Makefile文件编写
c语言makefile编写实例

c语言makefile编写实例Makefile是用来管理程序编译的工具,可以方便地管理程序的编译过程。
使用Makefile可以大大简化程序的编译过程,提高程序的可维护性。
Makefile的语法比较简单,主要由目标、依赖和命令三部分组成。
下面我们以一个简单的C程序为例,来介绍如何使用Makefile进行编译。
假设我们有一个名为hello.c的程序,代码如下:```c#include <stdio.h>int main(){printf("Hello, world!\n");return 0;}```我们需要使用gcc编译器将其编译成可执行文件。
下面是一个简单的Makefile:```makefilehello: hello.cgcc -o hello hello.c```这个Makefile很简单,它定义了一个名为hello的目标,该目标依赖于hello.c文件,并使用gcc命令将其编译成可执行文件。
如果我们在终端中输入make命令,Makefile会自动执行编译过程:```$ makegcc -o hello hello.c```Makefile还可以定义多个目标,每个目标可以有多个依赖和多个命令。
下面是一个稍微复杂一些的Makefile:```makefileCC=gccCFLAGS=-Wall -gall: hello goodbyehello: hello.o$(CC) $(CFLAGS) -o hello hello.ogoodbye: goodbye.o$(CC) $(CFLAGS) -o goodbye goodbye.ohello.o: hello.c$(CC) $(CFLAGS) -c hello.cgoodbye.o: goodbye.c$(CC) $(CFLAGS) -c goodbye.cclean:rm -f *.o hello goodbye```这个Makefile定义了两个目标:all和clean。
交叉编译makefile编写

交叉编译makefile编写交叉编译Makefile编写在软件开发中,我们通常会遇到需要在不同平台上编译程序的情况。
当我们需要在一台主机上编译运行另一种架构的程序时,就需要进行交叉编译。
而Makefile作为一种构建工具,可以帮助我们自动化编译过程,提高开发效率。
本文将介绍如何编写适用于交叉编译的Makefile,以实现在不同平台上的程序构建。
一、了解交叉编译概念交叉编译是指在一台主机上编译生成另一种架构的可执行文件。
通常情况下,我们在本机上编写并编译程序,然后在本机上运行。
但是,当我们需要在不同的平台上运行程序时,由于不同平台的指令集、库文件等差异,我们就需要使用交叉编译来生成适用于目标平台的可执行文件。
二、Makefile的基本结构Makefile是一种用于描述程序构建过程的文件,它包含了一系列规则(rules),每个规则由一个或多个目标(target)和依赖项(dependencies)组成。
当某个目标的依赖项发生变化时,Make工具会根据规则自动更新目标文件。
一个基本的Makefile结构如下所示:```target: dependenciescommand```其中,target表示目标文件,dependencies表示目标文件的依赖项,command表示生成目标文件的命令。
三、交叉编译的Makefile编写在编写交叉编译的Makefile之前,我们需要了解目标平台的相关信息,如架构、编译器、库文件等。
以ARM架构为例,我们可以使用arm-linux-gnueabi-gcc作为交叉编译器。
我们需要定义一些变量,用于指定交叉编译工具链和相关参数:```CC = arm-linux-gnueabi-gccCFLAGS = -Wall -O2```其中,CC表示编译器,CFLAGS表示编译参数。
接下来,我们可以定义目标文件和依赖项:```TARGET = myprogramSRCS = main.c foo.c bar.cOBJS = $(SRCS:.c=.o)```其中,TARGET表示目标文件,SRCS表示源文件列表,OBJS表示目标文件列表。
gcc makefile文件的编写

常用的vim命令 命令 常用的
