导热油

合集下载

导热油介绍

导热油介绍

导热油介绍一、简介导热油又称传热油,正规名称为热载体油(GB/T4016-83),英文名称为HeattransferOil,所以也称热导油,热煤油等。

导热油、是一种热量的传递介质,由于其具有加热均匀,调温控制温确切,能在低蒸汽压下产生高温,传热效果好,节能,输送和操作便利等特点,近年来被广泛应用于各种场合,而且其用途和用量越来越多。

二、导热油的类型1.烷基苯型(苯环型)导热油这一类导热油为苯环附有链烷煌支链类型的化合物,属于短之链烷粒基蔡(包括甲基、乙基、异丙基)与苯环结合的产物。

其沸点在170~180o C,凝点在-80。

C以下,故可做防冻液使用,此类产品的特点是在适用范围内不易出现沉淀,异丙基附链的化合物尤佳。

2、烷基蔡型导热油这一类型导热油的结构为苯环上连接烷粒支链的化合物。

它所附加的侧链一般有甲基、二甲基、异丙基等,其附加侧链的种类及数量决定化合物的性质。

侧链单于甲基相连的烷基蔡,应用于240~280°C范围的气相加热系统。

3、烷基联苯型导热油这一类型的导热油为联苯基环上连接烷基支链一类的化合物。

它是由短链的烷基(乙基、异丙基)与联苯环相结合构成,烷基的种类和数量决定其性质。

烷麻基数量越多,其热稳定性越差。

在此类产品中,由异丙基的间位体、对位体(同分异构体)与联苯合成的导热油品质最好,其沸点>330°C,热稳定性亦好,是在300~340。

C范围内使用的理想产品。

4、联苯和联苯醛低熔混合物型导热油这一类型的导热油为联苯和联苯酸低熔混合物由26.5%的联苯和73.5%的联苯醛组成。

熔点为12。

(:,世界上最早使用的合成芳烧导热油是DoWtherm,其特点是热稳定性好,使用温度高(400℃)。

此类产品由于苯环上没有与烷峰基侧链连接,而在有机热载体中耐热性最正确。

这种凝点(12.3。

C)低熔混合物,在常温下,沸腾温度在256~258°C范围内使用比较经济。

这是由于两种物质的熔点均较高(联苯为<71。

有机合成导热油

有机合成导热油

有机合成导热油
在有机合成领域,导热油通常指导热油(Thermal Fluid),它是一种用于传递热量的工质,广泛用于工业加热和冷却应用。

导热油在有机合成工艺中的应用通常需要满足一些特定的性能要求,如高温稳定性、耐腐蚀性等。

有机合成导热油的制备通常基于有机合成化学的原理,主要通过合成有机化合物来实现。

以下是一些可能用于有机合成导热油的有机化合物:
1.聚硅氧烷导热油:这种导热油通常基于聚硅氧烷化合
物,具有良好的高温稳定性和导热性能。

2.聚苯醚导热油:聚苯醚是一类高性能的高温导热油,
其结构中含有苯醚基团。

3.聚二甲基硅氧烷导热油:这种导热油基于聚二甲基硅
氧烷,具有优异的导热和绝缘性能。

4.芳香族导热油:一些芳香族化合物,如二苯基氧化硅、
二联苯醚等,也被用于制备高性能的有机合成导热油。

在制备有机合成导热油时,需要考虑油的导热性能、热稳定性、流动性以及与系统材料的兼容性等因素。

此外,油的制备还可能涉及到一系列有机合成工艺,如酯化、硅化、聚合等。

具体的配方和制备条件会取决于所需的性能和应用领域。

在实际应用中,选择合适的导热油对于确保工艺的高效和稳定运行非常重要。

导热油主要成分和化学名称

导热油主要成分和化学名称

导热油主要成分和化学名称
摘要:
1.导热油的主要成分
2.导热油的化学名称
正文:
导热油,是一种在工业生产中常用的热传导介质,具有传热效率高、易于调节控制温度、对设备无腐蚀、投资低等优点。

