专题跟踪突破七 数学思想方法
七年级数学中常见的思想方法_21744.DOC

七年级数学中常见的思想方法一、思想方法1. 数形结合思想.2. 整体思想.二、知识要点:1. 数形结合思想数形结合思想是通过构建数与形之间的对应关系,在二者的对应和互助中,来分析研究问题并解决问题的一种思想. 常见的数形结合的途径有三种:以形助数、以数助形和数形互助.数轴是数与形结合的桥梁,数与形结合的工具,具有多方面的功能.(1)利用数轴能形象地表示有理数,使抽象的数变得具体.例如有理数的分类,在数轴上,原点右边的是正数,原点左边的是负数,原点是表示0的点,它是正、负数的分界点.(2)利用数轴能直观地解释相反数,能从运动变化的观点说明互为相反数的点,具有关于原点对称的特征.(3)利用数轴理解︱a-b︱的意义,绝对值的定义是从几何角度给出的,即︱a︱是表示数a的点到原点的距离,而原点所对应的数为0,故︱a︱也写成︱a-0︱的形式,它反映了数轴上两点间的距离. 这样自然会想到数轴上任意两点的距离如何表示呢?如图所示,数a、b分别对应点A、B,从数轴的定义,我们知道线段OB、OA的数值分别等于b、a,即OB=b,OA=a. 从BA=OA-OB=a -b,知B点到A点的距离为︱a-b︱.(4)利用数轴上的点的有序性,可以把复杂的数量关系表示得简明、形象、便于观察解答. 例如,在比较有理数大小的时候,可以把有理数在数轴上表示出来,依据数轴上右边的数总比左边的数大进行比较.2. 整体思想在研究问题时不是以某个或某些组成部分为着眼点,而是有意识地放大考虑问题的视角,将要解决的问题看成一个整体,通过研究问题的整体形式、整体结构或作整体处理后,达到顺利而又简洁地解决问题的目的.【典型例题】例1. (1)数轴上的点A表示数2,将点A向左平移5个单位长度得点B,则点B表示的数是__________.(2)(湖南怀化)2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是()A. 伦敦时间2008年8月8日11时B. 巴黎时间2008年8月8日13时C. 纽约时间2008年8月8日5时D. 汉城时间2008年8月8日19时分析:(1)表示数2的点A向左平移2个单位到原点,再向左平移3个单位到数-3,所以将点A向左平移5个单位长度得到的点B所表示的数是-3. (2)如图所示,纽约、伦敦、巴黎、北京、汉城五城市的时差可以通过它们对应的数字计算出来,北京时间2008年8月8日20时,伦敦时间是2008年8月8日12时;巴黎时间是2008年8月8日13时;纽约时间是2008年8月8日7时;汉城时间是2008年8月8日21时.解:(1)-3(2)B评析:数轴是数形结合思想解题的桥梁.例2. 已知︱a︱<︱b︱,a>0,b<0,把a、b、-a、-b按由小到大的顺序排列.分析:从︱a︱<︱b︱,及a>0,b<0知正数a在原点右侧,负数b在原点左侧,且表示数a的点到原点的距离小于表示数b的点到原点的距离,如图所示. 另一方面,a与-a,b与-b互为相反数,由于︱a︱=︱-a︱,︱b︱=︱-b︱,故数轴上表示这四个数从左到右的顺序是b,-a,a,-b.解:b<-a<a<-b.例3. 如图所示,阴影部分的面积是正方形面积的()A. B. C.D.分析:阴影部分的面积不能求出,考虑把阴影部分通过切割、折叠等方法拼成一个可求面积的图形. 把正方形沿图中对角线对折,阴影部分面积等于三角形面积,等于正方形面积的一半.解:D评析:求图形面积时,常用割补、折叠等方法把不规则的图形拼成一个可求面积的规则图形.例4. 若代数式2y2+3y+7的值为2,则代数式-6y-4y2+9的值为()A. -1B. 19C. 9D. -9分析:因为2y2+3y+7=2,所以-6y-4y2+9=-2(2y2+3y+7)+23=-2×2+23=19.解:B评析:将所给条件不对字母进行分离求值,而是视其为一个整体,直接将其整个代入要求值的式子,然后计算求值.例5. 当x>0,y<0,且︱x︱<︱y︱时,化简︱2x-3y︱-︱3x+3y︱.分析:把2x-3y、3x+3y各看作一个“整体”,先确定出这个“整体”的符号,然后再去掉其绝对值符号.解:由x>0,y<0,且︱x︱<︱y︱可知2x>0,-3y>0,x+y<0.故2x-3y>0,3x+3y<0,因此,原式=(2x-3y)-[-(3x+3y)]=2x-3y+3x+3y=5x.评析:“整体法”是合并同类项时常用的一种方法,同学们要通过细心观察才能够灵活运用此法.。
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法
数学解题涉及到多种基本思想和方法,以下是高考数学中常见的七大基本思想方法:
1. 分析思想:对问题进行分析,了解问题的背景和条件,理清问题的主要要求和关键点。
通过理性思考,找出问题的关键信息和解题的具体思路。
2. 归纳思想:在解题过程中,通过观察和分析一系列具体问题的特点和规律,总结出普遍规律和定理。
通过推理和归纳,用普遍的结论解决具体的问题。
3. 定义思想:利用定义和性质,将一个复杂的问题转化成一个或多个简单的问题,从而得到解题的线索和方法。
通过准确的定义和原理,避免解题过程中的模糊和混乱。
4. 逆向思维:通过逆向思考,将问题的推理过程倒转,从后往前寻找解题的线索和方法。
当直接求解困难时,可以通过反向思考,先假设结论成立,然后倒推出问题的可能解。
5. 近似思想:在实际解题中,可能遇到问题过于复杂或计算困难的情况。
可以通过近似思想,将问题简化成近似问题,从而得到解题的方法和结果。
通过适当的近似和简化,可以减少计算量和复杂度。
6. 映射思维:通过建立不同对象之间的映射关系,将原问题转化成已知问题或同类问题。
通过找出问题之间的联系和相似性,来解决具体的问题。
7. 模型思想:将实际问题抽象成数学模型,通过建立数学模型和方程式来求解问题。
通过对实际问题的抽象和建模,可以将问题转化成更容易解决的数学问题。
这些思想方法在解决高考数学问题中都很有用,需要根据具体问题的特点和要求选择合适的思想方法。
专题知识突破 数学思想方法

