n 互为倒数,k ,则210099a b m nb k +++的值为 ( )A .-4B .4C .-96D .104 二、填空题(本题共6小题,每小题4分,共24分) 温馨提示:要求将最简洁、最正确的答案填在空格处!11.a 是9-的相反数,b 的立方根为2-,则b a +的倒数为 。
浙教版七年级数学上册《第3章实数》综合评价试题(含答案)

第3章实数综合评价第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.22的相反数是( )A .-22 B .22C .- 2D . 22.在实数3.14159,3125,1.020020002,4.21··,π,227中,无理数有() A .1个 B .2个 C .3个 D .4个3.64的立方根是( )A .4B .±4C .8D .±84.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .- 2 D.(-2)25.在3,8,-4,10这四个数中,最大的是( ) A .3 B.8 C .-4 D.106.若n =59-6,则可估计n 的值在( )A .4到5之间B .3到4之间C .2到3之间D .1到2之间7.下列各式中,正确的有( )①0.9=0.3;②179=±43;③-32的平方根是-3;④(-5)2的算术平方根是-5;⑤±76是11336的平方根.A.1个B.2个C.3个D.4个8.定义一种运算“☆”,其规则为a☆b=a2+b2,如3☆4=32+42=25=5,根据这个规则,计算5☆12的值是()A.13 B.13 C.5 D.69.设边长为a的正方形的面积为2.下列关于a的四种说法:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中,所有正确说法的序号是()A.①②B.①③C.①②③D.②③④10.将实数1,2,3,6按图1所示方式排列.若用(m,n)表示第m排从左向右第n个数,则(5,4)与(11,7)表示的两数之积是()图1A.1 B.2 C.3 D.6第Ⅱ卷(非选择题共90分)二、填空题(每小题4分,共24分)11.在实数-2,0,-1,2,-2中,最小的数是________.12.1-6的相反数是________,绝对值是________.13.下列计算正确的是______(填序号).①4=±2;②-42=16;③3-8=-2;④87=56.14.如果x+1+||y-2=0,那么xy=______.15.数轴上到2所对应的点的距离等于3的数是__________.16.小马做了一个棱长为6 cm 的正方体礼品盒,小朱说:“我做的礼品盒的体积比你的大127 cm 3”,则小朱的礼品盒的棱长为________cm.三、解答题(共66分)17.(6分)计算: (1)16+2×9-327;(2)|1-2|+4-3-8.18.(6分)已知下列7个实数:0,π,-2,23,-1.1,38,17. (1)将它们分成有理数和无理数两组;(2)将这7个实数按从小到大的顺序排列,并用“<”连接.19.(6分)写出所有适合下列条件的数:(1)大于-17且小于11的所有整数;(2)绝对值小于17的所有整数.20.(8分)已知某数的两个平方根分别为a 3和2a -93. (1)求a 的值;(2)求这个数的平方根.21.(8分)已知y =x -3+3-x +2,求x y +y x 的值.22.(10分)如图2是4×4网格,每个小正方形的边长都为1个单位长度,利用这个4×4网格作出面积为5个平方单位的正方形,然后在数轴上表示实数5和- 5.图223.(10分)全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每一个苔藓都会长成近似的圆形.苔藓的直径和其生长的年限近似地满足如下关系式:d =7×t -12(t ≥12),其中d 表示苔藓的直径(单位:厘米),t 表示冰川消失的时间(单位:年).(1)冰川消失21年后,这种苔藓的直径为多少厘米?(2)如果测得一些苔藓的直径是35厘米,那么冰川大约是在多少年前消失的?24.(12分)我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,将b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x -5互为相反数,求1-x 的值.答案1.A 2.A 3.A 4.C 5.D 6.D 7.A 8.B 9.C 10. B11.-2 12.6-16-113.③14.-2 15.2±316.717.(1)7 (2) 2+318.解:(1)有理数:0,23,-1.1,38;无理数:π,-2,17. (2)-2<-1.1<0<23<38<π<17. 19.解:(1)-25=-5<-17<-16=-4,3=9<11<16=4,所以大于-17且小于11的所有整数为-4,-3,-2,-1,0,1,2,3.(2)绝对值小于17的所有整数为-4,-3,-2,-1,0,1,2,3,4.20.解:(1)依题意,得a 3+2a -93=0,解得a =3. (2)因为a 3=1,2a -93=-1,所以这个数的平方根是1和-1. 21.解:由算术平方根的被开方数的非负性,得x -3≥0且3-x ≥0,∴x =3,此时y =2,∴x y +y x =32+23=9+8=17.22.解:面积为5个平方单位的正方形如图所示(所画图形合理即可).这个正方形的边长为5,可用圆规截得,并画到数轴上.23.解:(1)d =7×21-12=7×3=21(厘米).所以冰川消失21年后这种苔藓的直径为21厘米.(2)35=7×t -12,所以5=t -12,即t -12=25,所以t =37.所以冰川大约是在37年前消失的.24.解:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8-8=0,∴结论成立, 即“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,解得x =4,所以1-x =1-4=-1.。
实数单元测试题及答案docx