导热油的成分主要是芳烃,也就是分子中含有苯环结构的碳氢化合物。

在导热油中,芳烃的含量通常达到99%。

导热油主要有以下几种类型:
1.烷基苯型(苯环型)导热油:这是最常见的一种导热油,其结构为苯环附有链烷烃支链类型的化合物,属于短支链烷烃基与苯环结合的产物。

2.烷基萘型导热油:其结构为苯环上连接烷烃支链的化合物,附加的侧链一般有甲基、二甲基、异丙基等。

3.烷基联苯型导热油:这是联苯基环上连接烷基支链一类的化合物,由短链的烷基与联苯环相结合构成。

4.联苯和联苯醚低熔混合物型导热油:这是由26.5% 的联苯和73.5% 的联苯醚组成的低熔混合物。

5.烷基联苯醚型导热油:其结构为两个苯环中间一个醚基,是较为罕见的一种导热油类型。

总的来说,导热油的成分主要是芳烃,但根据不同的类型和生产工艺,其
具体的化学名称和成分可能会有所不同。

导热油的工作原理

导热油的工作原理

导热油的工作原理
导热油是一种高温传热介质,其工作原理主要通过热传导来实现。

导热油通常是由有机化合物组成的液体,具有良好的热稳定性和导热性能。

以下是导热油的工作原理:
1. 加热器加热:导热油首先被加热器加热到一定温度。

加热器可以是燃气锅炉、电锅炉或其他加热设备。

2. 导热:加热后的导热油通过管道输送到需要传热的设备或系统中。

导热油的高温使其具有较高的热能,可以有效地传递给被加热的物质。

3. 吸热:导热油在传热过程中吸收被加热物质释放的热能。

这样,被加热物质的温度会逐渐升高,而导热油的温度则会降低。

4. 冷却器冷却:冷却器接收从被加热物质中传递出来的热量,通过冷却水或其他冷却介质将导热油冷却下来。

5. 再循环:冷却后的导热油重新被泵送到加热器中,进行再次加热,形成连续的循环,持续进行传热作业。

通过以上工作原理,导热油可以将热量从加热源传递到需要加热的物质中,实现温度的控制和调节。

导热油的优点包括传热效率高、温度稳定性好、使用寿命长等,因此在许多工业领域中被广泛应用于加热和热处理过程中。

导热油成分

导热油成分

导热油成分导热油是一种广泛用于工业领域的热传导介质。

它被用来传导热量,以维持设备和工业过程的稳定温度。

在导热油中,成分的选择对其性能至关重要。

本文将介绍导热油的常见成分及其特性。

1. 聚硅氧烷聚硅氧烷是一种常见的导热油成分,也被称为硅油。

它具有较高的热导率和较低的粘度,能够在高温下稳定工作。

此外,聚硅氧烷具有较低的毒性和良好的化学稳定性,不易被氧化。

因此,聚硅氧烷是许多高温工业应用中常见的导热油成分。

2. 多聚烯烃多聚烯烃是另一种常见的导热油成分。

它具有优异的耐高温性能和化学稳定性。

多聚烯烃的热导率较高,能够有效地传导热量。

此外,它也具有较低的粘度,能够在高温下良好地流动。

因此,多聚烯烃广泛应用于热交换器、加热锅炉和太阳能电池等领域。

3. 氰基酯氰基酯是一类优质的导热油成分。

它具有较高的热导率和较低的粘度,能够在高温下稳定工作。

氰基酯具有良好的热稳定性和氧化稳定性,不易分解和氧化。

它还具有较低的蒸气压和较高的闪点,使其在高温工业领域广泛应用。

4. 苯基二甲基硅氧烷苯基二甲基硅氧烷是一种常见的导热油成分。

它具有较高的热导率和较低的粘度,能够在高温下稳定工作。

苯基二甲基硅氧烷的化学稳定性良好,不易变质或分解。

但是,它的毒性较大,使用时需要注意安全性。

5. 矿物油矿物油是一种常见的导热油成分。

它由石油提炼而来,价格相对较低。

矿物油具有较高的热导率和良好的化学稳定性,能够在中低温下广泛应用。

然而,在高温下,矿物油容易分解和氧化,降低其导热性能。

因此,在高温工业应用中,矿物油的使用范围受到限制。

综上所述,导热油的成分在决定其性能和适用领域方面起着关键作用。

聚硅氧烷、多聚烯烃、氰基酯、苯基二甲基硅氧烷和矿物油是常见的导热油成分。

它们具有各自独特的特性和适用范围,在工业生产过程中扮演着重要角色。

因此,在选择导热油时,需要根据具体的应用需求和工作条件来选择最合适的成分。

导热油凝固点

导热油凝固点

导热油凝固点【原创版】目录1.导热油的定义和用途2.导热油凝固点的概念3.影响导热油凝固点的因素4.如何提高导热油的凝固点5.导热油凝固点对设备的影响正文一、导热油的定义和用途导热油,又称热媒油,是一种在工业生产过程中用于传递热量的特殊油品。

