平面向量的线性运算 测试(含答案)
向量的线性运算经典测试题含答案

向量的线性运算经典测试题含答案一、选择题1.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.2.下列等式正确的是( )A .AB +BC =CB +BAB .AB ﹣BC =ACC .AB +BC +CD =DAD .AB +BC ﹣AC =0【答案】D【解析】【分析】根据三角形法则即可判断.【详解】∵AB BC AC +=,∴0AB BC AC AC AC +-=-= ,故选D .【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.3.已知a 、b 和c 都是非零向量,在下列选项中,不能判定//a b 的是( ) A .2a b =B .//a c ,//b cC .||||a b =D .12a c =,2bc = 【答案】C【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断.【详解】A 选项:由2a b =,可以推出//a b .本选项不符合题意;B 选项:由//a c ,//b c ,可以推出//a b .本选项不符合题意;C 选项:由||||a b =,不可以推出//a b .本选项符合题意;D 选项:由12a c =,2bc =,可以推出//a b .本选项不符合题意;故选:C .【点睛】考查了平面向量,解题关键是熟记平行向量的定义.4.已知5AB a b =+,28BC a b =-+,()3CD a b =-,则( ).A .A 、B 、D 三点共线B .A 、B 、C 三点共线 C .B 、C 、D 三点共线D .A 、C 、D 三点共线 【答案】A【解析】【分析】根据共线向量定理逐一判断即可.【详解】解:∵28BC a b =-+,()3CD a b =-,5AB a b =+∴()2835BD BC CD a b a b a b =+=-++-=+, ∴AB 、BD 是共线向量∴A 、B 、D 三点共线,故A 正确;∵5AB a b =+,28BC a b =-+∴不存在实数λ,使AB BC λ=,即AB 、BC 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+,()3CD a b =-∴不存在实数λ,使BC CD λ=,即BC 、CD 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+,28BC a b =-+,()3CD a b =-,∴()52813AC AB BC a b a b a b =+=++-+=-+∴不存在实数λ,使AC CD λ=,即AC 、CD 不是共线向量∴A 、C 、D 三点共线,故D 错误;故选A.【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.5.若点O 为平行四边形的中心,14AB m =,26BC m =,则2132m m -等于( ). A .AOB .BOC .COD .DO 【答案】B【解析】【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可.【详解】解:∵在平行四边形ABCD 中, 14AB m =,26BC m =,∴1246B m C AC AB m =+=+,1246BD BA BC AC m m =+==-+,M 分别为AC 、BD 的中点, ∴122312AO AC m m =+=,故A 不符合题意; 211322BO BD m m ==-,故B 符合题意; 122312CO AC m m ==---,故C 不符合题意; 121232DO BD m m =-=-,故D 不符合题意. 故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.6.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠时,ma 与a 的方向一定相反;②0m ≠,0a ≠时,ma 与a 是平行向量;③0mn >,0a ≠时,ma 与na 的方向一定相同;④0mn <,0a ≠时,ma 与na 的方向一定相反.A .1个B .2个C .3个D .4个【答案】D【分析】根据向量关系的条件逐一判断即可.【详解】解:①因为0m <,1>0,0a ≠,所以ma 与a 的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠,所以ma 与a 是平行向量,故②正确;③因为0mn >,0a ≠,所以m 和n 同号,所以ma 与na 的方向一定相同,故③正确; ④因为0mn <,0a ≠,所以m 和n 异号,所以ma 与na 的方向一定相反,故④正确. 故选D.【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.7.下列各式正确的是( ).A .()22a b c a b c ++=++B .()()330a b b a ++-= C .2AB BA AB +=D .3544a b a b a b ++-=- 【答案】D【解析】【分析】根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-,故B 选项错误;C 、0AB BA +=,故C 选项错误;D 、3544a b a b a b ++-=-,故D 选项正确;故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.8.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB 是单位向量,则BA 不是单位向量C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA 、OB 是单位向量D .计算向量的模与单位长度无关【答案】C【解析】根据单位向量的定义及意义判断即可.【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB 是单位向量时,1AB =,而此时1AB BA ==,即BA 也是单位向量,故选项B 不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA 、OB 都等于这个单位长度,这时OA 、OB 都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确.故选C. 【点睛】 本题考查单位向量,掌握单位向量的定义及意义是解题的关键.9.□ABCD 中, -+等于( ) A .B .C .D . 【答案】A【解析】【分析】 在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果.【详解】 ∵在平行四边形ABCD 中,与 是一对相反向量, ∴= - ∴ -+=- +=, 故选A .【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出 与 是一对相反向量.10.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC 与BD 是相等向量B .AD 与BD 是平行向量C .AD 与BD 是相反向量D .AD 与BC 是相等向量【答案】B【解析】【分析】由AC=BD,可得AD=BD,即可得AD与BD是平行向量,AD BC AC BD=-=-,,继而证得结论.【详解】A、∵AC=BD,∴AC BD=-,该选项错误;B、∵点C、D是线段AB上的两个点,∴AD与BD是平行向量,该选项正确;C、∵AC=BC,∴AD≠BD,∴AD与BD不是相反向量,该选项错误;D、∵AC=BD,∴AD=BC,∴AD BC=-,,该选项错误;故选:B.【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.11.若a=2e,向量b和向量a方向相反,且|b|=2|a|,则下列结论中不正确的是()A.|a|=2 B.|b|=4 C.b=4e D.a=1 2b -【答案】C【解析】【分析】根据已知条件可以得到:b=﹣4e,由此对选项进行判断.【详解】A、由a=2e推知|a|=2,故本选项不符合题意.B、由b=-4e推知|b|=4,故本选项不符合题意.C、依题意得:b=﹣4e,故本选项符合题意.D、依题意得:a=-12b,故本选项不符合题意.