实数单元测试题及答案docx一、选择题(每题2分,共20分)1. 下列各数中,最小的数是()A. -3B. -2C. πD. √22. 若a > b > 0,则下列不等式中正确的是()A. a² > b²B. a³ > b³C. a > bD. 1/a < 1/b3. 以下哪个数是无理数?()A. 0.33333…(无限循环)B. √2C. 2.718D. 1/34. 实数x满足|x-2| < 1,则x的取值范围是()A. 1 < x < 3B. 0 < x < 4C. 2 < x < 4D. 1 ≤ x ≤ 35. 计算以下表达式的值:(-2)³ + √4 - 1 =()A. 0B. 1C. 2D. 36. 以下哪个选项是实数的运算法则?()A. a + b = b + aB. a * b = b * aC. a / b = b / aD. a - b = b - a7. 已知x² = 4,x的值可以是()A. 2B. -2C. 2 或 -2D. 48. 若x > 0,则x的倒数是()A. x²B. 1/xC. x - 1D. x + 19. 以下哪个表达式的结果不是实数?()A. √9B. √(-1)C. √16D. √(0)10. 计算以下表达式的值:-2 - √4 =()A. -2B. -3C. -4D. -5二、填空题(每题2分,共20分)11. 绝对值的定义是:对于任意实数a,|a| = _______。
12. 一个数的相反数是这个数与0的差的绝对值,即如果a > 0,则-a 的相反数是_______。
13. 有理数和无理数统称为_______。
14. 一个数的平方根是_______,如果这个数是正数的话。
15. 两个数的乘积为负数,说明这两个数_______。
中考数学总复习《实数综合》专项测试卷(带参考答案)

中考数学总复习《实数综合》专项测试卷(带参考答案)(考试时间:90分钟试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题每小题3分共30分)。
1.﹣83的相反数是()A.83B.﹣38C.D.【答案】A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解析】解:﹣83的相反数是83.故选:A.2.﹣11的相反数是()A.11B.﹣11C.D.﹣【答案】A【分析】依据相反数的定义求解即可.【解析】解:﹣11的相反数是11.故选:A.3.下列实数:﹣0.1010010001(每相邻两个1之间依次增加一个0) 3.14 中无理数的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】无理数就是无限不循环小数.理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称.即有限小数和无限循环小数是有理数而无限不循环小数是无理数.由此即可判定选择项.【解析】解:是分数属于有理数;3.14是有限小数属于有理数;无理数有:﹣0.1010010001...(每相邻两个1之间依次增加一个0)共4个.故选:D.4.下列各组数中互为倒数的是()A.1与﹣1B.与3C.﹣5与D.﹣3与|﹣3|【答案】C【分析】根据互为倒数的定义逐项进行判断即可.【解析】解:A.因为1×(﹣1)=﹣1≠1 所以1与﹣1不是互为倒数因此选项A不符合题意;B.因为=﹣1≠1 所以与3不是互为倒数因此选项B不符合题意;C.因为所以﹣5与是互为倒数因此选项C符合题意;D.因为(﹣3)×|﹣3|=﹣9≠1 所以﹣3与|﹣3|不是互为倒数因此选项D不符合题意.故选:C.5.在数轴上与﹣3的距离等于4的点表示的数是()A.1B.﹣7C.﹣1或7D.1或﹣7【答案】D【分析】此题注意考虑两种情况:该点在﹣3的左侧该点在﹣3的右侧.【解析】解:根据数轴的意义可知在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:D.6.﹣64的立方根是()A.﹣4B.±4C.﹣8D.±8【答案】A【分析】根据立方根的定义求解即可.【解析】解:∵(﹣4)3=﹣64∴﹣64的立方根是﹣4.故选:A.7.如图是加工零件的尺寸要求现有下列直径尺寸的产品(单位:mm)其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.01【答案】A【分析】依据正负数的意义求得零件直径的合格范围然后找出不符要求的选项即可.【解析】解:∵45+0.03=45.03 45﹣0.04=44.96∴零件的直径的合格范围是:44.96≤零件的直径≤45.03∵44.9不在该范围之内∴不合格的是A故选:A.8.2023年1月22日电影《流浪地球2》上映截止北京时间2023年2月10日总票房已达38.6亿元38.6亿用科学记数法表示为()A.3.86×108B.3.86×109C.38.6×1010D.0.386×1010【答案】B【分析】把38.6亿表示为:a×10n的形式其中1≤|a|<10 n为整数即可.【解析】解:∵38.6亿=3860000000=3.86×109故选:B.9.如图所示A B C D四点在数轴上分别表示有理数a b c d则大小顺序正确的是()A.a<b<c<d B.b<a<d<c C.a<b<d<c D.d<c<b<a【答案】B【分析】根据数轴的特征:一般来说当数轴方向朝右时右边的数总比左边的数大判断出有理数a b c d的大小关系即可.【解析】解:如图∵当数轴方向朝右时右边的数总比左边的数大∴b<a<d<c.故选:B.10.形如a1a2…a n﹣1a n a n﹣1…a2a1的自然数(其中n为正整数a1≤a2≤…a n﹣1≤a n a1>0 a1a2…a n 为0 1 … 9中的数字)称为“单峰回文数” 例如123454321 不超过5位的“单峰回文数”共有()个.A.273B.219C.429D.129【答案】B【分析】根据“单峰回文数”的定义确定一位的“单峰回文数”有9个;三位的“单峰回文数”有45个;五位的“单峰回文数”有165个即可确定不超过5位的“单峰回文数”共有9+45+165=219.【解析】解:∵一位的“单峰回文数”有9个:1 2 3…9;两位的“单峰回文数”有9个:11 22 33…99;三位的“单峰回文数”有45个:111 …191共9个222…292共8个依次减少1个总共为9+8+7+…+1=45;四位的“单峰回文数”有45个:9+8+7+…+1=45;五位的“单峰回文数”有165个:1+3+6+10+15+21+28+36+45=165;根据定义不可能出现两位和四位的数只能出现奇位数.∴不超过5位的“单峰回文数”共有9+45+165=219.故选:B.二、填空题(本题共6题每小题2分共12分)11.9的算术平方根是3.【答案】3.【分析】根据算术平方根的定义计算即可.【解析】解:∵32=9∴9的算术平方根是3故答案为:3.12.名句“运筹帷幄之中决胜千里之外”中的“筹”原意是指“算筹” 在我国古代的数学名著《九章算术》和《孙子算经》中都有记载.“算筹”是古代用来进行计算的工具之一它是将几寸长的小竹棍摆在平面上进行运算“算筹”的摆放有纵横两种形式(如图1).则图2中“算筹”表示的减法算式的运算结果为﹣6023.