光标命令:(可视模式下) 光标命令:(可视模式下) :(可视模式下 k、j、h、l—上下左右光标移动命令。 上下左右光标移动命令。 、 、 、 上下左右光标移动命令 nG—调转命令,n为行数,该命令使光标立即跳到指定的行数。 调转命令, 为行数 该命令使光标立即跳到指定的行数。 为行数, 调转命令 Ctrl+G—光标所在位置的行数和列数。 光标所在位置的行数和列数。 光标所在位置的行数和列数 编辑命令: 可视模式下) 编辑命令: (可视模式下) i—从可视命令模式进入文本编辑模式。 从可视命令模式进入文本编辑模式。 从可视命令模式进入文本编辑模式 esc键—放回到可视命令模式。 放回到可视命令模式。 键 放回到可视命令模式 查找命令: 可视模式下) 查找命令: (可视模式下) /string 、? 、?String—从光标所在的行向前向后查找相应的字符 从光标所在的行向前向后查找相应的字符 串。 拷贝复制命令: 可视模式下) 拷贝复制命令: (可视模式下) yy—拷贝一行到剪切板 拷贝一行到剪切板 p—粘贴剪切板的内容 粘贴剪切板的内容 在冒号命令方式下: ,表示从当前光标处开始复制n行内容到 在冒号命令方式下:yn,表示从当前光标处开始复制 行内容到 剪切板。将光标移到相应的位置, 即可粘贴剪切板的内容。 剪切板。将光标移到相应的位置,按p即可粘贴剪切板的(可视模式下) 编辑命令(可视模式下)
dd—删除整行命令 删除整行命令 u—恢复前一次的删除动作 恢复前一次的删除动作
冒号命令方式命令 :q—退出命令 退出命令 :w—存档 存档 :wq—存档退出 存档退出 放弃任何改动, :q!--放弃任何改动,强行退出 ! 放弃任何改动
GUNMakeFile、Makefile和makefile 、 和
makefile编写规则

makefile编写规则⼀、makefile 规则:⼀般开头都是 Tab ,不能空格, include 前⾯不能是 Tab; 1、如果没编译过,将所有的(.c)⽂件编译并且链接; 2、如果有其中的(.c)⽂件改变,编译并链接改变的⽂件; 3、如果(.h)⽂件被修改,编译引⽤相应的(.c)⽂件, 链接; 4、在随意修改时间的情况下,会导致编译过程中⽣成的(.o 中间⽂件)与可执⾏⽂件时间不⼀致,此时会编译相应的⽂件,并链接,最终编译成可执⾏⽂件;⼆、第⼀版 makefile: 例如有2个 .h ⽂件(utils.h, player.h, actor.h)和 3个 .c ⽂件( main.c, player.c, actor.c)需要编译链接:/*****main.c*********/#include "utils.h"#include "player.h"void main() {// do something}/*******player.c**********/#include "utils.h"#include "actor.h"bool create_player() {// do something}/****actor.c************/#include "utils.h"bool create_actor() {// do something}/********* makefile *****************/test : main.o actor.occ -o test main.o actor.omain.o : main.c utils.h player.h actor.hcc -c main.cpalyer.o: player.c player.h actor.h utils.hcc -c player.cactor.o: actor.h utils.hcc -c actor.cclean:rm test ain.o player.o actor.o 优点:可毒性很强,思路清晰明了; 缺点:⿇烦,重复的依赖过多,当需要编译⼤量⽂件时容易出错;第⼆版:利⽤ makefile 的变量;/********* makefile *****************/OBJ = main.o actor.o // 跟第⼀版⽐较,唯⼀的区别在这test : $(OBJ) // 这⼉cc -o test $(OBJ) // 这⼉main.o : main.c utils.h player.h actor.hcc -c main.cpalyer.o: player.c player.h actor.h utils.hcc -c player.cactor.o: actor.h utils.hcc -c actor.c .PHONY : clean // 伪⽬标,避免:如果当前⽬录下存在 clean rm 指令不执⾏clean:-rm test $(OBJ) // 前⾯的(-)表⽰,执⾏过程中不 care 出错;第三版:利⽤ GUN make 的⾃动推导规则 当 make 看到(.o )⽂件,他会⾃动把(.c)⽂件加上依赖关系,包括执⾏的语句(cc -c xx.c);/********* makefile *****************/OBJ = main.o actor.o // 跟第⼀版⽐较,唯⼀的区别在这test : $(OBJ) // 这⼉cc -o test $(OBJ) // 这⼉main.o : utils.h player.h actor.hpalyer.o: player.h actor.h utils.hactor.o: actor.h utils.h .PHONY : clean // 伪⽬标,避免:如果当前⽬录下存在 clean rm 指令不执⾏clean:-rm test $(OBJ)第四版:对第三版的整理(有⼀些重复的 .h) 公共的⼀起依赖,单独的单独依赖/********* makefile *****************/OBJ = main.o actor.o // 跟第⼀版⽐较,唯⼀的区别在这test : $(OBJ) // 这⼉cc -o test $(OBJ) // 这⼉$(OBJ) : utils.h actor.omain.o player.o .PHONY : clean // 伪⽬标,避免:如果当前⽬录下存在 clean rm 指令不执⾏clean:-rm test $(OBJ)优点:简洁缺点:不好理解以上的makefike⽂件的基本写法;或许你也发现了,如果有⼏百个源⽂件咋整呢,光是⽬录就要晕死,下⾯就是针对这种情况来说⼀下⼤型⼯程 makefile 的编写设计⼆、⼤型项⽬makefile编写: Makefile 同样也有像 c / c++ 类似的include功能; 例如我们有⼀堆 a.mk , b.mk以及 foo.make和⼀个变量 $(bar),其包含了 e.mk,f.mk, 那么 include foo.make *.mk $(bar) ------- 等价-------》 include foo.make a.mk b.mk e.mk f.mk。
sv中 makefile文件的写法

很高兴接到您的指示,让我来帮助您撰写关于sv中makefile文件的文章。
让我们来深入了解一下makefile文件的概念和作用。
1. 什么是makefile文件?在SV(SystemVerilog)编程中,makefile文件是用来组织和管理编译工程中的各个源文件和依赖关系的文件。
它定义了编译规则和指令,用于自动化编译和构建整个项目。
2. makefile文件的基本结构在编写makefile文件时,通常会包含以下基本元素:- 变量定义:定义编译器、编译选项、源文件列表等变量。
- 规则定义:定义编译规则,包括目标文件、依赖文件和编译指令。
- 依赖关系:明确指出各个源文件之间的依赖关系,以便make工具能够正确地进行编译。
3. sv中makefile文件的写法在SV项目中,编写makefile文件需要特别关注以下几点:- 定义变量:可以通过定义变量来指定编译器、编译选项、原文件列表等信息,使得makefile文件更加灵活和可维护。
- 设置规则:需要设置好编译规则,包括目标文件、依赖文件和编译指令。
这些规则应该准确反映出SV项目的结构和依赖关系。
- 定义依赖:在makefile文件中,需要清晰地定义各个源文件之间的依赖关系,以确保make工具能够正确地进行增量编译,提高编译效率。
4. 个人观点和理解在我看来,编写高质量的makefile文件对于SV项目的管理和维护至关重要。
一个良好的makefile文件可以提高项目的编译效率,简化编译过程,并且便于团队协作和代码管理。
在编写makefile文件时,应该注重规范和细节,以确保项目的可维护性和稳定性。
总结回顾通过编写这篇文章,我深入了解了sv中makefile文件的写法,并且通过我的个人观点和理解对这个主题进行了探讨。
在文章中多次提及了主题文字,并采用了从简到繁、由浅入深的方式来探讨主题,以便您能更深入地理解。
希望这篇文章能够对您有所帮助。
以上是我为您准备的关于sv中makefile文件的文章,希望能够满足您的要求。
python makefile编写规则

Python Makefile编写规则随着Python语言的流行和应用范围的不断扩大,开发人员在日常工作中经常会用到Makefile来管理代码的编译和部署过程。
Makefile 是一个用于组织代码编译和部署流程的工具,它可以帮助开发人员自动化代码构建的过程,提高工作效率。
在Python项目中,编写规范的Makefile可以帮助开发人员管理项目中繁杂的编译和部署过程,本文将介绍Python Makefile编写的规则和技巧。
一、Makefile简介Makefile是一个包含一系列规则的文件,用于指定代码的编译和部署过程。
它通常由一系列规则、依赖关系和命令组成,它告诉make命令如何编译和信息代码。
Makefile通常用于C/C++项目的编译,但在Python项目中同样有着广泛的应用。
二、Python Makefile编写规则1. 定义变量在编写Python Makefile时,首先需要定义一些变量,这些变量可以用于存储编译器、编译选项、源文件目录、目标文件目录等。
下面是一个简单的Python Makefile示例:```MakefileCC = pythonCFLAGS = -O2SRC_DIR = srcOBJ_DIR = obj```2. 定义规则在Makefile中,可以定义一系列规则来指定如何编译和信息代码。