故选C.【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.12.在下列关于向量的等式中,正确的是()A.AB BC CA=+B.AB BC AC=-C.AB CA BC=-D .0AB BC CA ++=【答案】D【解析】【分析】 根据平面向量的线性运算逐项判断即可.【详解】AB AC CB =+,故A 选项错误;AB AC BC =-,故B 、C 选项错误;0AB BC CA ++=,故D 选正确.故选:D.【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.13.如图,在平行四边形ABCD 中,设AB a =,AD b =,那么向量OC 可以表示为. ( )A .1122a b + B .1122a b - C .1122a b -+ D .1122a b -- 【答案】A【解析】【分析】 利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可. 【详解】由题意可得 ()()1111122222OC AC AD AB a b a b ==+=+=+ 【点睛】 本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.14.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( )A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 【答案】C【解析】【分析】【详解】解:∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C.15.如图,向量OA 与OB 均为单位向量,且OA ⊥OB ,令n =OA +OB ,则||n =( )A .1B .2C .3D .2【答案】B【解析】 根据向量的运算法则可得:n =()222OA OB +=,故选B.16.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,下列式子中正确的是( )A .DC a b =+B .DC a b =-; C .DC a b =-+D .DC a b =--.【答案】C【解析】【分析】 由平行四边形性质,得DC AB =,由三角形法则,得到OA AB OB +=,代入计算即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB =,∵OA a=,OB b=,在△OAB中,有OA AB OB+=,∴AB OB OA b a a b=-=-=-+,∴DC a b=-+;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.17.已知一个单位向量e,设a、b是非零向量,那么下列等式中正确的是().A.1a ea=;B.e a a=;C.b e b=;D.11a ba b=.【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.18.设,m n为实数,那么下列结论中错误的是()A.m na mn a()=()B.m n a ma na++()=C.m a b ma mb+(+)=D.若0ma=,那么0a=【答案】D【解析】【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a =0,则m=0或a =0.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.19.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a = B .e b b = C .1a e a = D .11a b a b= 【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.对于非零向量a 、b ,如果2|a |=3|b |,且它们的方向相同,那么用向量a 表示向量b 正确的是( )A .b =32a B .b =23a C .b =﹣32a D .b =-23a 【答案】B【解析】【分析】 根据已知条件得到非零向量a 、b 的模间的数量关系,再结合它们的方向相同解题.【详解】 ∵2|a |=3|b |,∴|b |23=|a |.又∵非零向量a与b的方向相同,∴23b a .故选B.【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.。
2022年上海15区中考数学一模考点分类汇编专题08 平面向量的线性运算 (解析版)

2022年上海市15区中考数学一模考点分类汇编专题08 平面向量的线性运算一.选择题(共12小题)1.(青浦区)如果(、均为非零向量),那么下列结论错误的是()A.B.∥C.D.与方向相同【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,∴||=2||;;=;与的方向相反,故A,B,C正确,D错误,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.2.(金山区)点G是△ABC的重心,设=,=,那么关于和的分解式是()A.+B.﹣C.+D.﹣【分析】根据向量加法的平行四边形法则得出=(+),再根据重心的性质得出=,即可求解.【解答】解:∵=,=,∴=(+)=(+),∵点G是△ABC的重心,∴==×(+)=(+).故选:C.【点评】本题考查三角形的重心,平面向量,平行四边形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(崇明区)如果向量与向量方向相反,且3||=||,那么向量用向量表示为()A.B.C.D.【分析】由向量与向量方向相反,且3||=||,可得,继而求得答案.【解答】解:∵向量与向量方向相反,且3||=||,∴3=﹣,∴.故选:D.【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.4.(徐汇区)已知点C是线段AB的中点,下列结论中正确的是()A.=B.+=0C.=D.||=||【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵点C是线段AB的中点,∴;;;||=||,∴A,B,C错误,D正确,故选:D.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.5.(黄浦区)已知,,是非零问量,下列条件中不能判定∥的是()A.∥,∥B.=3C.||=||D.=,=﹣2【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵,,∴,故A能;∵,∴,故B能;∵||=||,不能判断与方向是否相同,故C不能;∵,,∴=﹣,∴,故D能,故选:C.【点评】本题考查了平面向量,熟练掌握平面向量的定义与性质是解题的关键.6.(嘉定区)已知一个单位向量,设、是非零向量,那么下列等式中一定正确的是()A.B.C.D.【分析】根据单位向量的性质逐一判断即可.【解答】解:∵是单位向量,∴||=1,∴||=,∴A正确;∵||与的大小相同,但方向不一定相同,∴B错误;∵与大小相同,但方向不一定相同,∴C错误;∵与方向不一定相同,∴不一定等于,∴D错误,故选:A.【点评】本题考查了平面向量,熟练掌握单位向量的性质是解题的关键.7.(宝山区)已知为非零向量,=2,=﹣3,那么下列结论中,不正确的是()A.||=||B.C.D.∥【分析】根据平面向量的定义与性质逐一判断即可.【解答】解:∵=2,=﹣3,∴||=||,=﹣,故A正确,B错误;∵=2,=﹣3,∴3=6﹣6=,故C正确;∵=2,=﹣3,∴=﹣,∴,故D正确,故选:B.【点评】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解题的关键.8.(杨浦区)已知和都是单位向量,下列结论中,正确的是()A.=B.﹣=C.||+||=2D.+=2【分析】根据单位向量的定义逐一判断即可.【解答】解:根据单位向量的定义可知:和都是单位向量,但是这两个向量并没有明确方向,∴A,B,D错误,C正确,故选:C.【点评】本题考查了平面向量中的单位向量知识,熟练掌握单位向量的定义是解题的关键.9.