【答案】﹣6023.【分析】依题意得图2中“算筹”所表示的算式是:951﹣6974 然后计算即可得出结果.【解析】解:951﹣6974=﹣6023.故答案为:﹣6023.13.若|x|=4 |y|=5 则x﹣y的值为±1或±9.【答案】±1或±9.【分析】求出xy的值分为四种情况代入求出即可.【解析】解:∵|x|=4∴x=±4∵|y|=5∴y=±5当x=4 y=5时x﹣y=﹣1当x=4 y=﹣5时x﹣y=9当x=﹣4 y=5时x﹣y=﹣9当x=﹣4 y=﹣5时x﹣y=1.故答案为:±1或±9.14.比较大小:>4.【答案】见试题解答内容【分析】求出3=4=再进行比较即可.【解析】解:3==4=∵>∴3>4.故答案为:>.15.已知:[x]表示不超过x的最大整数.例:[4.8]=4 [﹣0.8]=﹣1.现定义:{x}=x﹣[x] 例:{1.5}=1.5﹣[1.5]=0.5 则{3.9}+{﹣1.8}﹣{1}= 1.1.【答案】1.1.【分析】根据题意列出计算式解答即可.【解析】解:根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2﹣0=1.1;故答案为:1.1.16.若3+的小数部分是a3﹣的小数部分是b则a+b=1.【答案】见试题解答内容【分析】先判断3+33﹣的在哪两个整数之间再用3+减去整数部分求出a3﹣减去整数部分求出b再相加求出结果.【解析】解:∵5<3+<6 0<3﹣<1∴3+的小数部分为:3+﹣5=﹣2 3﹣的小数部分为:3﹣∴a+b=﹣2+3﹣=1故答案为:1.三解答题(本题共7题共52分)。
实数单元测试题及答案卷

实数单元测试题及答案卷一、选择题(每题2分,共10分)1. 下列数中,是实数的是()。
A. iB. πC. -1D. √22. 若a > 0,则a的绝对值是()。
A. -aB. aC. 0D. 13. 以下哪个数不是有理数?()。
A. √3B. 0.5C. 3/4D. -24. 两个负实数相加,结果为()。
A. 正数B. 负数C. 零D. 实数5. 一个数的相反数是它自己,这个数是()。
A. 1B. -1C. 0D. 2二、填空题(每题2分,共10分)6. 一个数的平方根是它自己,这个数可以是______。
7. 绝对值等于5的数是______。
8. 两个互为相反数的数的和是______。
9. 一个数的立方根是它自己,这个数可以是______。
10. 一个数的倒数是它自己,这个数可以是______。
三、简答题(每题5分,共20分)11. 解释什么是有理数和无理数,并各举一例。
12. 说明实数的运算法则有哪些?13. 什么是绝对值?如何求一个数的绝对值?14. 什么是相反数?如何求一个数的相反数?四、计算题(每题10分,共30分)15. 计算下列各数的和:3 + (-4) + 5 + (-6)。
16. 求下列数的绝对值:|-8|,|0|,|-5.5|。
17. 求下列数的倒数:1/2,-3,0。
五、解答题(每题15分,共30分)18. 已知a = -2,b = 3,求a + b的值。
19. 若x² = 9,求x的值。
20. 已知y = √4,求y的值。
答案:一、选择题1. B2. B3. A4. B5. C二、填空题6. 0或17. ±58. 09. 0,±110. ±1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2。
无理数是无限不循环小数,例如π。
12. 实数的运算法则包括加法、减法、乘法和除法。
13. 绝对值是一个数去掉符号后的值,求绝对值的方法是:如果这个数是正数或零,它的绝对值就是它本身;如果是负数,它的绝对值是它的相反数。
浙教版七年级数学上册 第3章 实数 单元测试试题(含答案)
第3章实数一、选择题1.36的平方根是()A. ﹣6B. 36C. ±D. ±62.-8的立方根是()A. -2B. 2C. ±2D. 43.下列计算正确的是()A. B. C. D.4.在数轴上到-3的距离等于5的数是()A. 2B. -8和-2C. -2D. 2和-85.下列大小比较正确的是( )A. <B. -(- )=-|- |C. -(-31)<+(-31)-(-31)<+(-31)D. -|-10 |>76.如图,数轴上点P表示的数可能是()A. B. C. -3.2 D.7.下列各组数中互为相反数的是()A. -2与B. -2与C. -2与D. | -2 |与28.已知一个数的两个平方根分别是a+3与2a﹣15,这个数的值为()A. 4B. ±7C. ﹣7D. 499.下列计算不正确的是()A. =±2B. ==9C. =0.4D. =﹣610.关于的叙述不正确的是()A. =2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点11.下列运算中,正确的是()A. =±2B. =﹣3C. (﹣1)0=1D. ﹣|﹣3|=312.计算× + × 的结果估计在()A. 6至7之间B. 7至8之间C. 8至9之间D. 9至10之间二、填空题13.36的平方根是________,81的算术平方根是________.14.比较大小:________ .(选填“>”、“=”、“<”).15.在:﹣3,0,,1四个数中最大的数是________16.计算-=________17.若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.18.试写出两个无理数________ 和________ ,使它们的和为-6.19.一个数的立方根是4,这个数的平方根是________ .20.若+|b﹣5|=0,则a+b= ________三、解答题21.计算:(1)2 + -(2)(+ )(﹣)﹣;(3)(2 ﹣1)2+ ;(4)﹣|1﹣|﹣100﹣()﹣1﹣|﹣× .22.计算:( +2)2﹣+2﹣223.﹣12﹣(﹣2)3× .24.计算下列各题:(1)-32× -(-3)2÷(-1)2(2)25.求下列各式中未知数x的值(1)16x2﹣25=0(2)(x﹣1)3=8.26.已知,,,(1)化简这四个数;(2)把这四个数,通过恰当的运算后使结果为,请列式并写出运算过程.参考答案一、选择题1. D2. A3.D4. D5. A6. B7. A8.D9. A 10.C 11.C 12.A二、填空题13.±6;9 14.>15.16.417.10,12,14 18.π-2;-π-4 19.±8 20.2三、解答题21.(1)解:原式=2 +3 ﹣=(2)解:原式=7﹣3﹣4 =0;(3)解:原式=8﹣4 +1+4 =9;(4)解:原式=2 +1﹣﹣1﹣2﹣1+ = ﹣22.原式=3+4 +4﹣4 + = .23.解:﹣12﹣(﹣2)3×=﹣1﹣(﹣8)× ﹣3× +2÷2=﹣1+1﹣1+1=024.(1)解:原式=-9× -9÷1=-1-9=-10(2)解:原式=2×(-2)÷(- )=2×(-2)×(-4)=1625.解:(1)16x2﹣25=0,x2=,x=±;(2)(x﹣1)3=8,x﹣1=2,x=3.26.(1)解:;;;(2)解:。