专题知识突破数学思想方法(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
高中七种数学思想方法总结

高中七种数学思想方法总结高中数学可以说是数学思想发展的关键时期,学生需要抽象思维能力和逻辑推理能力的提高。
在高中数学学习中,这七种数学思想方法对于学生的数学思维的培养具有重要意义。
下面对这七种数学思想方法进行总结。
首先是归纳与演绎的思想方法。
归纳与演绎是思维的两个基本方面。
归纳是从具体的实例出发,逐步得到普遍规律的一种思维方式。
而演绎是从普遍规律出发,推演出具体实例的一种思维方式。
在高中数学学习中,学生首先需要通过归纳总结知识点中的一般性规律,然后通过演绎推导解决具体问题。
其次是抽象与具体的思想方法。
抽象是从具体的实例中提取出普遍规律的一种思维方式。
在高中数学学习中,学生需要通过抽象将具体问题归纳到一般性问题,从而更好地解决问题。
而具体则是为了更清晰地理解抽象的概念和规律,将抽象的概念具体化。
第三是直观与形式的思想方法。
直观是通过感觉和观察获得的一种思维方式。
在高中数学学习中,学生需要通过直观去理解和感受数学概念和现象。
而形式则是通过符号、符号语言去表达和推演的一种思维方式。
在高中数学学习中,学生需要通过形式化去描述和推演问题,从而更好地解决问题。
第四是逻辑与启发的思想方法。
逻辑是一种通过推理和论证得出结论的思维方式。
在高中数学学习中,学生需要通过逻辑推理去解决问题,并通过逻辑展示问题的解决过程。
而启发则是一种通过直觉和灵感得到的思维方式。
在高中数学学习中,学生需要通过启发去发现和理解问题,并通过启发性解题方法解决问题。
第五是分析与综合的思想方法。
分析是将整体问题分解成各个部分,然后逐个进行研究的一种思维方式。
在高中数学学习中,学生需要通过分析将复杂的问题分解成简单的问题,然后逐个解决。
而综合则是将各个部分的研究结果重新组合成一个整体的思维方式。
在高中数学学习中,学生需要通过综合将各个问题的解决方法组合成一个整体的解决方法。
第六是推理与证明的思想方法。
推理是通过逻辑推理和推断得出结论的一种思维方式。
高中数学七大数学基本思想方法

高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。
在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。
本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。
一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。
在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。
二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。
在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。
三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。
在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。
四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。
在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。
五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。
在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。
六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。
在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。
七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。
在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。
总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。
通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。
高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。
第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
浅谈初一数学教学中应渗透的数学思想方法