(虹口区)已知=7,下列说法中不正确的是()A.﹣7=0B.与方向相同C.∥D.||=7||【分析】根据平面向量的定理逐一判断即可.【解答】解:∵=7,∴=;与方向相同;;||=7||,故A不正确;B、C、D正确,故选:A.【点评】本题考查了平面向量的定理,熟练掌握平面向量的基本定理是解题的关键.10.(浦东新区)已知||=3,||=2,且和的方向相反,那么下列结论中正确的是()A.3=2B.2=3C.3=﹣2D.2=﹣3【分析】根据平行向量的性质即可解决问题.【解答】解:∵||=3,||=2,且和的方向相反,∴=﹣,∴2=﹣3,故选:D.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(普陀区)已知与是非零向量,且||=|3|,那么下列说法中正确的是()A.B.C.D.||=3【分析】根据平行向量以及模的定义的知识求解即可求得答案【解答】解:A、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相同,不一定成立,故不符合题意;B、由与是非零向量,且||=|3|知,与3只是模相等,方向不一定相反,即不一定成立,故不符合题意;C、由与是非零向量,且||=|3|知,与3只是模相等,不一定共线,故不符合题意;D、由与是非零向量,且||=|3|知,||=3,符合题意.故选:D.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.12.(松江区)已知=2,那么下列判断错误的是()A.﹣2=0B.C.||=2||D.∥【分析】根据平行向量以及模的定义的知识求解即可求得答案.【解答】解:A、由=2知,﹣2=,符合题意;B、由=2知,,不符合题意;C、由=2知,||=2||,不符合题意;D、由=2知,∥,不符合题意.故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又有方向.二.填空题(共14小题)13.(崇明区)计算:2(3+2)﹣5=.【分析】根据平面向量的加减运算法则即可求解.【解答】解:原式=6=,故答案为:,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.14.(杨浦区)已知的长度为2,的长度为4,且和方向相反,用向量表示向量=﹣2.【分析】根据与的长度与方向即可得出结果.【解答】解:∵的长度为2,的长度为4,且和方向相反,∴,故答案为:﹣2【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的定义和性质是解题的关键.15.(虹口区)如果向量、、满足(+)=﹣,那么=(用向量、表示).【分析】根据平面向量的加减运算法则计算即可.【解答】解:∵(+)=﹣,∴,∴,故答案为:.【点评】本题考查了平面向量,熟练掌握平面向量的加减运算法则是解题的关键.16.(浦东新区)计算:3(2﹣)﹣2(2﹣3)=2+3.【分析】根据平面向量的加减运算法则即可求解.【解答】解:3(2﹣)﹣2(2﹣3)=6﹣3﹣4+6=2+3,故答案为:2+3.【点评】本题考查了平面向量的基本知识,熟练掌握平面向量的加减运算法则是解题的关键.17.(浦东新区)如图,已知平行四边形ABCD的对角线AC与BD交于点O.设=,=,那么向量关于向量、的分解式是﹣+.【分析】根据向量的加减计算法则即可得出结果.【解答】解:∵=,=,∴==﹣+,故答案为:﹣+.【点评】本题考查了向量的加减计算法则,熟练掌握向量的加减计算法则是解题的关键.18.(普陀区)已知是单位向量,与方向相反,且长度为6,那么=﹣6.(用向量表示)【分析】根据平面向量的性质解决问题即可.【解答】解:∵是单位向量,与方向相反,且长度为6,∴=﹣6,故答案为:﹣6.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(徐汇区)计算:2﹣(﹣4)=+2.【分析】根据平面向量的加减运算法则求解即可.【解答】解:2=2﹣+2=+2,故答案为:+2,【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.20.(徐汇区)如图,已知点G是△ABC的重心,记向量=,=,则向量=+..(用向量x+y的形式表示,其中x,y为实数)【分析】如图,延长AE到H,使得EH=AE,连接BH,CH.求出,证明AG=AH即可解决问题.【解答】解:如图,延长AE到H,使得EH=AE,连接BH,CH.∵AE=EH,BE=EC,∴四边形ABHC是平行四边形,∴AC=BH,AC∥BH,∵=+=+,∵G是重心,∴AG=AE,∵AE=EH,∴AG=AH,∴=(+)=+.故答案为:+.【点评】本题考查三角形的重心,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(嘉定区)已知向量、、满足,试用向量、表示向量,那么=.【分析】根据平面向量的加减运算法则求解即可.【解答】解:∵,∴2﹣2=3﹣3,∴=3﹣2,故答案为:3.【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.22.(静安区)如图,在△ABC中,中线AD、BE相交于点G,如果=,=,那么=+.(用含向量、的式子表示)【分析】由重心的性质可得,,利用三角形法则,即可求得的长,又由中线的性质,即可求得答案.【解答】解:在△ABC中,中线AD、BE相交于点G,∴点G为△ABC的重心,∴==,==,∴=+=+,∴=2=+.故答案为:+.【点评】此题考查了三角形重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了平面向量的知识.此题难度适中,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.23.(崇明区)如图,在平行四边形ABCD中,点M是边CD中点,点N是边BC的中点,设=,=,那么可用、表示为.【分析】先根据中位线定理求出,再根据平面向量的加减运算法则求出即可求解.【解答】解:如图,连接BD,∵点M是边CD中点,点N是边BC的中点,∴MN是△BDC的中位线,∴MN∥BD,且MN=,∴,∵=,=,∴,∴,∴,故答案为:【点评】本题考查了平面向量的加减运算法则,熟练掌握平面向量的加减运算法则是解题的关键.24.(奉贤区)计算:2(﹣2)+3(+)=5﹣.【分析】根据平面向量的加法法则计算即可.【解答】解:2(﹣2)+3(+)=2﹣4+3+3=5﹣,故答案为5﹣.【点评】本题考查平面向量,平面向量的加法法则,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(金山区)计算:(﹣2)+2=+.【分析】根据平面向量的加法法则计算即可.【解答】解:(﹣2)+2=﹣+2=+.故答案为:+.【点评】本题考查平面向量的加法法则,解题的关键是掌握平面向量的加法法则,属于中考常考题型.26.(青浦区)计算:3﹣2(﹣2)=.【分析】根据平面向量的加法法则计算即可.【解答】解:3﹣2(﹣2)=3﹣2+4=+4,故答案为:+4.【点评】本题考查平面向量,解题的关键是掌握平面向量的加法法则,属于中考常考题型.三.解答题(共9小题)27.(浦东新区)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).【分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【解答】解:(1)如图,∵DE∥BC,且DE=BC,∴==.又AC=6,∴AE=4.(2)∵=,=,∴=﹣=﹣.又DE∥BC,DE=BC,∴==(﹣).【点评】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.28.(杨浦区)如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,试用、的线性组合表示向量.【分析】(1)根据相似三角形的性质得出等式求解即可;(2)根据平面向量的加减运算法则即可求解.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∵DE=,∴AE=4;(2)由(1)知,,∴DE=,∵,∴=.【点评】本题考查了平面向量,相似三角形的性质等知识,熟练掌握平面向量的加减运算法则是解题的关键.29.(宝山区)如图,已知在四边形ABCD中,F是边AD上一点,AF=2DF,BF交AC于点E,又=.