第3章 实数 单元测试 2022—2023学年湘教版八年级数学上册
湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)1. 下列各式化简结果为无理数的是( )A. B. 01)- C. D. 2. 下列各数中最大的数是( ).A. 5B.C. πD. -83. 若x 是9的算术平方根,则x 是( )A. 3B. -3C. 9D. 814. 下列说法不正确的是( )A. 125的平方根是15± B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-35.如图,数轴上A ,B 两点表示的数分别为-1和B 关于点A 的对称点为C ,则点C 所表示的数为( )A. 2-B. 1--C. 2-+D. 1+6. 27-的立方根与81的平方根的和是( )A. 6B. 0C. 6或12-D. 0或67. 若()2m =-,则有( )A. 0<m <1B. -1<m <0C. -2<m <-1D. -3<m <-28. 有理数a 在数轴上对应的点如图,则a ,a -,1-的大小关系是( )A. 1a a -<<-B. 1a a -<-<C. 1a a <-<-D. 1a a <-<-9. 一个边长为cm a 的正方形,它的面积与长为8cm 、宽为5cm 的长方形面积相等,则a 的值( )A. 在3与4之间B. 在4与5之间C. 在5与6之间D. 在6与7之间10. 的点可能是( )A. 点MB. 点NC. 点PD. 点Q二、填空题(每小题3分,共24分)11.___________.12. 计算:12--=_____.13. 某数的两个不同的平方根是21a -和2a -+,则这个数是_______.14. 若一个数的算术平方根是它本身,则这个数为_______.15. 的相反数是_______2-的绝对值是________.16. 比较大小:_________0.5.17. 一个等腰三角形的两边长分别为2,那么这个等腰三角形的周长是______.18. 的整数部分是a ,小数部分为b ,则a b -=_________.三、解答题(76分)19. 把下列各数填入相应的横线上:121005 3.14 5.200.10100100013π----⋯,,,,,,正有理数集合:整数集合:负分数集合:无理数集合:20. 计算:(1)01+--(221. 求下列各式中的x ,(1)24250x -=(2)()327364x -=-22. 已知21a +的平方根是3±,522a b +-的算术平方根是4,求34a b -的平方根.23.互为相反数,求()2022x y +的平方根.24. 国际比赛的足球场地是在100米到110米之间,宽是在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,那么这个足球场86.9570.99≈≈)25. 阅读材料,回答问题:对于实数a()()()0000a a a a a ⎧>⎪==⎨⎪-<⎩3=,0=()3=--问题:实数a 、b在数轴上的位置如图,化简:b a -+26. 写出所有符合下列条件的数:(1)大于的整数;(2).27. 阅读下面的文字,解答问题:的小数部分我们不可全解写出来,而12,1-的小数那分.(1)ab ,求a b +-的值;(2)已知100x y =+,其中x 是整数,且910y <<,求19x y -的算术平方根.湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)【1题答案】【答案】C【解析】【分析】将各选项化简,然后再判断即可.【详解】解:A=﹣3,是有理数,不符合题意;B、)01-=1,是有理数,不符合题意;C=,是无理数,符合题意;D2=,是有理数,不符合题意.故选C.【点睛】题目主要考查二次根式的化简及零次幂的计算,熟练掌握二次根式的化简是解题关键.【2题答案】【答案】A【解析】【分析】根据实数的大小比较方法进行解答,即可求解.,π≈3.14,∴,最大是5,故选A.视频【点睛】本题主要考查了实数的大小比较,熟练掌握实数的大小比较方法是解题的关键.【3题答案】【答案】A【分析】根据算数平方根的定义进行求解即可.【详解】解:∵x是9的算术平方根,∴=x3x=,故选:A.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.【4题答案】【答案】C【解析】【分析】根据平方根的意义、算术平方根的意义、立方根的意义,判断即可.【详解】A. 125的平方根是15±,选项正确;B. -9是81的一个平方根,选项正确;C. 0.04的算术平方根是0.2,选项错误;D. -27的立方根是-3,选项正确;故选:C.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.【5题答案】【答案】A【解析】【分析】由题意可知A、B两点之间的距离是1+C在原点的左侧,进而求出C的坐标.【详解】A、B两点之间的距离是1+,所以C点表示(112--+=-故选:A.【点睛】本题考查了求数轴上两点之间的距离,同时也利用对称点的性质.【6题答案】【答案】C【分析】先列式,再根据立方根、平方根的定义进行计算,然后根据实数的运算法则求得计算结果.+=-±39结果为6或12-故选:C.【点睛】本题考查了实数的运算,熟练掌握平方根、立方根的求法,是基础知识比较简单.【7题答案】【答案】C【解析】【详解】根据二次根式的意义,化简得:,因为1<2<4,所以<2.∴-2<-<-1.故选C考点:实数运算与估算大小【8题答案】【答案】D【解析】【分析】根据数轴表示数的方法得到a<﹣1,然后根据相反数的定义易得a<﹣1<﹣a.【详解】解:∵a<﹣1,∴﹣a>1>﹣1,∴a<﹣1<﹣a.故选:D.【点睛】本题考查了数轴、有理数大小的比较,解题的关键是掌握有理数大小的比较方法:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【9题答案】【答案】D【解析】【分析】根据题意求得a ,进而根据无理数的大小比较即可求解.【详解】解:258a =⨯ ,0a >a ∴=67<< a ∴的值在6与7之间故选D【点睛】本题考查了求一个数的算术平方根,无理数的大小比较,根据题意求得a 的值是解题的关键.