它具有优良的热稳定性、抗氧化性、抗泡性等特点,广泛应用于化工、石油、冶金、纺织、食品等工业领域的加热、冷却、恒温等系统。

二、导热油凝固点的概念导热油凝固点是指在规定的冷却条件下,导热油由液态变为固态的温度。

一般来说,导热油的凝固点越低,其在低温环境下的流动性能越好,热量传递效率越高。

三、影响导热油凝固点的因素1.油品的化学成分:导热油的凝固点受其化学成分的影响,不同的油品成分会导致凝固点有所差异。

2.环境温度:环境温度的降低会导致导热油的凝固点上升,使其更容易凝固。

3.设备运行状况:设备的不正常运行,如温度过高或过低、流速过快或过慢等,都可能影响导热油的凝固点。

四、如何提高导热油的凝固点1.选择合适的导热油品种:根据实际生产环境和设备需求,选择凝固点较低的导热油。

2.控制设备运行参数:保持设备在正常运行状态,避免温度波动过大,确保导热油在合适范围内工作。

3.定期检查和维护设备:对导热油系统进行定期检查和维护,确保设备运行正常,避免因设备故障导致导热油凝固。

五、导热油凝固点对设备的影响1.设备运行异常:导热油凝固点过高可能导致设备运行异常,影响生产效率和产品质量。

2.管道堵塞:凝固的导热油可能堵塞管道,导致设备无法正常运行。

3.设备损坏:长时间在凝固点附近运行的导热油可能对设备产生腐蚀、磨损等损害,降低设备使用寿命。

综上所述,导热油的凝固点对于设备运行和生产效率具有重要影响。

导热油作用

导热油作用

导热油作用导热油,又称热导油或传热油,是一种用于传递热量的特殊液体。

它具有高热导率、低蒸发率和低毒性等特点,被广泛应用于许多工业领域。

下面将详细介绍导热油的作用。

首先,导热油在工业生产中被广泛用于热处理过程。

热处理是指将金属或合金加热至一定温度并进行保温过程,以改变材料的物理和化学性质的工艺。

导热油作为介质,能够将热量迅速传递给被处理的材料,使其达到所需温度,从而提高材料的力学性能、耐磨性和耐腐蚀性。

其次,导热油在化工生产中也扮演着重要的角色。

在化学反应过程中,通过控制反应、气体输送、冷凝和蒸发等传热过程,导热油可以保证反应过程的高效进行。

同时,导热油的传热效果稳定,因此能够提高化工生产的安全性和稳定性。

导热油还被广泛应用于食品加工行业。

在食品加工过程中,导热油可以被用于加热蒸煮、烘干、蒸汽发生器等工序,以保持食品的新鲜度和口感。

另外,导热油的抗氧化性能也有利于防止食品的氧化变质。

此外,导热油还可用于塑胶加工行业。

在塑料的加工过程中,导热油可以被用于注塑机、挤出机等设备的加热系统中,以控制温度和加快塑料的熔融速度。

通过优化导热油的传热效果,可以提高塑料制品的成型质量和生产效率。

最后,导热油还可以被应用于太阳能和风能等可再生能源领域。

在太阳能的利用中,导热油可以将太阳辐射转化为热能,并将热能传递给热交换器或蒸汽锅炉等设备,以提供热水、蒸汽或电力。

在风能的利用中,导热油可以将风能转化为热能,并将热量储存起来,以供后续使用,从而提高可再生能源的利用效率。

总之,导热油在工业生产中具有广泛的应用。

它可以提高生产过程的效率和质量,保证工业设备的安全运行,实现能源的高效利用。

随着科技的不断进步和工艺的创新,导热油的应用也将继续扩展,为工业发展和生活带来更多的便利和效益。

导热油的原理

导热油的原理

导热油的原理
导热油的原理是基于传热的原理,具体为热能从热源(例如燃烧炉、电加热器等)传递到需要加热的物体或空间中。

导热油是一种热传导性能良好的液体,通常由矿物油或有机硅油组成。

其具有高热容量和高导热性能,能够高效地传递热量。

导热油通过导热系统(例如管道、散热器等)与热源相连,热源将热能传给导热油。

导热油在高温下吸收热量,热油分子被加热并获得更多能量。

热油分子的热运动使其能量传递给周围的分子,在整个导热油中迅速传导热量。

导热油通过管道传输到需要加热的物体或空间中,热油的热能进一步传递给这些物体或空间。

被加热的物体或空间中的分子通过热的对流、传导和辐射来吸收热量,从而升高温度。

这样就实现了从热源到被加热物体之间的热能传递。

导热油的优势在于其具有较高的热稳定性和热适应性,能够在较高温度范围内稳定工作。

它还具有良好的流动性和传热效率,能够快速、均匀地传递热量到需要加热的物体或空间中。

因此,导热油被广泛应用于许多行业,如化工、电力、造纸、纺织等,以满足加热、升温和保温等需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导热油
一、导热油的类型
1 烷基苯型(苯环型)导热油
这一类导热油为苯环附有链烷烃支链类型的化合物,属于短之链烷烃基萘(包括甲基、乙基、异丙基)与苯环结合的产物。

