18.1.1平行四边形的性质1(导学案)

合集下载

平行四边形的性质1

平行四边形的性质1

是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一18.1.1平行四边形的性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(8分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB 与BC 叫_ __边, AB 与CD 叫__ _边;∠A 与∠B 叫_ __角,∠D 与∠B 叫_ __角;3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD 中对角线有__ _条,它们是___ ___自学课本P41~P43,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。

2.如图□ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

的边、角各有什么关系吗?并证明你的结论。

结论:二、合作探究1、证明上面的结论。

已知:如图ABCD ,求证:AB =CD ,CB =AD ,∠B =∠D ,∠BAD =∠BCD .分析:作ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)写出证明过程:2、例习题分析:讲解例1(教材P42例1)知识点识记:平行线间的距离定义:两条平行线中,一条直线上任意一点到另外一条直线的距离。

8平行四边形性质导学案

8平行四边形性质导学案

八年级(下)数学导学案 18.1.1 平行四边形的性质(1)导学目标:知识与技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些 知识解决问题的能力。

过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。

情感态度与价值观:学生亲自经历探索平行四边形有关概念和性质的过程,体会 解决问题策略的多样性.导学重点:理解并掌握平行四边形的概念及其性质.导学难点:运用平移、旋转的图形变换思想探究平行四边形的性质. 导学过程:一、创设情境,引入新知探究活动(一)探索平行四边形的定义平行四边形是我们常见的图形,小区的伸缩门,庭院的竹篱笆,载重汽车的防护栏等都是平行四边形的形象。

1、定义:有两组对边__________________的四边形叫平形四边形,请你用几何语言 给平行四边形下个定义: ∵ ∥ , ∥ ∴四边形ABCD 是平行四边形2、表示:平行四边形用符号“______”表示,右上图的平行四边形记作_____注意:表示平行四边形时,一般按一定的方向依次写出各顶点字母3、对角线的定义:平行四边形 两个顶点连成的 ,叫做它的对角线。

4、如图ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是____________,对角线有____条,它们是___________二、自主学习,探究新知。

探究活动(二)探索平行四边形的性质 1、拼一拼:由两个全等三角形一边重合拼成的四边形 ABCD 平行四边形吗?请说明理由。

2、量一量:用直尺、量角器测量如图 ABCD 的边、角。

AB= ____;DC=____;AD=____ ;BC= ____∠A= ____;∠C=____; ∠B=____;∠D=____3、猜一猜:仔细分析上面的测量结果,你能发现平行四边形的对边与对角有什么数量关系? 猜想: 4、证一证:我们需推理证明猜想的正确性,你能完成证明吗?已知:如图,求证: AB=CD,AD=BC, ∠A=∠C, ∠B=∠D证明:归纳:平行四边形的性质1:平行四边形 。

18.1.1平行四边形的性质平行四边形的边、角特征(教案)

18.1.1平行四边形的性质平行四边形的边、角特征(教案)
五、教学反思
在今天的教学中,我发现学生们对平行四边形的性质表现出很大的兴趣。通过引入日常生活中的实例,他们能够更直观地理解平行四边形的概念。在理论讲授环节,我注意到有些学生对对角线互相平分的性质理解起来有些困难,这需要我在今后的教学中更加注意方法的多样性和逐步引导。
课堂上,我尝试用不同的案例和图示来解释平行四边形的性质,这样做的效果还不错,学生们能够跟上课程的节奏。在实践活动和小组讨论中,我发现学生们积极参与,乐于分享自己的想法,这有助于他们更好地消化和吸收知识。但同时,我也观察到有些学生在讨论中较为沉默,我需要找到方法鼓励他们更积极地参与到课堂互动中来。
18.1.1平行四边形的性质平行四边形的边、角特征(教案)
一、教学内容
本节课选自人教版八年级数学下册第十八章“平行四边形”,具体内容为18.1.1平行四边形的性质——平行四边形的边、角特征。教学内容主要包括以下几点:
1.理解平行四边形的定义,掌握其基本性质。
2.掌握平行四边形的对边相等、对角相等、对角线互相平分的性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两对对边平行的四边形。它在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个实际图形,展示平行四边形在实际中的应用,以及如何利用其性质解决相关问题。
4.培养学生的数学抽象和数学运算能力,使学生能够从具体实例中抽象出平行四边形的性质,并在解决问题时进行准确运算。
三、教学难点与重点
1.教学重点
-理解并掌握平行四边形的定义及其性质,特别是对边相等、对角相等、对角线互相平分的特性。
-学会运用平行四边形的性质解决具体问题,如计算未知长度或角度等。