【10题答案】【答案】C【解析】是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵12.25<14<16,∴3.5<4,的点可能是点P .故选:C .【点睛】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.二、填空题(每小题3分,共24分)【11题答案】【答案】2【解析】8,根据立方根的定义即可求解.8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.【12题答案】【答案】0【解析】【分析】先计算负整数指数幂及开立方,然后计算加减法即可.【详解】解:12-=11022-=,故答案为0.视频【点睛】题目主要考查实数的运算及负整数指数幂,熟练掌握运算法则是解题关键.【13题答案】【答案】9【解析】【分析】根据一个正数的两个平方根互为相反数得到()2120a a -+-+=,求出a 的值即可得到答案.【详解】解:∵某数的两个不同的平方根是21a -和2a -+,∴()2120a a -+-+=,解得1a =-,∴()()2221219a -=--=,∴这个数是9,故答案为:9.【点睛】本题主要考查了平方根的概念,熟知一个正数的平方根有两个,这两个平方根互为相反数是解题的关键.【14题答案】【答案】0或1【解析】【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,那么一个数的算术平方根是它本身,可以知道这个数是0和1.【详解】解:根据算术平方根的定义,这个数是0或1.故选答案为: 0或1.【点睛】此题主要考查了算术平方根的定义,分清算术平方根的概念易与平方根的概念是解决此题关键.【15题答案】【答案】①. 2 ②. 2【解析】【分析】先求出立方根,再求相反数,再利用绝对值的性质计算可得.2=-,2,2-22-=,故答案为:2,2【点睛】本题考查了实数的性质,立方根,相反数,绝对值,解题的关键是掌握相应的概念和求法.【16题答案】【答案】①. < ②. >【解析】【分析】①利用根据二次根式的性质得到=,=即可解答;②利0>即可解答.【详解】解:①∵=,=,<∴<,10.52-=-=,2>,0>0.5>,故答案为:<,>.【点睛】本题考查了实数的大小比较,选择合适的方法进行实数的大小比较是解题的关键.【17题答案】【答案】或4【解析】【分析】当以2为腰时,求出答案;再以2为底边,求出周长即可.【详解】当以2为腰时,三边长2,2224++=+;当以2为底边时,三边长2周长为.故答案为:或4+.【点睛】本题主要考查了实数的运算,根据等腰三角形的性质讨论是解题的关键.【18题答案】【答案】10-【解析】【分析】根据算术平方根的定义由252936<<得到56,则5a =,5b =-,然后计算a b -.【详解】∵252936<<∴56∴5a =,5b =-∴)5510a b -=--=-故答案为:10-.【点睛】本题考查了算术平方根,估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算.三、解答题(76分)【19题答案】【答案】见解析【解析】【分析】根据实数的分类进行判断即可.=, 5.2= 5.2---,=7-,正有理数集合:3.14⋯⋯;整数集合:2-、0、⋯⋯;负分数集合:153-、 5.2--⋯⋯;无理数集合:100π、0.1010010001⋯;故答案为:3.14⋯⋯;2-、0、⋯⋯;153-、 5.2--⋯⋯;100π0.1010010001⋯.【点睛】本题考查实数的分类,熟练掌握实数的相关概念是解题的关键.【20题答案】【答案】(1)2(2)74-【解析】【分析】(1)先根据算术平方根和立方根的定义、零指数幂的运算法则计算,再进行加减计算即可;(2)利用算术平方根和立方根的定义进行计算.【小问1详解】解:原式()=3311-+--+2=;【小问2详解】解:原式111=20224---++74=-.【点睛】本题考查实数的混合运算,熟练掌握算术平方根和立方根的定义是解题的关键.【21题答案】【答案】(1)52x =± (2)53x =【解析】【分析】(1)方程两边同时除以4,再开方,降次为一元一次方程即可解答;(2)方程两边同时除以27,再开三次方,降次一元一次方程即可解答.【小问1详解】解:24250x -=,方程两边同时除以4,移项得,2254x =,即x =,∴52x =±;【小问2详解】解:()327364x -=-,方程两边同时除以27,得,()364327x -=-,∴433x -==-,∴53x =.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的定义是解题的关键.【22题答案】【答案】4±【解析】【分析】根据平方根和算术平方根的定义即可求出21a +和522a b +-的值,进而求出a 和b 的值,将a 和b 的值代入34a b -即可求解.【详解】解:∵21a +的平方根是3±,522a b +-的算术平方根是4,∴21a +=9,522a b +-=16,∴a =4,b =-1把a =4,b =-1代入34a b -得:3×4-4×(-1)=16,∴34a b -的平方根为:4=±.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.【23题答案】【答案】()2022x y +的平方根是1±【解析】【分析】根据相反数的性质列出算式,再根据非负数的性质列出二元一次方程组,解方程组求出x 、y 的值,根据平方根的概念解答即可.0=,∴3020x y x y --=⎧⎨+=⎩,解得:21x y =-⎧⎨=⎩,∴211x y +=-+=-,则()20221x y +=,1的平方根是1±.【点睛】本题考查了非负数的性质、平方根的定义和解二元一次方程组,根据非负数的性质求出x 和y 的值是解题的关键.【24题答案】【答案】这个足球场可以用作国际比赛【解析】【分析】设足球场的的宽为x 米,则长为1.5x 米,根据题意列出方程,求出x 的值,再计算出足球场的长,即可作出判断.【详解】设足球场的的宽为x 米,则长为1.5x 米,由题意得:1.57560x x = ,25040x =,即x =,70.99≈,所以长为1.5106.49x =米,∵6470.9975<<,100106.49110<<,∴这个足球场可以用作国际比赛.【点睛】本题考查了算术平方根的应用,根据题意列出方程是解题的关键.【25题答案】【答案】2b-【解析】【分析】根据数轴上点a b 、的位置得到0b a -<,0a b +<,再根据二次根式的性质与绝对值的性质即可解答.