在Python项目中,通常会定义编译规则、信息规则和清理规则。
下面是一个简单的Python Makefile示例:```Makefileall: $(OBJ_DIR)/m本人n.o$(CC) $(CFLAGS) $(OBJ_DIR)/m本人n.o -o app$(OBJ_DIR)/m本人n.o: $(SRC_DIR)/m本人n.py$(CC) $(CFLAGS) -c $(SRC_DIR)/m本人n.py -o $(OBJ_DIR)/m本人n.oclean:rm -f $(OBJ_DIR)/*.o app```在上面的示例中,定义了三个规则:all规则用于编译信息代码生成可执行文件,$(OBJ_DIR)/m本人n.o规则用于编译源文件生成目标文件,clean规则用于清理生成的目标文件和可执行文件。
C++Makefile文件编写

C++Makefile⽂件编写
对现有的⼀个C++动态库⽂件和调⽤程序,分别编写Makefile⽂件,从零开始,这⾥把⾃⼰弄明⽩的⼀些东西分享给⼤家。
1、必须明确Linux下,C++的编译器是g++,C语⾔的是gcc。
⽹上⼤多数⼜是以.c⽂件编写的makefile⽰例,所⽤的编译器是gcc,如果
C++写成了gcc,C语⾔中没有类,会显⽰class未知的定义错误。
2、当有⼀个或多个动态库时,应该为每个动态库都写⼀个Makefile⽂件,为调⽤动态库的程序写⼀个Makefile⽂件,⽽不是写在⼀起,这样才⽅便之后的修改维护。
3、Makefile的基本语句是确定的,当我们要使其易修改时,会预先定义⼀些变量,代表⽂件所在的路径,其实路径是可以组合的,我们要写的就是让编译器能找到需要的⽂件。
介绍我需要写makefile⽂件时的情况。
⼀个动态库⽂件,动态库⽂件中引⽤了外部的头⽂件。
Makefile⽂件执⾏编译的时候,先将.cpp⽂件转换成.o⽂件,在这个构成中依赖.cpp⽂件(源⽂件),以及.cpp中引⽤了的头⽂件。
⼀句句解释上⾯这个为动态库⽂件写的Makefile⽂件:
1' CC指定编译器是g++,代表C++编译器,后⾯出现的CC都表⽰g++;
2' INCLUDE指定头⽂件路径,⼀般的,程序⾃⼰写的头⽂件⽤相对路径,如果不是把动态库⽂件的头⽂件复制到⾃⼰写的⼯程⽂件中的话,就⽤绝对路径指向动态库⽂件的头⽂件;有多个头⽂件路径需要添加时,在路径前添加-I,不要有空格;
3' DLL_OBJ代表要⽣成的动态库⽂件
4' 5' 设定⽬录。
makefile编译流程

makefile编译流程Makefile是一种用于自动化编译的工具,它可以根据源代码文件的依赖关系自动编译出目标文件。
Makefile的编写需要遵循一定的规则和语法,下面将介绍Makefile的编译流程。
1. 编写Makefile文件Makefile文件是一个文本文件,其中包含了编译的规则和依赖关系。
在编写Makefile文件时,需要遵循一定的语法规则,如使用TAB键缩进、使用变量和函数等。
2. 执行make命令在Makefile文件所在的目录下执行make命令,make会自动读取Makefile文件,并根据其中的规则和依赖关系进行编译。
如果Makefile文件中没有指定目标,则默认编译第一个目标。
3. 分析依赖关系在执行make命令时,make会先分析Makefile文件中的依赖关系,确定哪些文件需要重新编译。
如果某个源文件被修改了,那么与之相关的目标文件也需要重新编译。
4. 编译源文件在确定需要重新编译的文件后,make会依次编译每个源文件,生成对应的目标文件。
编译过程中,make会根据Makefile文件中的规则和命令进行编译。
5. 链接目标文件在所有的源文件都编译完成后,make会将所有的目标文件链接起来,生成最终的可执行文件。
链接过程中,make会根据Makefile文件中的规则和命令进行链接。
6. 完成编译当所有的源文件都编译完成并链接成功后,make会输出编译成功的信息,并生成最终的可执行文件。
如果编译过程中出现错误,make会输出错误信息并停止编译。
总之,Makefile编译流程是一个自动化的过程,它可以大大提高编译的效率和准确性。
在编写Makefile文件时,需要注意语法规则和依赖关系,以确保编译过程的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
make工具
• make是一个重要的软件维护程序,可以根据程序 文件的修改情况自动重新编译链接目标代码,以 保证目标代码总是由它的最新文件组成 • make根据Makefile文件所描述的规则和文件最后修 改的时间来重新编译链接目标代码 • make的命令格式:
– make [-f makefile] [ option ] ... target ...
