初中数学规律探究题
数学规律探究题

初中数学规律探究题一、规律探究的知识点及分类: (一)条件探索型1、(2007呼和浩特市)在四边形ABCD 中,顺次连接四边中点E F G H ,,,,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是 __ .2、(2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________.(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是____________________________.(图AB DEFGHC图4CADB 图3CADB 图2 D 1C 1B 1CADB图13、图4用于探究)3、(2006广东)如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA ,OA =7,AB =4,∠ COA =60°,点P 为x 轴上的—个动点,点P 不及点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标.(二)结论探索型4、(2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个及A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.5、(07山东滨州)如图1所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等腰三角形时动点E F ,的位置.若不能,请说明理由.(2)当45EOF =∠时,设BE x =,CF y =,求y 及x 之间的函数解析式,写出x 的取值范围.(3)在满足(2)中的条件时,若以O 为圆心的圆及AB 相切(如图2),试探究直线EF 及⊙O 的位置关系,并证明你的结论.6、(2006年绵阳市)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、D 作BE ⊥PA 、DF ⊥PA ,垂足分别为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系.若点P 在DC •的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P 在CD •的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.BOADEC图1O图27、(2005年泰州)图1是边长分别为4 3 和3的两个等边三角形纸片ABC 和C ′D ′E ′叠放在一起(C 及C ′重合).(1)操作:固定△ABC ,将△C ′D ′E ′绕点C 顺时针旋转30°得到△CDE ,连结AD 、BE ,CE 的延长线交AB 于F (图2);探究:在图2中,线段BE 及AD 之间有怎样的大小关系?试证明你的结论.(2)操作:将图2中的△CDE ,在线段CF 上沿着CF 方向以每秒1个单位的速度平移,平移后的△CDE 设为△PQR (图3);探究:设△PQR 移动的时间为x 秒,△PQR 及△ABC 重叠部分的面积为y ,求y 及x 之间的函数解析式,并写出函数自变量x 的取值范围.(3)操作:图1中△C ′D ′E ′固定,将△ABC 移动,使顶点C 落在C ′E ′的中点,边BC 交D ′E ′于点M ,边AC 交D ′C ′于点N ,设∠AC C ′=α(30°<α<90°=(图4);探究:在图4中,线段C ′N ·E ′M 的值是否随α的变化而变化?如果没有变化,请你求出C ′N ·E ′M 的值,如果有变化,请你说明理由.E ′图1C BAD ′图2FED CA图2 Q PRA CF 图3图3D ′E ′图4MNBAGC C /(C /)(C /QEDAP(三)存在探索型8、(2006武汉市)已知:二次函数y =x 2(m +1)x +m 的图象交x 轴于A (x 1,0)、B (x 2,0)两点,交y 轴正半轴于点C ,且x 12 +x 22 =10.⑴求此二次函数的解析式; ⑵是否存在过点D (0,25)的直线及抛物线交于点M 、N ,及x 轴交于点E ,使得点M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由.9、(2007乐山)如图(13),在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 及A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .我们知道,结论“Rt Rt AEP DPC △∽△”成立.(1)当30CPD =∠时,求AE 的长;(2)是否存在这样的点P ,使DPC △的周长等于AEP △周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.10、(2007呼和浩特市)如图,在矩形ABCD 中,22AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方PA E BCD向移动,直到使点Q 及点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP 的取值;若无,请说明理由.(四)规律探索型11、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后及原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图 1 图 2 图 3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.(五)销售中的盈亏问题探究1:销售中的盈亏.第2层 第1层 …… 第n 层某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要解决这类问题必须理解并熟记下列式子: (1)商品利润=商品售价-商品进价. (2)=商品利润率.(3)打x 折的售价=原售价×10x . 对探究1提出的问题,你先大体估算盈亏,再通过准确计算检验你的判断.分析:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少,•进价多少,若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为60×2=120(元),现在要求出这两件衣服的进价. 这里盈利25%=,亏损25%就是盈利-25%.本问题中,设盈利25%的那件衣服的进价是x 元,它的商品利润就是0.25x 元,根据进价+利润=售价,列方程得: x+0.25x=60 解得 x=48以下由学生自己填写.类似地,可以设另一件衣服的进价为y 元,它的利润是-0.25y 元;根据相等关系可列方程是y-0.25y=60解得y=80.两件衣服共进价128元,而两件衣服的售价和为120元,进价大于售价,•由此可知卖这两件衣服总的盈亏情况是亏损8元.解方程后得出的结论及你先前的估算一致吗?点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.例如盈利25%的一件进价为40元,那么这一件盈利40%×25%=10(•元)•,•亏损25%的一件进价为80元,那么这一件亏损了80×25%=20(元),总的还是亏损10元,这就是说,亏损25%的一件进价如果比盈利25%的一件进价高,那么总的是亏损,•反之才盈利.你知道这两件衣服哪一件进价高吗?一件是盈利25%后,才卖60元,那么这件衣服进价一定比60元低.另一件亏损25%后,还卖60元,说明这件衣服进价一定比60•元高,•由此可知亏损25%的这件进价高,所以卖这两件衣服总的还是亏损.(六)球赛积分问题例1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?例2、在一次数学竞赛中,共有60题选择题,答对一题得2分。