18.1.1 平行四边形的性质教学设计

18.1.1 平行四边形的性质教学设计

平行四边形的性质(第1课时)教学设计一、教学内容和内容解析(一)教学内容本节课是人教版八年级数学下册第十八章平行四边形第一节第一课时的内容,主要研究平行四边形的概念,平行四边形边、角的性质及平行线间的距离.(二)教学内容解析1.教材的地位与作用平行四边形是最基本的几何图形之一,也是生活中最常见的四边形,它不仅具有丰富的几何性质,而且它在生产生活中有着十分广泛的应用.本节课是在学生学习了平行线的性质与判定、全等三角形性质与判定等几何知识,掌握了一些探索和证明图形几何性质的方法的基础上,利用已有的几何知识和方法进一步研究平行四边形,探索并证明平行四边形的性质. 既是对已有知识的巩固,也是后续学习平行四边形的判定方法、特殊平行四边形的基础,还为我们证明两直线平行、线段相等、角相等提供了新的方法,对几何知识的学习起到了承上启下的重要作用.平行四边形的定义采用“属加种差”的方式,揭示了平行四边形与四边形的隶属关系.因此,本节作为本章的起始课,除了显性知识外,还引领着本章知识以及研究几何图形的方法指导.探究本节课的过程中蕴含着丰富的数学思想,通过回顾三角形的学习过程,体现了类比学习的思想;通过运用辅助线把四边形问题转化为三角形问题,把对平行四边形的研究化归为对两个全等三角形的研究,体现了转化和化归的数学思想方法,教学中引导学生把未知化归为已知,运用已有知识解决问题,进一步提高学生分析问题、解决问题的能力.2.教材的加工与重组教材中平行四边形的性质这一内容安排了两课时,第一课时研究平行四边形的概念、平行四边形边、角的性质及平行线间的距离;第二课时研究平行四边形对角线的性质,并应用性质解决简单问题.本节课设计的是第一课时的内容.基于以上分析,本节课的重点是:探索发现平行四边形的性质并推理证明.二、教学目标和目标解析(一)教学目标1.理解平行四边形的概念.2.通过观察、类比发现平行四边形的有关性质,提出猜想,发展合情推理能力.3.通过对平行四边形性质的证明,发展演绎推理能力.4.能运用平行四边形的性质解决一些简单的问题.(二)教学目标解析《义务教育数学课程标准(2022版)》中明确指出:“‘图形与几何’的课程内容,以发展学生的空间观念、几何直观、推理能力为核心展开.”依据《课程标准》,结合授课班级学生的年龄特征和认知规律确定了本节课的教学目标.目标1的具体要求是:理解平行四边形与一般四边形的区别和联系,能应用概念进行简单推理.目标2的具体要求是:能从边、角等不同角度猜想平行四边形的性质,并能通过实验操作验证关于平行四边形的性质的猜想.目标3的具体要求是:能合理运用辅助线利用平行四边形的定义、平行线的性质以及全等三角形等知识推理证明边、角的性质,体会化归的数学思想.目标4的具体要求是:能利用平行四边形对边平行且相等、对角相等等性质进行简单的计算或证明.三、学生学情分析(一)学情分析从知识储备来说,小学阶段,学生已经认识了平行四边形,会判断一个图形是否是平行四边形,对平行四边形对边平行这一性质有所了解;在七年级下学期学习了平行线的性质和判定,八年级上学期学习了全等三角形的相关知识,能够利用平行线证明角相等或者互补,利用全等三角形证明线段相等、角相等.从学习能力来看,通过小学和七、八年级的学习,学生已经初步具有观察,实验操作等动手体验经验,也具有一定的大胆尝试,归纳猜想的能力,初步掌握了一些探索和证明几何图形性质的方法.综合两方面来看,学生已基本具备发现问题和用已有知识解决新问题的能力,为本节学习奠定了基础.(二)可能存在的问题分析平行四边形性质的推理证明主要是把四边形问题转化为三角形问题,通过辅助线把平行四边形问题化归为三角形全等的问题是学生学习的难点,需要通过问题串引导学生突破这一难点.基于以上分析,确定本节课难点是:平行四边形性质的推理证明.四、教学策略分析(一)教学策略1.突出重点通过生活实例引入课题,通过观察、动手操作感知平行四边形对边相等,对角相等的性质,落实直观想象的数学核心素养.通过演绎推理证明平行四边形边、角性质,落实逻辑推理的数学核心素养.