【详解】解:∵0b a <<,b a >,∴0b a -<,0a b +<,∴b -()()a b a b =--⎡⎤⎣⎦++a b a b=---2b =-.【点睛】本题考查了二次根式的性质,绝对值的性质,整式的加减,掌握二次根式的性质及绝对值的性质是解题的关键.【26题答案】【答案】(1)-2,-1,0,1,2,3,4,5;(2)-3,-2,-1,0,1,2,3.【解析】【详解】试题分析:(1)因为≈-2.445≈5.313,所以在-2.445~5.313间的整数有-2,-1,0,1,2,3,4,5;(2≈3.606,所以只要找绝对值小于3.606的整数即可.试题解析:(1)大于的整数有:-2,-1,0,1,2,3,4,5;(2的整数有:-3,-2,-1,0,1,2,3.【27题答案】【答案】(1)1;(2)11.【解析】【分析】(1))小数部分a 的整数部分b ,最后将a 、b 的值代入求解即可;(2)先判断小数部分为1010,再由100x y =+,x 是整数,且910y <<,求得x=101,1,把x 、y 的值代入求得19x y ,++-求得代数式的值,再根据算术平方根的定义求解即可.【详解】(1)∵2334,,2-3,∴a 2=-,b=3,∴a b +-2-+3;(2)∵1011,10-10,∵100x y +=+,x 是整数,且910y <<,∴x=101,10-1,∴19x y ++-1)1+=121,∵121的算术平方根为11,∴19x y ++-的算术平方根为11.【点睛】本题主要考查了估算无理数的大小,“夹逼法”是估算的一般方法;解此类问题时应估算无理数的值,再根据题意具体解决.。
浙教版七年级上册数学第3章实数单元测试(含答案)
七年级上册数学《第3章 实数》单元测试一、单选题(本题有10小题,每小题3分,共30分)1.19的平方根是( ) A .181 B .13 C .-13 D .±132.在16,-3.141,π2,-0.5,2,0.585 885 888 5…(两个“5”之间依次多一个“8”),227中,无理数有( )A .4个B .3个C .2个D .1个3.下列各组数中互为相反数的一组是( )A .-|-2|与3-8 B .-4与-42C .-32与|3-2|D .-2与124.下列各式中,计算正确的是( )A .±916=±34 B .±916=34 C .±916=±38 D .916=±34 5.实数a 在数轴上对应点的位置如图所示,则(a -1)2=( )A .1B .-1C .1-aD .a -16.下列数中,小于-2的是( )A .- 5B .- 3C .- 2D .-17.下列说法正确的是( )A .125的平方根是15B .-8是64的一个平方根C .16的算术平方根是4D .81=±98.在5与26之间,整数有( )A .2个B .3个C .4个D .5个9.下列说法中,正确的是( )①0.027的立方根是0.3; ②3a 不可能是负数; ③如果a 是b 的立方根,那么ab ≥0;④若一个数的平方根与这个数的立方根相同,则这个数是1.A .①③B .②④C .①④D .③④10.如图,数轴上点C ,B 表示的数分别为2,5,点C 到点A 的距离与点C到点B 的距离相等,则点A 表示的数是( )A .- 5B .2- 5C .4- 5D .5-2二、填空题(本题有6小题,每小题4分,共24分)11.一个数的立方等于它本身,这个数是______________.12.-5的相反数是________,绝对值是________.13.3-125=________;1-925=________.14.若x -1+(y +2)2=0,则(x +y )2 023=________.15.如图,数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C 表示的数是________.16.规定用[a ]表示不超过a 的最大整数,例如:[2]=2,[3.7]=3.现对72进行如下操作:72――→第一次[]72=8――→第二次[] 8=2――→第三次[] 2=1,这样对72只需进行3次操作后就可变为1.类似地,对85只需进行________次操作后就可变为1.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)1+169; (2)5+|5-3|.18.(6分)计算下列各题.(1)-32×19-(-3)2÷(-1)2;(2)(-2)2×3-8÷⎝ ⎛⎭⎪⎫14-12.19.(6分)比较大小. (1)24与5.1; (2)3-15与15.20.(6分)求下列各式中未知数x的值.(1)16x2-25=0; (2)(x-1)3=8.21.(10分)将下列各数在数轴上(如图)表示出来,并用“<”号把它们连接起来.-312,0,-2,94,|-3|.22.(10分)请根据如图所示的对话内容回答下列问题.(1)求正方体纸盒的棱长;(2)求长方体纸盒的长.23.(10分)已知36=x,y=3,z是16的平方根,求3x+y-5z的值.24.(12分)如图,每个小正方形的边长为1,阴影部分是一个正方形.(1)图中阴影正方形的面积是________,边长是________.(2)已知x为阴影正方形的边长的小数部分,y为15的整数部分.求:①x,y的值;②(x+y)2的算术平方根.答案一、1.D 2.B 3.C 4.A 5.C 6.A7.B 8.B 9.A 10.C二、11.0或±1 12.5; 5 13.-5;45 14.-1 15.2+ 216.3三、17.解:(1)原式=259=53.(2)原式=5+3-5=3.18.解:(1)原式=-9×19-3÷1=-1-3=-4. (2)原式=2×(-2)÷⎝ ⎛⎭⎪⎫-14=2×(-2)×(-4)=16. 19.解:(1)∵5.12=26.01,24<26.01,∴24<5.1.(2)∵3-1<1,∴3-15<15.20.解:(1)16x 2-25=0,整理,得x 2=2516,所以x =±54. (2)(x -1)3=8,两边开立方,得x -1=2,所以x =3.21.解:94=32,|-3|=3.将-312,0,-2,94,|-3|表示在数轴上如图.-312<-2<0<94<|-3|.22.解:(1)设正方体纸盒的棱长为x cm,根据题意,得x3=216,解得x=6.答:正方体纸盒的棱长为6 cm.(2)设长方体纸盒的长为y cm,根据题意,得6y2=600,解得y=10(负值舍去).答:长方体纸盒的长为10 cm.23.解:∵36=x,∴x=6.∵y=3,∴y=9.∵z是16的平方根,∴z=±4.当z=4时,3x+y-5z=3×6+9-5×4=7;当z=-4时,3x+y-5z=3×6+9-5×(-4)=47.综上所述,3x+y-5z的值为7或47.24.解:(1)13;13(2)①∵9<13<16,9<15<16,∴3<13<4,3<15<4.∵x为阴影正方形的边长的小数部分,y为15的整数部分,∴x=13-3,y=3.②由①可知x=13-3,y=3,∴(x+y)2=(13-3+3)2=13,∴(x+y)2的算术平方根是13.。