完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法初中数学规律探究题的解法指导在新课标中,要求用代数式表达数量关系及规律,培养学生的抽象思维能力。
规律探究常常要求通过归纳特例,猜想一般规律,并列出通用的代数式。
这种问题在中考或学业水平考试中频繁出现,考生往往感到困难。
然而,只要细心观察,大胆猜想,精心验证,就能解决这类问题。
一、数式规律探究数式规律探究通常给定一些数字、代数式、等式或不等式,要求猜想其中的规律。
这种问题考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比或纵比找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律n(n+1)/2、n(n+1)、1、4、9、16.n、1、3、6、10……2、1+3+5+…+(2n-1)=n²、1+2+3….+n=n(n+1)/2、2+4+6+…+2n=n(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×1=1-。
②2×2=2-。
③3×3=3-。
④4×4=4-……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:4545111-2222②2×=2-3333③3×=3-44①1×1④4×=4-n×n+1通过观察相应位置上变化的数字与序列号,易得到结果为:n²-n+1.规律,第①个正多边形需要用4个黑色棋子,第②个需要用8个黑色棋子,第③个需要用12个黑色棋子,依次类推,第n个需要用(4n)个黑色棋子。
)探索图形结构成元素的规律是数学中的一个重要主题。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。
这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。
初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。
一、数列规律问题:数列规律问题是最常见的一类规律探究问题。
通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。
解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。
1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。
2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。
2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。
3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。
1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。
二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。
解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。
菱形图形的内角和都是360度,可用来判断菱形的特征。
2. 观察图形之间的变形关系,如旋转、平移、翻转等。
向上平移一次得到下一个图形,可用来判断图形的规律。
3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。
图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。
解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。
一组数据之间的差值相等,可用来推测规律。
2. 观察数据之间的变化趋势,如递增、递减、周期性等。
一组数据呈现递增或递减的趋势,可用来推测规律。
3. 观察数据之间的比例关系,如比值、百分比、占比等。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题广泛存在于各种数学题型中,包括数列、几何、方程等多个方面。
解决这类问题需要灵活运用数学知识和思维方法,下面将就规律探究问题的类型及解题技巧进行分析。
(一)数列型规律探究问题1. 根据已知的数列前几项,找出数列的通项公式。
首先观察数列的前几项,如果发现相邻两项之间的差或比具有规律性,那么可以尝试构建通项公式。
对于等差数列,可以通过计算相邻两项的差值来确定数列的公差,从而得到通项公式。
同理,对于等比数列,可以通过计算相邻两项的比值来确定数列的公比,从而得到通项公式。
2. 根据数列的规律,推断数列中某一位置上的数值。
有时候,问题并没有直接给出数列的前几项,而是给出了数列的规律,并要求求解数列中某一位置上的数值。
这时候,可以根据已知的规律,通过迭代或递推的方式来推断数列中任意位置上的数值。
1. 根据已知的图形形状,找出图形的特点。
有时问题给出了一个图形,需要根据图形的特点找到规律。
这时可以通过观察图形的边数、角度等特征来确定规律。
正多边形的内部角度和是固定的,可以根据这个规律,计算某个正多边形的内部角度和。
2. 根据图形的特点,求解未知的参数。
有时问题给出了一个图形的部分信息,需要求解图形的某些未知参数。
问题给出了一个三角形的三个角度,需要求解这个三角形的形状。
根据三角形的内角和等于180°的性质,可以得到这个三角形的剩余角度,从而确定三角形的形状。
1. 根据已知的关系式,建立方程解决问题。
有时问题给出了一个数学关系,需要找到满足这个关系的解。
问题可能给出了两个数的和或差,需要求解这两个数。
可以通过设一元方程,利用方程的解来求解这个问题。
在解决规律探究问题时,可以运用以下一些技巧:1. 观察法:通过观察题目给出的信息或图形,找出规律,再推测未知的信息或图形。
2. 假设法:根据已知条件进行一些假设,然后进行推理、计算,最后验证假设的结果是否符合题目要求。
初中数学好题分享-数轴规律探究问题

初中数学好题分享-数轴规律探究问题
题目:数轴上A、B两点表示的数为a、b,数轴上A、B两点之间的距离为AB。
1.当点A、B在数轴上表示的数a、b满足条件|a+2|=0,|b-4|=0时,求点
A、B之间的距离AB。
2.当点A、B在数轴上表示的数a、b满足条件|a+2|=3,|b-4|=2时,求点
A、B之间的距离AB。
3.猜想:当点A、B在数轴上表示的数a、b满足条件|a+2|=m,|b-4|=n时