让学生充分经历“观察、猜想、验证、证明”的过程,探究并证明平行四边形的性质,让学生在经历发现问题—分析问题—解决问题的基本活动体验中体会“用合情推理猜想、用演绎推理证明”这一几何研究的基本思考方式,突出教学重点.2.突破难点在探究平行四边形性质的过程中,通过问题设计,引导学生用已有知识解决新问题.让学生动手用全等三角形拼平行四边形,观察发现辅助线作法,把平行四边形问题转化为学生熟悉的三角形问题,完成平行四边形性质的证明,从而突破教学难点.(二)教学方法与学法指导教法:演示法,启发法,探究法.学法:实验操作法,探究法.(三)教学用具教具:教材(学案)、多媒体课件、希沃白板.学具:两个不同颜色的全等三角形,平行四边形.五、教学过程设计(一)创设情境,引入新知问题1:观看重庆的宣传片,欣赏图片,你能从中抽象出哪些平面图形?师生活动:学生积极发言,教师PPT演示学生从图片中抽象出几何图形活动过程.引导学生回忆三角形的研究过程,类比得到几何图形的一般研究思路.设计意图:通过观察图片,让学生感受生活中蕴含丰富的几何图形,类比三角形的研究思路,总结几何图形的一般研究思路,让学生明确本节课的研究思路和方向,为后续研究其它几何图形埋下伏笔,也为这节课的研究奠定基础.(二)知识回顾,得到定义问题2:小学学过平行四边形吗?什么样的四边形叫平行四边形?如何表示?师生活动:引导学生回顾平行四边形的定义,引导学生把小学学过的文字定义转换成几何符号语言,抽象形成平行四边形的概念,教师引导学生类比三角形的表示表示平行四边形.定义:两组对边分别平行的四边形叫做平行四边形.如图,∵AD∥BC,AB∥DC∴四边形ABCD是平行四边形∵四边形ABCD是平行四边形∴AD∥BC,AB∥DC.平行四边形ABCD,可记作:ABCD.读作:平行四边形ABCD.设计意图:回顾小学知识,复习得出平行四边形的定义,加强新旧知识间的联系,从小学所学的知识自然过渡到初中阶段,体现了知识间的联系.在回顾、感知、抽象的基础上自然得出平行四边形的定义,定义的数学符号表示及语言间的转化强化了初中几何学习的符号意识及图形抽象过程.类比三角形学习平行四边形,为后续进一步类比全等三角形为研究平行四边形作铺垫,体现类比的数学思想方法.问题3:画图操作,应用定义.利用手中学具根据平行四边形的定义在学案上画一个平行四边形.(学具:直尺和三角板)进一步深化对定义的内涵的理解.师生活动:师生共同画图,参照视频画一个平行四边形.(三)实践活动,探究性质问题4:通过画图我们已经明确了平行四边形的定义和基本要素,那么平行四边形除了两组对边平行外,它的边、角还有什么关系?下面我们一起来对平行四边形的性质进行深入的研究.师生活动:合作探究1.观察你手中的平行四边形,猜想它的边、角的性质;2.将猜想写在材料单上;3.借助手中学具,验证你的猜想(学具:直尺、量角器、圆规、平行四边形纸板两张,全等的三角形纸板两张).学生首先通过独立思考,再小组交流,教师引导学生大胆猜想,情况预设:猜想1:平行四边形的对边相等.猜想2:平行四边形的对角相等.学生以主人的姿态参与合作探究中,教师以合作者的身份深入到各小组中,了解学生的探究过程,倾听学生的想法,并适当予以指导与评价,把学生的猜想写在黑板上.师生活动:不同小组的学生针对发现的边、角的猜想展开汇报,预设方法:度量、叠合、(旋转)等方法,直观感知平行四边形的边、角的特征,培养学生的空间观念和几何直观,培养学生形成探究图形性质的基本策略,渗透动手实践、合情推理,在探究活动中的重要地位.问题5:刚才同学们用了度量法,叠合法验证了我们手中的平行四边形的边角的猜想,那么对于任意的平行四边形这些猜想还成立吗?教师肯定学生的探究方法,几何画板演示度量过程.设计意图:引导学生通过观察--实验得出猜想,教师几何画板展示回避了测量的误差问题,但不能代表所有情况,类比三角形性质的探究过程,明确猜想只是个命题,只有通过证明才能上升为性质定理,使证明成为观察--实验--探究得出结论的自然延续,把合情推理和演绎推理有机结合起来,让学生体会“用合情推理分析结论,用演绎推理证明结论”这一几何研究的基本思考模式.