浅谈初一数学教学中应渗透的数学思想方法
在初一数学教学中,应渗透以下数学思想方法:
1. 抽象思维:初一数学教学中,应鼓励学生通过抽象思维,将
具体事物抽象为符号,进行数学运算和推论,培养学生的抽象思维
能力。
2. 推理思维:学生需要通过推理思维,根据已知条件推导出未
知结论,培养学生的逻辑思维能力。
3. 实证思维:初一数学教学中,应积极引导学生用实证方法验
证数学结论,让学生通过实际操作加深对数学知识的理解。
4. 创造性思维:学生需要通过培养创造性思维,运用已有的数
学知识解决新的数学问题,培养学生解决问题的能力。
5. 合作思维:初一数学教学中,应鼓励学生进行小组合作学习,帮助学生通过交流合作,激发他们的灵感和创造力。
初中数学解题技巧常用的数学思想方法

初中数学解题技巧常用的数学思想方法初中数学解题技巧:常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题跟踪突破七数学思想方法
一、选择题
1.(2016·台湾)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?( A) A.40 B.45 C.50 D.60
2.(2015·山西)我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,
进而得到原方程的解为x
1=0,x
2
=2.这种解法体现的数学思想是( A )
A.转化思想 B.函数思想
C.数形结合思想 D.公理化思想
3.(2015·新疆)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是( C )
,A) ,B) ,C) ,D)
4.(2016·呼和浩特)已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-
1)2+(n-1)2的最小值是( A )
A.6 B.3 C.-3 D.0
5.(2016·贵阳)若m,n(n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( D )
A.m<a<b<n B.a<m<n<b
C.b<n<m<a D.n<b<a<m
二、填空题
6.(2015·丽水)解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程__x-1=0或x+3=0__.7.(2015·齐齐哈尔)菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,则BF长为__5_cm73_cm__.
8.(2015·黄石)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如下表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为__29__元.
9.(2016·荆门)如图,已知点A(1,2)是反比例函数y =k x
图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是__(-3,0)或(5,0)或(3,0)或(-5,0)__.
,第9题图) ,第10题图)
10.(2016·沈阳)如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,
连结DN ,ME ,DN 与ME 相交于点O.若△OMN 是直角三角形,则DO 的长是__256
或5013
__. 三、解答题
11.(2016·潍坊)旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多? 解:(1)由题意知,若观光车能全部租出,则0<x ≤100,由50x -1100>0,解得x >22,又∵x 是5的倍数,∴每辆车的日租金至少应为25元
(2)设每辆车的净收入为y 元,当0<x ≤100时,y 1=50x -1100,∵y 1随x 的增大而增大,∴当x =100时,y 1的最大值为50×100-1100=3900;当x >100
时,y 2=(50-
x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025,当x =175时,y 2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,
每天的净收入最多是5025元
12.(2016·厦门)如图是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)随用药后的时间x(小时)变化的图象(图象由线段OA 与部分双曲线AB 组成).并测得当y =a 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大浓度?
解:设直线OA 的解析式为y =kx ,把(4,a )代入,得a =4k ,解得k =a 4
,即直线OA 的解析式为y =a 4
x ,根据题意,(9,a )在反比例函数的图象上,则反
比例函数的解析式为y =9a x ,当a 4x =9a x 时,解得x =±6(负值舍去),故成人用药后,血液中药物则至少需要6小时达到最大浓度.
13.(2016·苏州)如图,一次函数y =kx +b 的图象与x 轴交于点A ,与反
比例函数y =m x
(x >0)的图象交于点B(2,n),过点B 作BC ⊥x 轴于点C ,点P(3n -4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC ,求反比例函数和一次函数的表达式.
解:∵点B (2,n ),P (3n -4,1)在反比例函数y =m x
(x >0)的图象上,∴⎩⎨⎧2n =m ,3n -4=m ,解得⎩⎨⎧m =8,n =4.
∴反比例函数的表达式为y =8x .∵m =8,n =4,∴点B (2,4),点P (8,1).过点P 作PD ⊥BC ,垂足为D ,并延长交AB 与点P ′.在△BDP 和△BDP ′中,⎩⎨⎧∠PBD =∠P ′BD ,
BD =BD ,∠BDP =∠BDP ′,
∴△BDP ≌△BDP ′.∴DP ′=DP =6.∴
点P ′(-4,1).将点P ′(-4,1),B (2,4)代入直线的解析式得:⎩⎨⎧2k +b =4,-4k +b =1,
解得⎩⎨⎧k =12,b =3.
∴一次函数的表达式为y =12x +3.
14.(2016·娄底)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.
(1)求证:∠B=∠ACD;
(2)已知点E在AB上,且BC2=AB·BE;
①若tan∠ACD=3
4
,BC=10,求CE的长;
②试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.
解:(1)∵∠ACB=∠DCO=90°,∴∠ACB-∠ACO=∠DCO-∠ACO,即∠ACD =∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B
(2)①∵BC2=AB·BE,∴BC
AB
=
BE
BC
,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB
=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=3
4
,设BE=4x,CE=3x,
由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;
②过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,
∵AF⊥CD,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切。