(其中m、n为正整数),求点A、B之间的距离AB。
答案:
1.由条件|a+2|=0,|b-4|=0可得,a=-2,b=4。
根据数轴上两点间的距离
公式AB=|a-b|,可得AB=|-2-4|=6。
2.由条件|a+2|=3,|b-4|=2可得,a=1或-5,b=2或6。
当a=1,b=2时,
AB=|1-2|=1;当a=-5,b=2时,AB=|-5-2|=7;当a=1,b=6时,AB=|1-
6|=5;当a=-5,b=6时,AB=|-5-6|=11。
3.由条件可得,点A、B在数轴上表示的数a、b满足条件|a+2|=m,则
a=±m-2;|b-4|=n,则b=±n+4。
所以,当a、b同号时,AB=m+n;当
a、b异号时,AB=m-n。
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。
这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。
一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。
这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。
解决这类问题的关键是观察敏锐和逻辑推理能力。
具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。
2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。
3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。
二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。
解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。
具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。
2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。
3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。
三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。
解决这类问题的关键是掌握等式变形的基本方法和技巧。
具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。
北师版初中七上数学微专题12 整式中的规律探究(一)——日历表中的规律

(3)在这个月的日历中,用(2)中的方法能否框出“总和为135”的9个数?若能,请求 出这9个日期中最小的日期是几号;若不能,请说明理由.
日
一
二
三
四
五
六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
解:不能.理由如下: 设中间的数为n. 由题意,得9n=135, 解得n=15. 因为15在第三行最后一列, 所以不能用(2)中的方法框出“总和为135”的9个数.
解:不能.理由如下: 由题意,得4x+14=102,解得x=22, 所以这四个数为 22,23,28,29, 但23位于第四行第1个,所以不能框出这样四个数.
4.如图是某年6月份的日历. (1)细心观察:小张一家外出旅游5天,这5天的日期之和是20,小张旅游的第一天是 2 号; (2)如果用一个长方形方框任意框出3×3个数,从左下角到右上角的“对角线”上 的3个数字的和是54,在这9个日期中,最小的日期是 10 号;
微专题12 整式中的规律探究(一) ——日历表中的规律
1.用一个长方形框在如图所示的日历中任意框出4个代表日期的数
列对4个数之间的关系表述不正确的是( C )
A.b=a+1
B.a+7=c
C.a-d=b-c D.a+d=b+c
,则下
2.小明同学用如图所示的形状图在某个月的日历中框出四个数字,若右上角的数字
为m,那么左下角的数字为( D )
初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是指通过分析数列、图形或公式等数学对象的特点,寻找其中隐藏的规律并加以运用来解决问题的一类问题。
这类问题需要学生具备分析能力、抽象能力、推理能力等多方面的综合能力。
初中数学规律探究问题的类型较为多样,常见的有以下几类:1. 数列问题:通过观察数列中的数字之间的规律,找出数列的通项公式或下一个数字,进而解决问题。
已知数列1、2、4、7、11、16的通项公式是多少?解题技巧:观察数列中相邻数字之间的差或比例是否存在固定规律,如果存在,可通过运算找出通项公式;如果不存在,则考虑是否可以构造新的数列来寻找规律。
2. 图形问题:通过观察图形中的形状、边长、角度等特点,找出图形的规律并解决问题。
已知一个正方形从第一阶到第四阶的边长依次为1、2、3、4,第十个阶的边长是多少?解题技巧:观察图形中相邻部分之间的关系,寻找存在的等差、等比、对称等规律;如果能够构造新的图形来辅助分析,更容易找出规律。
3. 公式问题:通过观察公式中的变量、系数等特点,推测出公式的规律并解决问题。
已知一个等差数列的公差是d,前n项的和为Sn,求第n项的值。
1. 观察法:通过观察数列、图形或公式等数学对象的特点,寻找其中存在的规律。
2. 归纳法:通过观察到的规律,总结规律的表达式或公式。
3. 推理法:通过观察到的规律,根据数学常识进行推理和证明。
4. 验证法:通过代入具体数值,验证所得的规律是否成立。
5. 构造法:通过构造新的数列、图形或公式等,辅助分析和解题。
除了以上解题技巧外,良好的数学基础知识和逻辑思维能力也是解决规律探究问题的重要因素。
平时要加强基础知识的学习,培养逻辑思维能力,多进行思维训练和思维导图的绘制,提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳猜想型问题考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
A . 637B .635C . 531D .739111121133114641⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab ba b a a b a b ab b +=++=+++=++++=++++根据前面各式的规律,则6()__________________________________.a b +=考点二:猜想图形规律根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。
其中,以图形为载体的数字规律最为常见。
猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。