体现几何学习的逻辑性,突出数学是一门严谨的科学.问题6:如何证明你的猜想?师生活动:引导学生结合图形写出已知,求证,将文字命题转化为几何符号语言.学生独立证明猜想,展示证明思路:方法一:连接AC,证明△ABC ≌△CDA;方法二:连接BD,证明△ABD ≌△CDB,可能会有同学直接证明对角相等,学生大胆阐述自己的想法,教师肯定学生的想法,展台展示学生证明过程,引导学生证明后总结出两条性质定理,并将其转化为几何符号语言并板书.平行四边形性质1:平行四边形的对边相等.如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).平行四边形性质2:平行四边形的对角相等.如图,∵四边形ABCD是平行四边形,∴∠A= ∠C, ∠B= ∠D(平行四边形的对角相等).设计意图:证明过程放手让学生尝试,体现学生的主体地位,教学中充分肯定学生将平行四边形转化为三角形研究的转化思想,让学生明白探究的过程就是把未知转化为已知,运用已有知识解决问题,体会转化和化归是数学学习中常用的方法,从而提高学生分析问题了、解决问题的能力.通过证明,把命题上升为性质定理,再次强调文字语言,图形语言和符号语言的相互转化.整个探究过程让学生参与观察--猜想--证明--形成定理的全过程,体会定理的研究思路和方法,为后续探究学习做准备.(四)应用性质,解决问题1.牛刀小试.如图,在ABCD中,(1)若∠B=40°,则∠A=________,∠C=________,∠D=________.(2)若AB=3,BC=5,则它的周长=________.(3)若∠A+ ∠C= 200°,则∠A=________,∠B=________.师生活动:学生学案上完成后上讲台讲解,教师倾听并肯定学生的想法,适时鼓励.设计意图:根据课本习题改编,从边、角两个方面直接利用平行四边形的性质计算,是对性质简单应用的考查,及时反馈学生对性质的理解情况.例1 如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别是点E、点F.求证:AE=CF.追问:DE=BF吗?师生活动:引导学生回顾证明线段和角相等的方法,在寻找证明全等的条件的过程中发现平行四边形的性质可以提供,学生说证明过程,教师板书.引导学生一题多解,多角度考虑本题.设计意图:例题突出应用性质进行简单证明,如何应用符号语言进行推理证明是解决问题的关键,对学生逻辑推理能力提出了要求,例题解答过程让学生体会平行四边形的边、角性质也可以作为证明三角形全等的条件,我们又多了一个证明线段相等和角相等的工具,突出学习的意义.学生分析,教师板书,规范书写过程,突出教师的示范作用.问题7:例1中的直线AB和直线CD有什么位置关系?追问:图中,怎么表示点D到直线AB的距离?师生活动:教师不断追问,通过复习点到直线的距离,适时介绍两条平行线间距离的概念.设计意图:在例题的基础上通过延长一组对边,引导学生自然得出两平行线间距离的概念,通过前面的学习进一步得出平行线间距离相等的结论.是对例题价值的进一步挖掘.问题8:剪两张对边平行的的纸条,随意交叉叠放在一起,重合的部分构成了一个四边形.转动其中一张纸条,线段AD 和BC 的长度有什么关系?为什么?师生活动:引导学生用平行四边形的定义和性质解决问题,问题解决过程中引导学生把实际问题转化为数学问题,从而得到解答,学生踊跃发言,表达自己的想法.设计意图:对平行四边形性质应用的考察,让学生经历把实际问题抽象成数学问题,用所学知识进行解答的过程,获得成功体验,体会数学与实际生活息息相关,激发学生的学习兴趣,让学生爱学数学,会学数学,会用数学知识解决实际生活中的问题.(六)归纳总结,反思提升你学到了哪些知识?积累了哪些方法经验?设计意图:让学生对自己所学知识和学习体验进行小结,回顾学习过程和所得,及时总结方法,构建本节课知识框架.(七)作业巩固如图,ΔABC 是等腰三角形,P 是底边BC 上的一个动点,且PE ∥AB , PF ∥AC.求证:PE+PF=ABA F P CB E。