(1)设=,=,用向量、表示向量=,=.(2)如果∠ABC=90°,AD=3,AB=4,求BE的长.【分析】(1)根据平面向量的加减运算法则即可求解;(2)先证明△ABF∽△BCA,得∠ABF=∠BCA,从而得出△ABF∽△ECB,再根据相似三角形对应边成比例得出比例式求解即可.【解答】解:(1)∵AF=2DF,∴AF=,∵,∴,∴=,∵=,∴,∴=,故答案为:,;(2)∵=,∴AF∥BC,AF=,∴∠BAF=∠ABC=90°,∠AFB=∠CBE,∵AD=3,AF=2DF,∴AF=2,∴BC=8,在Rt△ABF中,BF==2,又∵,∴△ABF∽△BCA,∴∠ABF=∠BCA,∴△ABF∽△ECB,∴,∴,∴BE=.【点评】本题考查了平面向量,相似三角形的判定与性质,证明△ABF∽△ECB是解第(2)问的关键.30.(虹口区)如图,在平行四边形ABCD中,延长BC到点E,使CE=BC,联结AE交DC于点F,设=,=.(1)用向量、表示;(2)求作:向量分别在、方向上的分向量.(不要求写作法,但要写明结论)【分析】(1)利用三角形法则解决问题即可;(2)利用平行四边形法则解决问题即可.【解答】解:(1)∵四边形ABCD时平行四边形,∴AD=BC,AB=CD,AD∥BC,AB∥CD,∴==,==,∵CE=BC,∴=,∴=+=+;(2)如图,过点F作FM∥AD交AB于点M,,即为向量分别在、方向上的分向量.【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质,平行四边形的性质,平面向量等知识,解题的关键是掌握三角形法则,平行四边形法则解决问题.31.(奉贤区)如图,在△ABC中,AC=5,cot A=2,cot B=3,D是AB边上的一点,∠BDC =45°.(1)求线段BD的长;(2)如果设=,=,那么=,=,=(含、的式子表示).【分析】(1)作CE⊥AB于E,设CE=x,AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解方程即可解决问题;(2)先求出AD的长,再求出AD与AB的数量关系,根据平面向量的加减运算法则即可求解.【解答】解:(1)作CE⊥AB于E,设CE=x,∵cot A=,∴AE=2x,在Rt△ACE中,由勾股定理得,x2+(2x)2=52,解得x=±,∵x>0,∴x=,∴CE=,∵∠CDE=45°,∴CE=DE=,∵cot B=3,∴BE=3CE=3,∴BD=BE+DE=3+=4;(2)∵DE=,AE=2,∴AD=,∵BD=4,∴,即AD=,∵=,=,∴=,∴,∴==,故答案为:;;.【点评】本题考查了平面向量,三角函数的定义勾股定理等知识,熟练掌握三角函数的定义,平面向量的加减运算法则是解题的关键.32.(长宁区)如图,在梯形ABCD中,AB∥CD,且AB:CD=3:2,点E是边CD的中点,联结BE交对角线AC于点F,若=,=.(1)用、表示、;(2)求作在、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【分析】(1)利用三角形法则,平行线分线段成比例定理求解即可.(2)利用平行四边形法则作出图形即可.【解答】解:(1)∵AB:CD=3:2,∴CD=AB,∴=,∴=+=+,∴DE=EC,CE∥AB,∴==,∴AF=AC,∴=(+)=+.(2)如图,在、方向上的分向量分别为,.【点评】本题考查平面向量,梯形的性质等知识,解题的关键是掌握三角形法则,平行四边形法则,属于中考常考题型.33.(金山区)如图,已知:四边形ABCD中,点M、N分别在边BC、CD上,==2,设=,=.求向量关于、的分解式.【分析】连接BD,先由得到MN∥BD、MN:BD=2:3,然后得到3=2,再结合平面向量的减法运算得到与和的关系,最后即可用含有和的式子表示.【解答】解:连接BD,∵,∴MN∥BD,,∴,∵,,∴,∴.【点评】本题考查了平行线的判定、平面向量的减法运算,熟练应用三角形法则是解题的关键.34.(普陀区)如图,已知AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,AB:CD=1:3.(1)求的值;(2)设=,=,那么=,=+(用向量,表示)【分析】(1)根据平行线的性质和相似三角形的判定证明△ABE∽△DCE和△BEF∽△BCD即可得出结论;(2)根据(1)中结论和平面向量的加、减运算即可得出结论.【解答】解:(1)∵AB∥CD,∴∠EAB=∠EDC,∠ABE=∠DCE,∴△ABE∽△DCE,∴==,∴CE=3BE,∵EF∥CD,∴∠BEF=∠BCD,∵∠B=∠B,∴△BEF∽△BCD,∴=,∵BC=BE+CE=BE+3BE=4BE,∴=;(2)由(1)知:EF=CD,∴==,∵+=,∴=﹣,∵=,∴,∵AB:CD=1:3,∴AB=CD,∴=,=+﹣=.故答案为:,.【点评】本题考查相似三角形的判定和性质以及平面向量,熟练掌握平行线的性质和平面向量的加、减运算是解题的关键.35.(青浦区)如图,在平行四边形ABCD中,点E在边AD上,CE、BD相交于点F,BF=3DF.(1)求AE:ED的值;(2)如果,,试用、表示向量.【分析】(1)由平行四边形的性质得AD∥BC,从而△BCF∽△DEF,利用相似三角形的性质得比例式,从而解得AE:ED的值;(2)先求出.再利用向量的加法可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BCF∽△DEF,∴,∵BF=3DF,∴.∴,∴.∴AE:ED=2;(2)∵AE:ED=2:1,∴.∵,∴,∵,∴,∵AD∥BC,∴,∵BF=3DF,∴.∴.∴,∴.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质,平面向量,解决本题的关键是理解平面向量.。
平面向量的线性运算(含答案)

平面向量的线性运算一、单选题(共10道,每道10分)1.设P是△ABC所在平面内的一点,,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义2.设D,E,F分别是△ABC的三边AB,BC,CA的中点,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义3.在△ABC中,,P是CR的中点,若,则m+n等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义4.如图,在△ABC中,,若,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义5.已知点P是△ABC内一点,且,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义6.设M是平行四边形ABCD的对角线的交点,O为任意一点(不与M重合),则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义7.若M是△ABC的重心,O为任意一点,,则n的值是( )A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义8.在△ABC中,,,点P在AM上且满足,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义9.设P是等边△ABC所在平面内的一点,满足,若AB=1,则的值是( )A.4B.3C.2D.1答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.如图,BC,DE是半径为1的圆O的两条直线,,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算。
高中 平面向量的线性运算及基本定理 练习 含答案