1.(牡丹江)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共有小三角形的个数是 .2.(娄底)如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.3.(江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为____________(用含n 的代数式表示).4.(呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需____________根火柴.5.(遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为 .6.(深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有个正方形.7. 如图所示,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数为_______.8. 如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案3是由个组成的,依此,第n个图案是由个组成的.9.(2015·重庆(B),8,3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是()A.32 B.29 C.28 D.2610.(2015·重庆(A),8,3分)下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为()A.21 B.24 C.27 D.3011. 将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是.12. 如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n 个图案有 个三角形(用含n 的代数式表示)13.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由小菱形◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是____________个.14. 将一个面积为1的等边三角形挖去连结三边中点所组成的三角形(如图1)后,继续挖去连结剩余各个三角形三边中点所成的三角形(如图2、图3)…如此进行挖下去,第4个图中,剩余图形的面积为________,那么第n (n 为正整数)个图中,挖去的所有三角形的面积和为________(用含n 的代数式表示).考点三:几何图形计算变化规律随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。
比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。
这种规律可以作为猜想的一个参考依据。
2.(黑龙江)已知等边三角形ABC 的边长是2,以BC 边上的高AB 1为边作等边三角形,得到第一个等第1个第2个第3个第4个边三角形AB 1C 1,再以等边三角形AB 1C 1的B 1C 1边上的高AB 2为边作等边三角形,得到第二个等边三角形AB 2C 2,再以等边三角形AB 2C 2的边B 2C 2边上的高AB 3为边作等边三角形,得到第三个等边AB 3C 3;…,如此下去,这样得到的第n 个等边三角形AB n C n 的面积为 . 3.(牡丹江)如图,边长为1的菱形ABCD 中,∠DAB =60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠F AC =60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE =60°…按此规律所作的第n 个菱形的边长是 .4.(六盘水)把边长为1的正方形纸片OABC 放在直线m 上,OA 边在直线m 上,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时,点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处,又将正方形纸片AO 1C 1B 1绕B 1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O 经过的总路程为 ,经过61次旋转后,顶点O 经过的总路程为 .5. 如图,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )均在反比例函数1y x=(x >0)的图象上,若△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n 1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n 1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是____________,点P n 的坐标是___________.(用含n 的代数式表示)6. 二次函数223y x =的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3…=∠A n -1B n A n =60°,菱形A n -1B n A n C n 的周长为 .P3P 2P 1OxyA 3A 2A 11111111方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3,(如图所示),以此类推…,若A1C1=2,过点A,D2,D3,…D10都在同一直线上,则正方形A9C9C10D10的边长是________.8. 如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小正三角形,若mn=4725,则正△ABC的边长是________.9. 设△ABC的面积为1,如图1将边BC,AC分别2等分,BE1,AD1相交于点O,△AOB的面积记为S1;如图2将边BC,AC分别3等分,BE1,AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S n可表示为__________(用含n的代数式表示,其中n为正整数).考点四:坐标系和表格中的规律1.(聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为_____________(用n表示)。
y……D10C10A9C9D4C4A3C3D3D2C2A2A1C1BD1A图2图1D2D11D3图33D2D1CB2.(抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P 在y轴上,且坐标为(0,-2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2016的坐标是_____________。
.3.如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 016个点的坐标为____________.4.(湖州)将连续正整数按以下规律排列,则位于第7行第7列的数x是___________。
5.(恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是____________。