《18.1平面四边行的性质(1)》导学案(定稿)

《18.1平面四边行的性质(1)》导学案(定稿)

§18.1《平行四边形的性质(第1课时)》导学案学校 班级 姓名 座号一、学习目标理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质; 运用平行四边形的性质进行有关的计算与证明、进而解决简单的问题; 了解两条平行线之间距离的意义,能度量两条平行线之间的距离. 二、学习重点理解并掌握平行四边形的概念及其性质. 三、学习难点在平行四边形性质的探索过程中体会转化思想,提高合情推理和演绎推理能力. 四、学前准备卡片数张、平行四边形卡纸、两个全等的三角形卡纸、图钉、剪刀、三角尺 五、学习过程(一)先学先知环节1.与生活情景对话,揭示主题(1)有一块形状如图所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm 、BC=80cm ,∠B=60°且AE ∥BC 、AB ∥CF ,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?你的猜想是: .(2)平行四边形是一种很特殊的四边形,你能举出生活中常见的平行四边形的 一些例子吗?说说平行四边形是如何区别于一般的四边形的呢?你的知识储备有: .2.与教材文本对话,解读概念(学生自主阅读教材第72-74页 )(1)请在你的卡纸上,作一个平行四边形(参照P72页试一试,剪下备用) (2)通过作图,概括定义:__________________________叫做平行四边形. (3)平行四边形的表示:如图所示, 平行四边形ABCD 记作: ;对边有: ;对角有: . (4)理解定义的双重性: 具备条件:______________的四边形,才是平行四边形;反过来,平行四边形一定具有的性质是 . 几何语言表述: 如上右图所示,① ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形; ② ∵ 四边形ABCD 是平行四边形 ∴AB ∥CD AD ∥BC.B ADC(5)通过探索,你还得到平行四边形的边、角的哪些性质呢?用几何语言表述. 如图所示,∵四边形ABCD 是平行四边形 ∴ ; ∴ ;∴ . 3.与题组检测对话,即学即用(1)已知□ABCD 中,∠A=40°,则∠B= ,∠C= ,∠D= ; (2)在□ABCD 中,∠A+∠C=100°, 则∠A= ,∠D= ; (3)在□ABCD 中,∠A:∠B=1:2,则∠A= ,∠D= ; (4)在□ABCD 中,AB=5, BC=8,则CD= ,AD= ; (5)已知□ABCD 的周长为60cm ,则AB+BC= ; 若AB :BC=2:3,则AB= ______,BC= ;(6)如图,在□ABCD 中,已知AC=3cm ,△ABC 的周长=8cm ,则平行四边形的周长为_______cm .(二)交流展示环节1.与探究活动对话,探索性质(合作探究平行四行边的数量关系、角的数量关系)第 小组合作学习记录板(1)利用所画的平行四边形的性质:你们小组选择的方法是:○度量 ○平移 ○旋转 ○折叠 ○拼图 ○其他(2)你们小组利用的学具有: ; (3)探索过程汇报展示:(4)你们探究的结论有: .AD CBAB CD(以上部分,请同学们先自学本节内容,并独立完成,上交组长检查)2.与演绎推理对话,理解性质问题:你能用已学的知识,通过演绎推理,证明上述探索的结论吗?并提出相异构想. 已知: 求证: 证明:(备用图)3.与例题改编对话,提升技能(1)例2 如图,在□ABCD 中, AB=8,周长等于24,求其余三条边的长.(2)改编训练如图,已知□ABCD 中,∠DAB 的平分线AE 交CD 于E ,且AB =8,EC =3, 求□ABCD 的周长.BA DCAD CBBA DCBA DCCDA BE4.与实践探索对话,拓展知识(1)阅读教材P75页“试一试”,给了你什么启发呢?(2)请你在作业纸中任画两条平行直线m和n,用直角三角尺的一条直角边紧贴直线n;并沿着n平移,观察三角尺的另一条直角边与直线m交点处的刻度会改变吗?请概括你的发现.(3)若在直线m上任取两点A、C,过A作AB⊥n于B,过C作CD⊥n于D,测量AB、CD的长度,你有什么发现?试用平行四边形的性质定理加以说明.(4)概括:①平行线的又一个性质:;②两条平行线之间的距离的意义: .(5)如图,直线m∥n,点B、C是直线n上的两个定点,点A是直线m上的一个动点,那么在点A移动的过程中,△ABC的面积将().A、逐渐变大B、逐渐变小C、保持不变D、无法确定5.与总结收获对话,升华知识(三)课外作业与综合实践1.必做题:课本P75练习:第2、3题;P80 18.1习题:第3题、第5题2.实践与探索题:如图,甲、乙两户的承包田被折线ABC分割,给耕种带来许多不便,他们想把这条分割线改成直线,并且保持两户农田面积不变,道路的一端仍为A,问应该怎么改?画出示意图,并说明理由。

18.1平行四边形的性质运用导学案 2022-2023学年华东师大版八年级数学下册

18.1平行四边形的性质运用导学案 2022-2023学年华东师大版八年级数学下册

三年级上册英语教学设计- Unit2 第3课时∣人教新起点一、教学目标1.知识与能力:a.能够听、说、认读单词:crayon, pencil case, ruler, eraser, pen, pencil;b.能够听懂熟悉文字和图片,并简单描述图片所示物品的颜色、形状和数量。