训练目标 (1)平面向量的概念;(2)平面向量的线性运算;(3)平面向量基本定理. 训练题型(1)平面向量的线性运算;(2)平面向量的坐标运算;(3)向量共线定理的应用. 解题策略(1)向量的加、减法运算要掌握两个法则:平行四边形法则和三角形法则,还要和式子:AB →+BC →=AC →,OM →-ON →=NM →联系起来;(2)平面几何问题若有明显的建系条件,要用坐标运算;(3)利用向量共线可以列方程(组)求点或向量坐标或求参数的值.1.下列各式计算正确的有________个. ①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b .2.(·贵州遵义一模)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.3.(·云南昆明质检)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m =________.4.若a 为任一非零向量,b 为模为1的向量,下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是________.5.(·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 6.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________________________________. 7.(·青海西宁质检)已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为________.8.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=xAM →,AC →=yAN →,则x +y =________.9.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 10.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________. 11.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2=________.12.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP →|=32|PB →|,则点P 坐标为________.13.已知a ,b 是两个不共线的向量,它们的起点相同,且a ,t b ,13(a +b ) (t ∈R )这三个向量的终点在一条直线上,则t 的值为________. 14.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.答案解析1.3 2.23 3.19 4.③ 5.(-7,-4) 6.07.P 是AC 边的一个三等分点 解析 ∵P A →+PB →+PC →=AB →, ∴P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →=2AP →,∴P 是AC 边的一个三等分点. 8.2解析 因为M 、O 、N 三点共线, 所以存在常数λ(λ≠0,且λ≠-1), 使得MO →=λON →,即AO →-AM →=λ(AN →-AO →), 所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →、AN →不共线,所以⎩⎨⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1, 即x +y =2.9.-74m +138n 10.611.12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=-16+23=12.12.(8,-15) 解析 设P (x ,y ), 因为|AP →|=32|PB →|,又P 在线段AB 的延长线上,故AP →=-32PB →=32BP →,所以(x -2,y -3)=32(x -4,y +3),即⎩⎨⎧x -2=32(x -4),y -3=32(y +3),所以⎩⎪⎨⎪⎧x =8,y =-15.故P (8,-15).13.12 解析如图所示,OA →=t b , OB →=13(a +b ),OC →=a .∴AC →=OC →-OA →=a -t b , BC →=OC →-OB →=23a -13b ,∵A 、B 、C 三点共线,a ,b 不共线, ∴AC →与BC →共线, ∴231=-13-t ,∴t =12. 14.2 解析以O 为坐标原点,OA 所在的直线为x 轴, OA →的方向为x 轴的正方向,建立平面直角坐标系, 则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则由OC →=xOA →+yOB →,得(cos α,sin α)=x (1,0)+y (-12,32),得x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值2.。
平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,a b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量. ②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型. (2)向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC 。
说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,(3)特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:(a +b ) +c =a + (b +c )知识点二:向量的减法(1)相反向量:与a 长度相同、方向相反的向量.记作 -a 。
向量的线性运算经典测试题附答案

向量的线性运算经典测试题附答案一、选择题1.在ABCD中,AC与BD相交于点O,AB a=,AD b=,那么OD等于()A.1122a b+B.1122a b--C.1122a b-D.1122a b-+【答案】D 【解析】【分析】由四边形ABCD是平行四边形,可得12OD BD=,,又由BD BA AD=+,即可求得OD的值.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD=12 BD,∴12OD BD=,∵BD BA AD a b=+=-+,∴12OD BD==111()222a b a b-+=-+故选:D.【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.2.如果向量a与单位向量e方向相反,且长度为12,那么向量a用单位向量e表示为()A.12a e=B.2a e=C.12a e=-D.2a e=-【答案】C 【解析】由向量a与单位向量e方向相反,且长度为12,根据向量的定义,即可求得答案.解:∵向量a 与单位向量e 方向相反,且长度为12, ∴12a e =-. 故选C .3.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D 【解析】 【分析】根据3,2a b ==,而且12,x x R ∈和a 的方向相反,可得两者的关系,即可求解. 【详解】 ∵3,2a b ==,而且12,x x R ∈和a 的方向相反 ∴32a b =-故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.4.已知a 、b 为非零向量,下列判断错误的是( )A .如果a =3b ,那么a ∥bB .||a =||b ,那么a =b 或a =-bC .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =2【答案】B【解析】【分析】根据平面向量的性质解答即可.【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意. D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意.故选:B .【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.5.若向量a 与b 均为单位向量,则下列结论中正确的是( ).A .a b =B .1a =C .1b =D .a b =【答案】D 【解析】【分析】由向量a 与b 均为单位向量,可得向量a 与b 的模相等,但方向不确定.【详解】解:∵向量a 与b 均为单位向量,∴向量a 与b 的模相等, ∴a b =.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.6.下列说法正确的是( ).A .