第3 章实数综合测试卷 2024-2025学年浙教版数学七年级上册
第3 章综合测试卷 实数班级 学号 得分 姓名一、选择题(本大题有10 小题,每小题3分,共30分) 1.数轴上的点表示的一定是( )A. 整数B. 有理数C. 无理数D. 实数 2.下列各式正确的是( )A.√16=±4B.√−273=−3 C.√−9=−3 D.√2519=513 3.下列说法正确的是( )A. 无限小数都是无理数B.−1125没有立方根 C. 正数的两个平方根互为相反数 D. -(-13)没有平方根4. 已知一个数的立方根是 −12,那么这个数是( )A.−32 B 14 c 18 D.−18 5.√81的平方根是( )A. ±3B. 3C. ±9D. 9 6.如图,数轴上点P 表示的数可能是( )A √7 B.−√7 C. —3.2 D.−√107.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A. 0个B. 1个C. 2个D. 3个 8.|√6−3|+|2−√6|的值为( )A. 5B.5−2√6C. 1D.2√6−19. 若 a 2=9,√b 3=−2,则a+b=( )A. -5B. —11C. -5或-11D. ±5或±1110. 如图,面积为5 的正方形 ABCD 的顶点A 在数轴上,且表示的数为1,若 AD=AE ,则数轴上点 E 所表示的数为( )A.−√5B.1−√5C.−1−√52D.32−√5 二、填空题(本大题有6 小题,每小题4分,共24分) 11.1−√6的相反数是 ,绝对值是 . 12. 如果 √x +3=2,那么 (x +3)²= .13. 已知m 与n 互为相反数,c 与d 互为倒数,a 是 √5的整数部分,则 √cd +2(m +n)—a 的值是 .14. 如图,数轴上的点A 和点B 之间的整数.点表示的数分别为 .15. 如图所示,化简 |a −√3|−|b +√3|的结果是 .16. 有四个实数分别是| |−3|,π2,√9,4π,请你计算其中有理数的和与无理数的积的差,其计算结果是 . 三、解答题(本大题有8小题,共66分) 17.(6分)计算.(1)√2+3√2−5√2; (2)|2−√3|+2(√3−1);(3)√16−√9+√−273.18. (6分)把下列各数分别填在相应的括号内. −12,0,0.16,312,√3,−23√5,π3,√16,−√22,−3.14. 有理数:{ }; 无理数:{ }; 负实数:{ }.19.(6分)如图,一只蚂蚁从点 A 沿数轴向右爬行2个单位长度到达点 B,再爬行到C点停止.已知点 A 表示−√2,点 C 表示 2,设点 B 所表示的数为m.(1)求m的值;(2)求 BC的长.20.(8分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的质量是7.8千克,那么这段圆钢横截面的半径是多少分米? 这段圆钢重多少千克(保留π)?21.(8分)已知实数a,b,c在数轴上对应点的位置如图所示,化简:√a2−|a+b|+√(c−a)2+|b−c|.22. (10分)大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,但是由于1<√2<2,所以√2的整数部分为1,将√2减去其整数部分1,所得的差√2−1就是其小数部分.根据以上内容,解答下面的问题:(1)√5的整数部分是,小数部分是;(2)1+√2的整数部分是,小数部分是;(3)若设2+√3的整数部分是x,小数部分是y,求x−√3y的值.23. (10分)如图是4×4的方格图,每个小正方形的边长都为1,利用这个4×4的方格图作出面积为5的正方形,然后在数轴上表示实数√5和−√5.24. (12分)a0.0000010.00010.011100100001000000(1)被开方数a的小数点位置移动和它的算术平方根的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:√a=1800,−√3.24=−1.8,你能求出a的值吗?第3 章综合测试卷实数1.D2. B3. C4. D5. A6. B7. C8.C 解析:原式=3−√6+√6−2=1.故选 C.9. C 10. B 11 .√6—1√6—1 12. 16 13. -1 14. -1,0,1,15. -a-b 16. 4 17. 解:(1)原式=(1+3−5)√2=−√2.(2)原式=2-√3+2√3−2=√3.(3)原式:=4-3-3=-2.18.−12,0,0.16,312,√16,−3.14√3,−23√5,π3,−√22−12,−23√5,−√22,−3.1419. 解:(1)m−2=−√2,m=2−√2. (2)BC=|2-(2-√2)|=|2−2+√2|=√2.20. 解:设这段圆钢半径为r分米,则2πr²=10π,r²=5,r=√5(分米),10π×7.8=78π(千克).21. 解:由题图,得c<b<0<a,且|a|=|b|,则a+b=0,c-a<0,b-c>0,故原式=a-0+a-c+b-c=2a+b-2c.22. 解:(1)2√5−2解析:∵2<√5<3,:√5的整数部分是2,小数部分是√5−2.(2)2√2−1解析:∵1<√2<2,∴2<1+√2<3.∴1+√2的整数部分是2,小数部分若1+√2−2 =√2−1.(3)∵1<√3<2,∴3<2+√3<4.∴x=3,y=2+√3−3=√3−1.∴x−√3y=3−√3(√3−1)=√3.23. 解:面积为5的正方形如图所示(所画图形合理即可).这个正方形的边长为√5,,可用圆规截得长为√5的线段,找到表示√5和−√5的点,并画到数轴上(如图).24. 解:依次填:0.0010.01 0.1 1 10 100 1000(1)有规律,当被开方数的小数点每向左(或向右)移动2位时,算术平方根的小数点向左(或向右)移动 1 位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位后的数,即a =3240000.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习方法报社 全新课标理念,优质课程资源
第3章 实数综合测试题(一)
一、选择题(每小题3分,共30分)
1.