2.情感态度与价值观:a.培养学生对学习英语的兴趣和信心;b.培养学生的合作意识,学会与他人分享。

二、教学重难点教学重点:能够听、说、认读单词:crayon, pencil case, ruler, eraser, pen, pencil。

教学难点:能够听懂熟悉文字和图片,并简单描述图片所示物品的颜色、形状和数量。

三、教学过程Step 1 自我介绍教师向学生简单介绍自己,让学生感受老师平易近人。

Step 2 导入1.在黑板上绘制一个长方形和一个正方形,让学生自由用蜡笔或彩色笔涂色并说出他们所用的颜色、形状。

2.教师出示课堂所需的文具用品,并依次说出它们的名称,让学生跟读。

Step 3 学习新单词1.教师出示单词 flashcard,并快速说出单词3次,并配合动作让学生理解单词含义。

2.教师问学生:What’s this?,并出示单词 flashcard,让学生大声回答。

3.教师让学生猜单词:What am I? I am long and thin. I am used to measure things.(ruler)4.教师让学生听录音,跟读练习,并进行听力测试。

Step 4 听力练习1.播放录音,让学生仔细观看图片,并回答相关问题,例如:How many pencils are there? What color is the pen?2.教师对学生进行个别评估,了解学生的听力水平。

Step 5 学生练习1.将学生分组,每组分别领取不同的文具盒和文具,让学生拿着自己的文具,用英语向组内成员展示、介绍和讲解自己的文具。

人教版八年级数学下册第十八章第一节 导学案 第1课时 平行四边形的边、角的特征

人教版八年级数学下册第十八章第一节 导学案 第1课时 平行四边形的边、角的特征

第十八章平行四边形18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.理解并掌握平行四边形的概念及掌握平行四边形的定义和对边相等、对角相等的两条性质.;2.根据平行四边形的性质进行简单的计算和证明;3.经历“实验—猜想—验证—证明”的过程,发展学生的思维水平.重点:理解并掌握平行四边形的概念及掌握平行四边形的定义和对边相等、对角相等的两条性质.难点:根据平行四边形的性质进行简单的计算和证明.一、知识回顾1.平行四边形的定义是什么?如何表示一个平行四边形?2.如图,DC∥GH ∥AB,DA∥EF∥CB,图中的平行四边形有多少个?将它们表示出来.一、要点探究探究点1:平行四边形的定义问题1 观察图形,说出下列图形边的位置有什么特征?问题2 你们还记得我们以前对平行四边形的定义吗?归纳总结:1.定义: 两组对边分别平行的四边形叫做平行四边形.2.平行四边形用“□”表示,如图,平行四边形ABCD记作 ABCD ( 要注意字母顺序).语言表述:∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.自主学习课堂探究典例精析例1 如图,DC∥GH ∥AB,DA∥EF∥CB,图中的平行四边形有多少个?将它们表示出来.平行四边形的边、角的特征量一量1.画一个平行四边形ABCD,用尺子等工具度量它的四条边,并记录下数据,你能发现AB与DC,AD与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角,并记录下数据,你能发现∠A与∠C,∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证已知:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图,连接AC.∵四边形ABCD是平行四边形,∴AD___BC,AB___CD,∴∠1___∠2,∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC,AB___CD,∠ABC___∠ADC.∵∠BAD=∠1+∠4,∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线,你能否直接运用平行四边形的定义,证明其对角相等?要点归纳:平行四边形的对边____________;平行四边形的对角___________.典例精析例1如图,在平行四边形ABCD中.(1)若∠A =32°,求其余三个角的度数.(2)连接AC,已知平行四边形ABCD的周长等于20cm,AC=7cm,求△ABC的周长.变式题(1)在平行四边形ABCD中,∠A:∠B=2:3,求各角的度数.(2)若平行四边形ABCD的周长为28cm,AB:BC=3:4,求各边的长度.方法总结:已知平行四边形的边角的比例关系求其他边角时,常会用到方程思想,结合平行四边形的性质列方程.例2如图,在平行四边形ABCD中,E,F是对角线AC上的两点,并且AE=CF,求证:BE=DF.针对训练1.如图,在平行四边形ABCD中.(1)若∠A=130°,则∠B=______ ,∠C=______ ,∠D=______.(2)若AB=3,BC=5,则它的周长= ______.(3)若∠A+ ∠C= 200°,则∠A=_____,∠B=______.2.如图,在平行四边形ABCD中,若AE平分∠DAB,AB=5cm,AD=9cm,则EC=_________.3.剪两张对边平行的纸条随意交叉叠放在一起,重合部分构成了一个四边形,转动其中一张纸条,线段AD和BC的长度有什么关系?为什么?探究点2:平行线间的距离想一想:如图,若m // n,作AB // CD // EF,分别交m于A、C、E,交n于B、D、F.由________________________易知四边形ABCD ,CDEF 均为__________________.由平行四边形的性质得AB______CD_______EF. 填一填:如图,在平行四边形ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别是E ,F .求证:DE=BF . 证明:∵四边形ABCD 是平行四边形,∴ ∠A_____∠C ,AD______CB. 又∠AED= ∠CFB=90°,∴ △ADE____△CBF (_____), ∴AE_____CF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的_________. 典例精析例3 如图,AB ∥CD ,BC ⊥AB ,若AB=4cm ,S △ABC =12cm 2,求△ABD 中AB 边上的高.二、课堂小结平行四边形 内容定 义两组对边分别平行的四边形 性 质1. 两组对边分别平行,相等2. 两组对角分别相等,邻角互补 其它结论1.两条平行线间的平行线段相等2.两条平行线间的距离当堂检测1.判断题(对的在括号内填“√”,错的填“×”):(1)四平行四边形两组对边分别平行且相等. ( ) (2)平行四边形的四个内角都相等 . ( ) (3)平行四边形的相邻两个内角的和等于180°. ( )(4)如果平行四边形相邻两边长分别是2cm 和3cm ,那么周长是10cm. ( ) (5)在平行四边形ABCD 中,如果∠A=42°,那么∠B=48°. ( ) (6)在平行四边形ABCD 中,如果∠A=35°,那么∠C=145°. ( ) 2.在平行四边形ABCD 中,M 是BC 延长线上的一点,若∠A=135°,则∠MCD 的度数是( ) A .45° B. 55° C. 65° D. 75°3.如图,D 、 E 、F 分别在△ABC 的边AB 、BC 、AC 上,且DE ∥AC,DF ∥BC,EF ∥AB ,则图中有_____个平行四边形.4.如图,直线AE//BD,点C 在BD 上,若AE=5,BD=8,△ABD 的面积为16,则△ACE 的面积为 ____________.5.已知在平行四边形ABCD 中,DE 平分∠ADC,BF 平分∠ABC.求证:AE=CF.6.有一块形状如图所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm ,BC=80cm ,∠B=60°且AE ∥BC 、AB ∥CF,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?7.如图,在△ABC中,AD平分∠BAC,点M,E,F分别是AB,AD,AC上的点,四边形BEFM是平行四边形.求证:AF=BM.。