一个向量与零相乘,乘积为零B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反【答案】D【解析】【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.7.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ).A .()12a b -B .()12b a -C .()12a b +D .()12a b -+ 【答案】C【解析】【分析】 根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b =∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==- ∴()()1122AM AC CM b b b a a -=+=+=+故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.8.给出下列3个命题,其中真命题的个数是( ).①单位向量都相等;②单位向量都平行;③平行的单位向量必相等.A .1个B .2个C .3个D .0个【答案】D【解析】【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可.【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误; ③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误. 故选D.【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.9.已知一点O到平行四边形ABCD的3个顶点A、B、C的向量分别为、、,则向量等于()A.++B.-+C.+-D.--【答案】B【解析】【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论.【详解】如图,,则-+故选B.【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.下列判断错误的是()A.0•=0aB.如果a+b=2c,a-b=3c,其中0c ,那么a∥bC.设e为单位向量,那么|e|=1D.如果|a|=2|b|,那么a=2b或a=-2b【答案】D【解析】【分析】根据平面向量的定义、向量的模以及平行向量的定义解答.【详解】A、0•=0a,故本选项不符合题意.B、由a+b=2c,a-b=3c得到:a=52c,b=﹣12c,故两向量方向相反,a∥b,故本选项不符合题意.C、e为单位向量,那么|e|=1,故本选项不符合题意.D 、由|a |=2|b |只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意.故选D .【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.11.如图,在ABC 中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .a b +B .2233a b +C .23a b -D .23a b + 【答案】D【解析】【分析】 根据2BD CD =,即可求出BD ,然后根据平面向量的三角形法则即可求出结论.【详解】解:∵2BD CD = ∴2233BD BC b == ∴23AD AB BD a b =+=+故选D .【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.下列有关向量的等式中,不一定成立的是( ) A .AB BA =- B .AB BA = C .AB BCAC D .AB BC AB BC +=+【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-,成立;B 选项,AB BA =,成立;C 选项,AB BC AC ,成立;D 选项,AB BC AB BC +=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.13.已知点C 在线段AB 上,3AC BC =,如果AC a =,那么BA 用a 表示正确的是( ) A .34a B .34a - C .43a D .43a - 【答案】D【解析】【分析】根据平面向量的线性运算法则,即可得到答案.【详解】∵点C 在线段AB 上,3AC BC =,AC a =,∴BA=43AC , ∵BA 与AC 方向相反,∴BA =43a -, 故选D.【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.14.已知5a b =,下列说法中,不正确的是( ) A .50a b -=B .a 与b 方向相同C .//a bD .||5||a b =【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.15.已知非零向量a 、b ,且有2a b =-,下列说法中,不正确的是( )A .||2||a b =;B .a ∥b ;C .a 与b 方向相反;D .20a b +=. 【答案】D【解析】【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,自然模也相等,∴||2||a b =,该选项不符合题意错误;B. ∵2a b =-,表明向量a 与2b -是同一方向上相同的向量,那么它们是相互平行的,虽然2b -与b 方向相反,但还是相互平行,∴a ∥b ,该选项不符合题意错误;C. ∵2a b =-,而2b -与b 方向相反,∴a 与b 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D【点睛】本题主要考查了平面向量的基本知识.16.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB = B .12CB AB = C .0AC BC += D .0AC CB +=【答案】B【解析】 根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答. 解:A 、12CA BA =,故本选项错误; B 、12CB AB =,故本选项正确;C 、0AC BC +=,故本选项错误;D 、AC CB AB +=,故本选项错误.故选B .17.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D【解析】【分析】利用平面向量的加法即可解答.【详解】 解:根据题意得=, + .故选D.【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.18.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP 可以用点P 的坐标表示为:(,)OP m n =.已知11(,OA x y =),22(,)OB x y =,如果12120x x y y +=,那么OA 与OB 互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-;(3,4)OD =-B .(2,3)OE =-; (3,2)OF =-C .(3,1)OG =;(3,1)OH =-D .(22,4)OM =;(22,2)ON =-【答案】D【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可.【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意;B. 121266102x x y y =--=-≠+,故不符合题意;C. 12123012x x y y =-+=-≠+,故不符合题意;D. 1212880x x y y =-+=+,故符合题意;故选D.【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.19.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a = B .e b b = C .1a e a = D .11a b a b= 【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.下列各式正确的是( ).A .()22a b c a b c ++=++B .()()330a b b a ++-=C .2AB BA AB +=D .3544a b a b a b ++-=- 【答案】D【解析】【分析】根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-,故B 选项错误;C 、0AB BA +=,故C 选项错误;D、3544++-=-,故D选项正确;a b a b a b故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.。