)
A. ±4
B. 2
C. ±2
D. 不存在 2.
3的相反数是( ) A.3
3- B.3- C.33 D.3 3. 下列说法中正确的是( )
A. 负数没有立方根
B. 一个正数的立方根有两个,它们互为相反数
C. 如果一个数有立方根,则它必有平方根
D. 不为0的任何数的立方根,都与这个数同号
4. 下列各数中,比
大的实数是( ) A .-5 B .0 C .3 D .
5. 实数a ,b 在数轴上的位置如图1所示,且|a|>|b|,化简b a a +-2的结果为( )
A .2a+b
B. -2a+b
C. b 图1
D. 2a-b
6. 已知a
)
A .a
B .-a
C .-1
D .0
7. 用计算器求得333+的结果(精确到0.001)是( )
A. 3.1742
B. 3.174
C. 3.175
D. 3.1743
8.
n 为( )
A .2
B .3
C .4
D .5
9. 某居民生活小区需要建一个大型的球形储水罐,需储水113立方米,那么这个球罐的半径r (球的体积V =343
r π,π取3.14, 结果精确到0.1米)为( )
A. 2.8米
B. 2.9米
C. 3.0米
D. 3.1米
a o
b
10. 对于实数a ,b ,给出以下三个命题:①若|a|=|b|,则b a =
;②若|a|<|b|,则a <b ;③若a=-b ,则
(-a )2=b 2.
其中真命题有( ) A .3个 B .2个 C .1个 D .0个
二、填空题(每小题4分,共24分)
11. 若()2
240a c --=,则a-b+c = .
12. 把7的平方根和立方根按从小到大的顺序排列为 .
13. 图2是一个简单的数值运算程序,若输入x 的值为,则输出的数值为_____.
图2
14.16的算术平方根是 ,的平方根是 .
15. 已知a 、b 为两个连续整数,且a <<b ,则a+b= .
16. ,…的结果,观察
___. 三、解答题(共66分) 17. (8分)求下列各数的平方根和算术平方根:14 400,
.1615289169,
18. (8分)求下列各数的立方根:
.729.02718125,,-
19. (8分)将下列各数填入相应的集合内.
-7,0.32, 13
,0,π,0.202 002 000 2…. 有理数集合:{ … };
无理数集合:{ … };
负实数集合:{ … }.
20. (10分)求下列各式中x 的值.
(1)()2162810x +-=;
(2)31(21)42
x -=-.
21. (10分)若6A -=是a+3b 的算术平方根,2B =1-a 2的立方根,求A 与B 的值.
22. (10分)已知3a-22和2a-3都是m 的平方根,求a 和m 的值.
23. (12分)小丽把一块正方形纸片的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成一个无盖的长方体盒子,如图3,量得这个盒子的容积是150 cm 2.
(1)由题意可知,剪掉正方形的边长为__________cm .
(2)设原正方形的边长为x cm ,用x 表示盒子的容积为
_____________________.
(3)求原正方形的边长.
图3
(拟题:李志)
第3章 实数测试题
一、1. C 2. B 3. D 4. C 5. C 6. D 7. B 8. D 9. C 10. C
二、11. 3 12. -<< 13. 2 14. 2 ±3 15. 5 16. 2003555个
三、17. 解:14 400的平方根为±120,算术平方根为120;
289169的平方根为,1713±算术平方根为;17
13 1615的平方根为4
9±,算术平方根为.49 18. 解:8125的立方根是25;271-的立方根是3
1-;0.729的立方根是0.9.
19. 解:有理数集合:{-7,0.32,13
,0;
无理数集合:,π,0.202 002 000 2… ,…}; 负实数集合:{ -7, …}.
20. 解:
(1)由()2162810x +-=,得()281216x +=. 所以924x +=±
. 解得14x =或x=174
-. (2)由31(21)42x -=-,得(2x-1)3=-8.
所以2x-1=-2.
解得x=2
1-. 21. 解:由题意,可知6-2b=2,2a-3=3.解得a=3,b=2.
所以A=9=3,B=38-=-2.
22. 解:当3a-22=2a-3时,解得a=19,此时3a-22=35,所以m=352=1225; 当3a-22+2a-3=0时,解得a=5,此时3a-22=-7,2a-3=7,所以m=(-7)2=49. 综上,a=19,m=1225或a=5,m=49.
23. 解:(1)6
(2)6(x-12)2
(3)由题意,可得6(x-12)2=150.
解得x=17或x=7(舍去).
所以原正方形的边长为17 cm .。