其沸点在
170~180℃,凝点在-80℃以下,故可做防冻液使用,此类产品的特点是在适用范围内不易出现沉淀,异丙基附链的化合物尤佳。

2 烷基萘型导热油
这一类型导热油的结构为苯环上连接烷烃支链的化合物。

它所附加的侧链一般有甲基、二甲基、异丙基等,其附加侧链的种类及数量决定化合物的性质。

侧链单于甲基相连的烷基萘,应用于240~280℃范围的气相加热系统。

3 烷基联苯型导热油
这一类型的导热油为联苯基环上连接烷基支链一类的化合物。

它是由短链的烷基(乙基、异丙基)与联苯环相结合构成,烷基的种类和数量决定其性质。

烷烃基数量越多,其热稳定性越差。

在此类产品中,由异丙基的间位体、对位体(同分异构体)与联苯合成的导热油品质最好,其沸点>330℃,热稳定性亦好,是在300~340℃范围内使用的理想产品。

4 联苯和联苯醚低熔混合物型导热油
这一类型的导热油为联苯和联苯醚低熔混合物由26.5%的联苯和73.5%的联苯醚组成。

熔点为12℃,世界上最早使用的合成芳烃导热油是Dowtherm,其特点是热稳定性好,使用温度高(400℃)。

此类产品因为苯环上没有与烷烃基侧链连接,而在有机热载体中耐热性最佳。

这种凝点(12.3℃)低熔混合物,在常温下,沸腾温度在256~258℃范围内使用比较经济。

这是因为两种物质的熔点均较高(联苯为<71℃,联苯醚<28℃)所致。

这种低熔混合物蒸发形成的蒸汽过程中无任何一种组分提浓的发生,且液体性质亦不变。

由于二苯醚中结合醚物质,在高温下(350℃)长时间使用会产生酚类物质,此物质有低腐蚀性,与水分对碳钢等有一定的腐蚀作用。

二、购买注意事项
目前,我国导热油产品执行SH/T 0677-1999“导热油”标准,用户在购买前应注意以下问题:
(1)考察产品最高使用温度的真实性-经石科院采用热稳定性试验方法确定,即在最高使用温度下进行试验后外观透明,无悬浮物和沉
淀,总变之率不大于10%所对应温度。

通过与新标准作对照,分析产品说明书的真实性。

尤其要了解其规定的最高使用温度是如何确定的,有无权威机构的检测报告。

根据国际化标准分类,矿物型导热油的最高温度使用温度不超过
320℃,目前多数该油品的最高使用温度为300℃。

(2)考察产品的蒸发性和安全性-闪点(开口)符合标准指标要
求,初馏点不低于其最高使用温度,馏程比较窄,燃点比较高。

(3)考察产品的精制深度-外观为浅黄色透明液体,储存稳定性
好,光照后不变色或出现沉淀。

残炭不大于0.1%,硫含量不大于
0.2%。

(4)考察产品的低温流动性-根据用户所处地区和设备的环境温度情况,选择适宜的低温性能。

QB和QC倾点不高于-9℃,低温运动粘度(0℃或更低温度)相对比较低。

(5)考察产品的传热性能-具有较低的粘度、较大的密度、较高的比热容和导热系数。

(6)选择正规生产企业生产的产品。

有条件可实地考察其生产设备和检测手段的完善情况。

三、导热油的劣化
导热油的劣化主要是导热油加热后逐渐分解及聚合反应,使导热油原结构发生变化。

生成的低分子或高分子物质逐渐增多,从而改变导热油的特性。

劣化原因主要是高温,空气中的氧及生产过程中化学物质的混入等。

劣化分为热劣化、氧化劣化和混入异物的劣化三种。

1、热劣化:导热油长期处于高温环境则原子间、分子间的链键断
裂,化合物发生分解,分解物主要有气体,低分子物及自由基分子。

此自由基分子和其他分子发生聚合,产生聚合物的活跃集团。

所发生的聚合反应为连锁性,即使在一定温度下,随着时间的延长,所生成的聚合物的分子量和生成量都有增加倾向。

粘度等指标发生缓慢的变化。

2、氧化劣化:高温导热油和空气中的氧接触后,会氧化生成有机
酸,有机酸可进一步促进导热油的聚合反应,并不限于高温,温度
100℃前后也会发生,随温度的升高其反应速度加快。