平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
向量的线性运算经典测试题含解析

向量的线性运算经典测试题含解析一、选择题1.给出下列3个命题,其中真命题的个数是().①单位向量都相等;②单位向量都平行;③平行的单位向量必相等.A.1个B.2个C.3个D.0个【答案】D【解析】【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可.【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误;③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误.故选D.【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.2.已知平行四边形ABCD,O为平面上任意一点.设=,=,=,=,则()A.+++=B.-+-=C.+--=D.--+=【答案】B【解析】【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D错误;;而;∴B正确.故选B.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.3.在四边形ABCD中,,,,其中与不共线,则四边形ABCD是( )A.平行四边形B.矩形C.梯形D.菱形【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.4.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( ) A .2 B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴u u u r u u u rQ u u u ru u u r u u u r u u u rQ u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -rr【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .6.下列判断正确的是( ) A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b r均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +r rB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r,∴11BD BC b 22==u u u r u u u r r.∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心, ∴23AO AD =, ∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.8.已知1,3a b ==r r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r . 【答案】D 【解析】 【分析】根据平面向量的性质即可解决问题.【详解】∵1,3a b ==v v ,而且b v 和a v 的方向相反 ∴3b a v v =-.故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C 【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C. 【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.11.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r,正确; ③若ma mb =rr(m 是实数)时,则有a b =rr,错误,当m=0时不成立; ④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n =,正确; 故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.13.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r r D .||2||a b =r r【答案】D【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r∥c b rr,∥c r,∴a b P u u r r,故本选项,不符合题意; B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.14.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r,∴AC u u u r =AB BC m n +=+u u u r u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r,∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.15.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确. 故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.16.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( )A .a r ∥b r ,并且a r 和b r 方向一致B .a r ∥b r ,并且a r 和b r 方向相反C .a r 和b r 方向互相垂直D .a r 和b r 之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r , ∴a r ∥b r ,a r 与b r的方向相反,故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.17.已知e r是单位向量,且2,4a e b e =-=vvv v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】【详解】解:∵e v 是单位向量,且2a e =-v v ,4b e =v v ,∴//a b v v ,2a =v ,4b =v , 12a b =-v v , 故C 选项错误, 故选C.18.已知5a b =r r,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.19.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论. 【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.20.已知a r 、b r为非零向量,下列判断错误的是( ) A .如果a r =3b r ,那么a r ∥b rB .||a r =||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意. B 、如果||a r=||b r,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2平面向量的线性运算
一、选择题
1.若C 是线段AB 的中点,则AC BC += ( )
A .A
B B .BA
C .0
D .以上均不正确
2.已知正方形ABCD 边长为1,=AB a ,=BC b ,=AC c ,则++a b c 的模等于
A .0
B .3
C .