18.1-平行四边形的性质导学案

18.1-平行四边形的性质导学案

18.1平行四边形的性质导学案【学情分析】学生在小学时已经认识了“平行四边形”,初步了解了平行四边形的基本定义,学生在此基础上,通过动手画图,观察图形,探索平行四边形的性质,可以加深学生对平行四边形性质的理解和运用。

【学习内容分析】通过观察图形,动手作图、操作与探究,发现平行四边形的性质,并用演绎推理加以证明,然后加以运用。

【学习目标】1.理解平行四边形的概念,理解四边形的不稳定性;2.探索并证明平行四边形的性质定理1、2 ;3.培养学生探索能力和合情推理能力;【重难点预测】重点:探索并证明平行四边形的性质定理1、2难点:平行四边形的性质定理的运用;【学习过程】一、课前展示,激趣导入:1、通过展示、观察图案,比赛判断哪些是平行四边行(见黑板),指出平行四边形是我们生活中常见的一种图形,它具有十分和谐的对称美,并到入新课。

二、明确目标、自学指导,自主学习,组内交流。

【自学指导】认真看P72-74的内容,思考:1、平行四边形的定义是什么?_________________________________2、按照72页“试一试”的步骤在练习本上动手画一个平行四边形,并记作□ABCD3、学生回忆什么是对角线、对边、对角、邻角概念。

三、通过73页的“探索”,我们可以发现:(组间展开点评,达成共识)旋转前EF与_____重合,FG与_____重合,∠E与____重合,∠F与_____重合。

旋转后EF与_______重合,FG与_______重合,∠E与______重合,∠F与_______重合。

结论:AB=______’AD=______’∠BAC=______,∠ABC=______.(1)对称性平行四边形是_______对称图形,对称中心是__________________;(2)对边关系平行四边形的对边______;(性质定理1)(3)对角关系平行四边形的对角______。

(性质定理2)四、性质证明1、证明:平行四边形的对角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《18.1.1平行四边形的性质》导学案
教学目标:
●知识与技能:
通过观察、归纳、猜想、证明,掌握平行四边形的有关概念和性质;会初步运用性质解决简单的实际问题,理解平行线间的距离
●过程与方法:
经历运用平行四边形描述现实世界现象的过程,注重抽象和形象思维能力提升,在应用数学的角度探索平行四边形的性质的过程中,体会平行四边形性质的探索过程,参与数学模型化过程;
●情感、态度与价值观:
体验用数学知识解决问题的乐趣,培养学生热爱数学的情感.通过老师的及时表扬、鼓励,让学生体验成功的乐趣.
教学重点、难点:
重点:平行四边形的概念和性质的探究,性质的应用。