其结果可导致粘度增加,而其所生成的有机酸遇水后对设备带来一定腐蚀作用。

3、混入异物劣化:所混入的物质有可能成为催化剂,催化导热油的分解、聚合反应:可直接和导热油发生反应,生成分解物及聚合物:所混入的物质即使不溶于导热油,也可在导热油中进行自身的分解和聚合反应,因此,导热油还未发生劣化,由于混入物的自身反应,改变导热油的特性而影响导热油正常运行;有高位槽、系统配管等脱落的铁锈混入后,也可促进导热油的分解、聚合反应。

四、防止劣化的有关措施
1、热劣化的对策:对导热油发生热劣化影响最大的因素为其加热炉加热面的管壁温度。

控制温度在导热油允许使用范围内是防止热劣化的必要措施,并加入适宜经石油化工科学研究院评定的优质抗垢添加剂。

2、氧化劣化的防止措施:防止氧化劣化的原则应尽量避免高温导热油和空气接触,并加入适宜经石油化工科学研究院评定的优质抗垢添加剂。

3、异物混入的防止对策:异物,主要指那些能改变载热体的物性,使之发生分解,聚合反应的物质,要防止异物的混入,首先要明了不能混入的原因,再针对采取有效地防止对策。

以下对异物混入的原因:
(1)在生产过程中,由于热交换器的内部蛇管或套管发生破损而引起被加热物(反应原料、蒸馏原液等)的混入。

(2)空气、水等的混入。

导热油填充前加热设备及配管的干燥或洗净不充分,运行开始后法兰盘的结合不良,导热油贮槽、油桶等管理不善造成水分的混入。

(3)铁锈的混入。

系统和调和安装完毕后内部清洗工作不充分而残留的焊渣、泥等引起;另外,管理不佳的贮槽或密封不充分的高位槽也会产生锈。

(4)导热油严重劣化而产生的重质化物。

五、导热油的安全隐患及防护
㈠、导热油使用过程中诸性能潜在的危险性
1热稳定性
导热油在使用过程中由于加热系统的局部过热,易发生热裂解反
应,生成易挥发及较低闪点的低聚物,低聚物间发生聚合反应生成不熔不溶的高聚物,不仅阻碍油品的流动,降低形同的热传导效率,同时会造成管道局部过热变形炸裂的可能。

2氧化稳定性
导热油与溶解其中的空气及热载体系统填装是残留的空气在受热情况下发生氧化反应,生成有机酸及胶质物粘附输油管,不仅影响传热介质的使用寿命,堵塞管路,同时易造成管路的酸性腐蚀,增加系统运行泄漏的风险。

㈡、导热油在使用过程的防护
1避免导热油的氧化
由于导热油在热载体中高温运行的情况下易于发生氧化反应,造成导热油的劣化变质,所以通常对设置的高温膨胀槽进行充氮保护,确保热载体系统的封闭,避免导热油与空气接触,延长导热油的使用寿命。

2避免导热油的结焦
导热油在运行温度超过最高使用温度时,在导油管壁会出现结焦现象,随着结焦层的增厚,导油管壁温偏高又促使粘附结焦,不断增厚的管壁温度进一步提高,随着管壁的不断增厚传热性能恶化,随时可能发生爆炸事故。

因此,严格控制热载体出口处导热油的温度不得超过最高使用温度,热载体的最高膜温应小于允许油膜温度。

3定期排查泄漏点
加强现场监控,要确保热载体系统完好不漏,定期排查设备的腐蚀渗漏情况,发现渗漏及时检修。

因此,热载体系统要合理设计,使用中要定期检测设备壁厚和耐压强度,并在设备和管道上加装压力计、安全阀和放空管。

4防止热载体内混入水及其他杂质
随着热载体的加热,溶解在其中的水分迅速汽化,导热管内的压力急剧上升而导致无法控制的程度,引起爆炸事故。

所以,导热油在投入使用前应先缓慢升温,脱除导热油中的水和其他轻主份杂质。

5定期化验导热油指标
定期测定和分析热载体的残碳、酸值、粘度、闪点、熔点等理化指标,及时掌握其品质变化情况,分析变化原因。

当酸值超过
0.5mgKOH/g,粘度变化达到15%,闪点变化达到20%,残碳(质量分数)达到1.5%时,证明导热油性能已发生了变化[5]。

定期适当补充新的热载体,使系统中的残碳量基本保持稳定。

相关文档
最新文档