greeting.c
• 4、执行make • 5、执行./greeting
实验步骤(2)
• 1、在testmakefile下创建目录test2, • 2、在test2目录下创建三个文件greet.c, func1.c func2.c ,
• 3、编写Makefile文件 • 4、执行make • 5、执行./greet
变量
• 变量是在makefile中定义的名字,用来代替一个文本字符串, 该文本字符串称为该变量的值 • 变量的定义
– 变量名 = 值
• 递归调用扩展型变量 • eg:foo = $(bar) bar=os
– 变量名:= 值
• 简单扩展型变量 • eg:bar:=os foo = $(bar)
• 引用变量时需在前面加上$
make的一些常用命令选项
• -p 表示打印出Makefile中所有宏定义和描述内部规 则的相关行 • -i 忽略执行中所遇到的所有错误 • -k 在错误发生后尽可能的继续执行 • -d 打印调试信息 • -s 执行而不显示执行状况 • -n 打印出要执行的命令,但是并不执行这些命令, 可以用来检查Makefile的正确性
隐含规则
• make内部自定义的一些规则。当一个target没有显 式的定义生成规则,make寻找一条隐含规则生成 该target 例: • foo : foo.o bar.o
cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)
一般来说foo.o是由foo.c等源文件生成,如果foo.o没 有定义生成规则,则make可能编译foo.c生成foo.o
实验步骤(3)
• 1、在testmakefile下执行cp –rf test2 test3 • 2、进入test3目录,保留后缀为c的源文件, 其他删除 • 3、建立makefile文件,内容见下页 • 4、执行make • 5、执行./greet
makefile
四、实验思考
• 1、怎样自己来写简单的makefile文件? • 2、怎样组织多个源文件的工程,进行编译? • 3、写makefile文件有哪些要注意的?
Make的工作步骤
• • • • • • • 读入所有的Makefile 读入被include的其它Makefile 初始化文件中的变量 推导隐含规则,并分析所有规则 为所有的目标文件创建依赖关系链 根据依赖关系,决定哪些目标要重新生成 执行生成命令。
三、实验步骤(1)
• 1、在/embedded目录下创建目录,目录名: testmakefile, • 2、在testmakefile下创建目录test1 • 3、在test1下建文件greeting.c,程序见下页 • 4、编写Makefile文件,如下
变量
• 变量是在makefile中定义的名字,用来代替一个文本字符串, 该文本字符串称为该变量的值 • 变量的定义
– 变量名 = 值
• 递归调用扩展型变量 • eg:foo = $(bar) bar=os 缺点: 1.不能在变量后追加内容。如在: CFLAGS = $(CFLAGS) -O 在变量 扩展过程中可能导致无穷循环 2.在定义中引用任何函数时,变 量一旦展开函数就会立即执行
– 变量名:= 值
• 简单扩展型变量 • eg:bar:=os foo = $(bar)
• 引用变量时需在前面加上$
GNU make的主要预定义变量
• $*:去除目标文件扩展名的文件名。比如foo.o为目 标文件,则$*为foo • $+:所有的依赖文件,可能包含重复的文件 • $<:第一个依赖文件的名字 • $?:修改日期比目标文件的创建日期要晚的依赖文 件 • $@:目标文件的完整名称 • $^:所有的依赖文件,不包含重复的文件 • $%:如果目标文件是归档文件,则其表示归档文件 的成员名
显式规则
• 由Makefile的书写者明显指出,要生成的文 件,文件的依赖文件,执行的命令
– target ... : prerequisites ... command ... – target:要生成的目标文件 – prerequisites:target所依赖的文件 – command:make所要执行的命令(任意的shell 命令)嵌入式系统Makefi Nhomakorabeae文件编写
一、实验目的
• 1、读懂makefile文件,能根据makefile文件 理清程序结构 • 2、能编写简单makefile
二、实验原理
• 1、makefile • 2、make工具
Makefile
• Makefile主要包含了五部分:
– – – – – 显式规则 隐含规则 变量 文件指示 注释
GNU make的主要预定义变量(续)
• • • • • • • • • • • • AR:归档维护程序的名称,默认值为ar ARFLAGS:归档维护程序的选项 AS:汇编程序的名称,默认值为as ASFLAGS:汇编程序的选项 CC:C编译器的名称,默认值为cc CFLAGS:C编译器的选项 CPP:C预编译器的名称,默认值为$(CC)-E CPPFLAGS:C预编译器的选项 CXX:C++编译器的名称,默认值为g++ CXXFLAGS:C++编译器的选项 FC:FORTRAN编译器的名称,默认值为f77 FFLAGS:FORTRAN编译器的选项
文件指示 与 注释
• 文件指示
– 引用其他的Makefile:include <filename> – 根据某些情况指定Makefile中的有效部分:ifeq 、 ifneq,ifdef、ifndef – 定义一个多行的命令 :define
• 注释:Makefile中只有行注释,其注释使用 “#”字符