难点:平行四边形的性质的探究。

教学流程:
一:创设情景、导入知识(3分钟)
1、问题思考:回忆小学学过的平行四边形知识,你知道什么样的四边形是平行
四边形吗?
2、情境展示:现实世界中,图形装点着我们的生活。

我们知道三角形在生活中是比较常见的图形,平行四边形同样也是我们常见的图形,校门的伸缩门、庭院的竹篱笆、载重汽车的防护栏等,都有平行四边形的形象。

你还能举出一些例子吗?
【设计意图】从学生的生活实际出发,创设情境,提出问题,为进一步比较系统地学习这些图形做准备,激发学生强烈的好奇心和求知欲。

同时对小学知识的复习,初步体会平行四边形的定义。

二:探究新知、归纳猜想
活动1、画一画(2分钟)
根据定义画一个平行四边形。

活动2、自主探究(2分钟)
观察自己画的平行四边形,除了“两组对边分别平行”外,它的边之间还有什么关系?它的角之间有什么关系?度量一下,和你的猜想一致吗?
活动3、猜想结论并归纳整理(1分钟)
(1)平行四边形的对边相等;(2)平行四边形的对角相等。

【设计意图】让学生经历画图、观察、度量、猜想的过程,加强了学生对平行四边形性质的感性认识,从中感受到学数学、做数学的乐趣,培养了学生的合情推理能力。

三:验证猜想、推理证明
活动4、证明猜想(7分钟)
猜想是否是正确的,还必须经过严格的推理来论证。

你能用数学的推理方法来论证上面的两个结论吗?请按下列步骤完成:
(1)结合图形写出命题的已知、求证;
(2)先独立探究推理过程,再小组交流方法。

(3)展台展示推理过程,教师总结。

【设计意图】通过问题分析和引导,明确目前证明线段、角相等的常用方法是证明三角形全等和平行线的性质。

学生完成证明,验证猜想的正确性,让学生感受到数学的严谨性,数学结论的确定性和证明的必要性。

通过小组交流的形式,可以展现集体的智慧,能有效突破性质探究难点。

展台展示规范学生格式书写,也可提供其他的证明思路。

四:基础应用、理解新知
1、在□ABCD中,(1)已知AB=5,BC=3,求它的周长;
(2)已知∠A=38°,求其余各内角的度数。

(2分钟)
2、如图,在□ABCD中,,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:AE=CF.(追问DE=BF吗?)(5分钟)
【设计意图】题1是对于平行四边形性质的简单应用。

题2在练习1基本图形的基础上增加了两条垂线段,结合图形和已知条件,通过对结论的分析,使学生很容易想到利用平行四边形的性质和三角形全等来证明。

追问DE=BF吗?为后续平行线之间的距离概念引入做铺垫。

3、如图,直线a∥b,A,B为直线a上的任意两点,点A到直线b的距离和点B 到直线b的距离相等吗?为什么?(5分钟)
【设计意图】学生利用平行四边形性质能够很快解决问题,引入平行线之间的距离,体会点与点,点与线,线与线距离的相互联系及区别。

五、反馈跟进、课堂检测(5分钟)
1、如图1,在□ABCD中,EF∥AB,GH∥BC,则图中平行四边形的个数为()
A、5个;
B、7个;
C、8个;
D、9个;
图1
2、(1)在□ABCD中,AB=5,平行四边形的周长为16,则BC=_______;
(2)在□ABCD中,∠B-∠C=30º,则∠A=_____________。

【设计意图】考查学生对平行四边形性质的基础应用。

3、△ABC是等腰三角形,AB=AC,P是底边BC上一动点,PE∥AB,PF∥AC,点E,
F分别在AC,AB上.求证:PE+PF=AB.
【设计意图】本题考查学生综合运用知识能力,主要针对学友余力学生,最大限度地满足学生个体差异发展的需要,让不同的学生得到发展.
六、师生互动、课堂小结(2分钟)
本节课学习了哪些主要内容?你有什么收获?
【设计意图】引导学生从知识内容和学习过程两个方面总结自己的收获.把握本节课的核心内容——平行四边形的性质。

七、布置作业
1、课本第49页习题18.1 ,第1、2题
2、完成练习册第24页,课后作业案。

相关文档
最新文档