D ( )
3.在四边形ABCD 中,AD AB AC +=,则四边形是 ( )
A .矩形
B .菱形
C .正方形
D .平行四边形
4.向量()()AB MB BO BC OM ++++化简后等于 ( )
A .BC
B .AB
C .AC
D .AM
5.a 、b 为非零向量,且+=+||||||a b a b ,则 ( )
A .a 与b 方向相同
B .a =b
C .a =-b
D .a 与b 方向相反
6.设+++=()()AB CD BC DA a ,而b 是一非零向量,则下列各结论:①//a b ;②+=a b a ;③+=a b b ;④+<+a b a b ,其中正确的是 ( )
A .①②
B .③④
C .②④
D .①③
7.在∆ABC 中,===||||||1AB BC CA ,则-||AB AC 的值为 ( )
A .0
B .1
C
D .2
8.3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .O B .MD 4 C .MF 4 D .ME 4
9.已知向量b a 与反向,下列等式中成立的是 ( )
A .||||||b a b a -=-
B .||||b a b a -=+
C .||||||b a b a -=+
D .||||||b a b a +=+
10.化简)]24()82(2
1
[31b a b a --+的结果是( )A .b a -2 B .a b -2 C .a b - D .b a - 11.已知R λ∈,则下列命题正确的是 ( )
A .a a λλ=
B .a a λλ=
C .a a λλ=
D .0a λ>
12.已知E 、F 分别为四边形ABCD 的边CD 、BC 边上的中点,设AD a =,BA b =,则EF =
A .
1()2a b + B .1()2a b -+ C .1()2a b -- D .1()2b a - ( )
13.若a b c =+化简3(2)2(3)2()a b b c a b +-+-+ ( )
A .a
B .b
C .c
D . 以上都不对
14.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括A 、C ),则AP = ( )
A.().(0,1)AB AD λλ+∈
B.().2
AB BC λλ+∈ C.().(0,1)AB AD λλ-∈
D.().AB BC λλ-∈ 二、填空题 15.在矩形ABCD 中,若=||3AB ,=||4BC ,则+=||AB AD _________。
16.已知==||||3OA a ,==||||3OB b ,∠AOB=60︒,则+=||a b __________。
17.如图,D 、E 、F 分别是∆ABC 边AB 、BC 、CA 上的中点,则下列等式中正确的是___________ ①+-=FD DA AF 0
②+-=FD DE EF 0 ③+-=DE DA BE 0 ④+-=AD BE AF 0
18.已知a 、b 是非零向量,指出下列等式成立的条件: ①a b a b +=+ 成立的条件是__________;②a b a b +=-成立的条件是__________; ③a b a b +=-成立的条件是 __________;④a b a b -=-成立的条件是___________。
19.4(35)2(368)-+---+a b c a b c =__________.
20.已知向量a ,b ,且3()2(2)4()++---+=0x a x a x a b ,则x =__________.
三、解答题
21.O 是平行四边形的对角线AC 与BD 的交点,若=AB a ,=BC b ,=OD c ,
证明:+-=OB c a b
22.已知长度相等的三个非零向量a 、b 、c 满足++=a b c 0,求每两个向量之间的夹角。
23.已知1e ,2e 是两个不共线的向量,122=-a e e ,12k =+b e e .若a 与b 是共线向量,求实数k 的值.
24.在∆ABC 中,G 是∆ABC 的重心,证明:()
=+13AG AB AC
参考答案:
2.2.1向量加法运算及其几何意义
1—6:CCDCADB 8—14:CCBCBDA
15、5 16、3
或 17、③④ 18、①同向 ②反向 ③垂直④a b →→
≥且同向
19、410c a →→+ 20、34a b →→-+
21、c a b OD AB BC OD DC BC →→→→→→→→→+-=+-=+-=OC BC OC CB OB →→→→→
-=+=
22、提示:三个向量所在线段构成等边三角形,两两向量所成角为120°
23、12122212a b k k λλλλλλ→→=∴-=+∴==-∴=-且e e e e
24、.证明:延长AG 交BC 于E ,则E 为BC 中点 ()()221()33AB AC AB BE AC CE AE
AG AE AB AC →→→→→→→→→→→+=+++=∴==+。