6. 如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n .将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M 2,M 3,…,M n 都在直线l :y =x 上;②抛物线依次经过点A 1,A 2,A 3,…,A n .则顶点M 2 016的坐标为(________,________).考点一:猜想数式规律 1.(2015·湖北黄冈中学自主招生)两列数如下: 7,10,13,16,19,22,25,28,31… 7,11,15,19,23,27,31,35,39… 第1个相同的数是7,第10个相同的数是 ( ) A .115 B .127 C .139 D .151 2.(2015·浙江宁波)一列数b 0,b 1,b 2,…,具有下面的规律,b 2n +1=b n ,b 2n +2=b n +b n +1,若b 0=1,则b 2 015的值是 ( ) A .1 B .6 C .9 D .19 3.(2015·山东德州)一组数1,1,2,x ,5,y ,…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为 ( ) A .8 B .9 C .13 D .15 4.(2013·山东日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是 ( )A .M =mnB .M =n (m +1)C .M =mn +1D .M =m (n +1)5.(2014·贵州毕节)观察下列一组数:14,39,516,725,936…,它们是按一定规律排列的,那么这一组数据的第n 个数是________.6. 人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级…逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21…这就是著名的斐波那契数列.那么小聪上这9级台阶共有________种不同方法. 7.(2014·江苏扬州,18,3分)设a 1,a 2,…,a 2 014是从1,0,-1这三个数中取值的一列数,若 a 1+a 2+…+a 2 014=69,(a 1+1)2+(a 2+1)2+…+(a 2 014+1)2=4 001,则a 1,a 2,…,a 2 014中为0的个数是________.8. 数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2; 12=5+7;6=3+3; 14=3+11=7+7; 8=3+5; 16=3+13=5+11; 10=3+7=5+5 18=5+13=7+11; …通过这组等式,你发现的规律是_______________________________________(请用文字语言表达). 9. 观察下列等式:第一个等式:1223111221222a ==-⨯⨯⨯⨯; 第二个等式:23234112322232a ==-⨯⨯⨯⨯; 第三个等式:34345113423242a ==-⨯⨯⨯⨯; 第四个等式:45456114524252a ==-⨯⨯⨯⨯. 按上述规律,回答以下问题: (1)用含n 的代数式表示第n 个等式:n a =_______________=_________________________;(2)式子12320a a a a ++++=…___________________. 10. 下面是一个按某种规律排列的数阵:1第1行2 第2行3第3行4第4行… … … …… … … … 根据数阵排列的规律,第n (n 是整数,且n >3)行从左向右数第n -2个数是______________. 考点二:猜想图形规律1.(2015·广东深圳,9,4分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有________个太阳.2. 观察下列图形规律:当n = 时,图形“●”的个数和“△”的个数相等.3. 希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数称为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1 024 C.1 225 D.1 3784. 如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n=()A.29 B.30 C.31 D.325. 图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,那么图(2)中的小正方形有___________块;按照这样的规律继续叠放下去,至第七个叠放的图形,此时第七个图形中小正方体木块总数应是___________块.6.(重庆)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为()A.51 B.70 C.76 D.817.(2012·浙江丽水,10,3分)小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数中既是三角形数又是正方形数的是()图1图2A.2 010 B.2 012 C.2 014 D.2 0168.(2014·重庆,10,4分)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()A.22 B.24 C.26 D.289. 观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()A.57个B.60个C.63个D.85个10. 观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是()A.38 B.46 C.61 D.6411. 如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.12. 观察下列图形的构成规律,依照此规律,第10个图形中共有个“•”.13. 如图是由火柴棒搭成的几何图案,则第n 个图案中有 根火柴棒.(用含n 的代数式表示)14.“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n 个图形中小梅花的个数是 .考点三:几何图形计算变化规律1. 如图,在△A 1B 1C 1中,已知A 1B 1=7,B 1C 1=4,A 1C 1=5,依次连接△A 1B 1C 1三边中点,得△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点得△A 3B 3C 3,…,则△A 5B 5C 5的周长为___________.2. 已知Rt △ABC 中,∠C =90°,BC =1,AC =4,如图所示把边长分别为x 1,x 2,x 3,…,x n 的n 个正方形依次放入△ABC 中,则第n 个正方形的边长x n =________(用含n 的式子表示,n ≥1).3. 如图,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2;…,以此类推,则S n =________________.(用含n 的式子表示)4. 如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是_____________。