阶跃响应实验报告
单位阶跃响应实验报告

单位阶跃响应实验报告实验概述本实验旨在通过对线性时不变系统的单位阶跃信号进行响应测试,研究系统的阶跃响应特性。
实验中我们采用了激励信号为单位阶跃信号的方法,通过测量系统的输出响应,得到系统的单位阶跃响应曲线。
实验仪器和设备1. 功能信号发生器2. 示波器3. 线性时不变系统模块实验原理单位阶跃响应是线性时不变系统对单位阶跃信号的响应。
单位阶跃信号是指在t=0 瞬间,信号从0 瞬间跃变到1,其数学表达式为U(t) = 1,t ≥0。
对于线性时不变系统,它的输出信号y(t) 可以通过单位阶跃响应h(t) 和输入信号x(t) 的卷积运算得到,即y(t) = x(t) * h(t)。
为了得到线性时不变系统的单位阶跃响应曲线,我们将单位阶跃信号作为输入信号,通过系统模块进行激励,然后使用示波器测量得到系统的输出信号。
根据输出信号的波形,我们可以得到系统的单位阶跃响应曲线。
实验步骤1. 将功能信号发生器的输出连接到线性时不变系统模块的输入端口。
2. 将线性时不变系统模块的输出端口连接到示波器的输入端口。
3. 打开功能信号发生器和示波器,并设置合适的参数。
4. 设计合适的时间范围和采样频率,并将示波器调整到适当的测量模式。
5. 根据实验要求,调节功能信号发生器的输出信号为单位阶跃信号,确保其跃变时间为0。
6. 记录示波器上显示的输出信号波形,并保存为图像或将数据导出到计算机进行后续处理。
实验结果和讨论根据实验步骤,我们得到了如下的输出信号波形:根据观察,我们可以看出输出信号在瞬间t=0 处发生了跃变,然后逐渐趋于稳定状态。
通过测量和分析输出信号的波形,我们可以得到线性时不变系统的单位阶跃响应曲线。
将单位阶跃信号与测得的输出信号进行卷积运算,可以得到单位阶跃响应曲线。
通过进一步处理和分析,我们可以确定系统的稳定性、阶数以及相位等参数。
实验中所得到的单位阶跃响应曲线对于系统的建模和控制具有重要意义。
实验二 二阶系统阶跃响应_2

实验二二阶系统阶跃响应一、实验目的(1)了解典型二阶系统模拟电路的构成方法及二级闭环系统的传递函数标准式。
(2)研究二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ζ对过渡过程的影响。
(3)掌握欠阻尼二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。
观察和分析二阶闭环系统的欠阻尼, 临界阻尼, 过阻尼的瞬态响应曲线, 及在阶跃信号输入时的动态性能指标Mp、tp、ts值, 并与理论计算值对比。
二、实验设备(1)XMN-2型学习机;(2)CAE-USE辅助实验系统(3)万用表(4)计算机三、实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。
二阶闭环系统模拟电路如图2-1所示, 它由两个积分环节(OP1和OP2)及其反馈回路构成。
图2-1 二阶闭环系统模拟电路图OP1和OP2为两个积分环节, 传递函数为(时间常数)。
二阶闭环系统等效结构图如图2-2所示。
图2-2 二阶闭环系统等效结构图四、该二阶系统的自然振荡角频率为, 阻尼为。
五、实验步骤(1)调整Rf=40K, 使K=0.4(即ζ=0.2);取R=1M, C=0.47μ, 使T=0.47秒(ωn=1/0.47), 加入阶跃输入信号x(t)=1V, 记录阶跃响应曲线①;(2)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1.47μ, 使T=1.47秒(ωn=1/1.47), 记录阶跃响应曲线②;(3)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1μ, 使T=1秒(ωn=1/1), 记录阶跃响应曲线③;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=200K, 使K=2(即ζ=1), 记录阶跃响应曲线④;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=300K, 使K=3(即ζ=1.5), 记录阶跃响应曲线⑤。
六、数据采集及处理七、实验报告1、推导模拟电路的闭环传递函数Y(s)/X(s)?确定R、C.Rf、Ri与自然振荡角频率和阻尼比之间的关系。
系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。
2. 掌握系统阶跃响应的测试方法。
3. 分析系统阶跃响应的动态性能指标。
4. 通过实验验证理论知识,加深对系统动态特性的理解。
二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。
对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。
2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。
3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。
4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。
三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。
2. 分别对一阶系统和二阶系统进行阶跃响应实验。
3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
4. 分析实验结果,验证理论公式。
五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。
2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。
3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。
5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。
六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。
冲激响应与阶跃响应实验报告

冲激响应与阶跃响应实验报告【实验报告】一、实验目的1.了解冲激响应和阶跃响应的概念和特点。
2.利用实验手段验证冲激响应和阶跃响应的性质。
二、实验仪器和设备1.信号发生器2.示波器3.程控电源4.模拟电路实验台三、实验原理1.冲激响应:冲激响应是指当输入信号为冲激信号时,系统输出的响应。
冲激响应以单位冲激函数(单位面积、幅度为1的冲激信号)作为输入刺激。
2.阶跃响应:阶跃响应是指当输入信号为阶跃信号时,系统输出的响应。
阶跃响应以单位阶跃函数(单位跳跃量、幅度为1的阶跃信号)作为输入刺激。
实验中,我们会通过信号发生器输入冲激信号或阶跃信号给待测电路,然后利用示波器观察输出信号的波形,从而分析电路的冲激响应和阶跃响应特点。
四、实验步骤1.连接实验电路:将信号发生器的输出与待测电路的输入端相连,将待测电路的输出端与示波器的输入端相连,确保连接正确。
2.设置信号发生器:将信号发生器的模式调至脉冲调制,设置脉冲频率、幅度等参数,同时将信号发生器的输出信号类型选择冲激信号或阶跃信号。
3.设置示波器:将示波器的探头与待测电路的输出端连接,调整示波器的触发模式、水平和垂直刻度,确保输出波形清晰可见。
4.开始实验:依次将信号发生器选择为冲激信号和阶跃信号,并记录示波器上输出信号的波形。
五、实验结果与分析1.冲激响应实验:在示波器上观察到的冲激响应波形为单位冲激函数的形状,即在一个瞬间出现一个峰值,然后迅速衰减为0。
2.阶跃响应实验:在示波器上观察到的阶跃响应波形为单位阶跃函数的形状,即在输入信号发生突变瞬间,输出信号也会产生突变,通常会存在一个过渡过程。
根据输入信号的性质,冲激响应可以看作是对系统进行“激励”,从而观察系统的响应特性;而阶跃响应可以看作是对系统的边际条件进行“激励”,从而观察系统的边际响应特性。
六、实验总结通过本次实验,我深入了解了冲激响应和阶跃响应的特点和性质。
冲激响应是指当输入信号为冲激信号时,系统输出的响应;阶跃响应是指当输入信号为阶跃信号时,系统输出的响应。
阶跃响应与冲激响应实验报告

阶跃响应与冲激响应实验报告一、实验目的。
本实验旨在通过对阶跃信号和冲激信号的响应进行实验,了解系统对不同输入信号的响应特性,掌握系统的阶跃响应和冲激响应的测试方法及实验步骤。
二、实验原理。
1. 阶跃响应。
阶跃信号是一种特殊的输入信号,其数学表达式为:\[f(t)=\begin{cases}。
0, & t<0 \\。
1, & t\geq0。
\end{cases}\]在实际系统中,当系统受到阶跃信号的刺激时,系统的输出响应即为系统的阶跃响应。
2. 冲激响应。
冲激信号是另一种特殊的输入信号,其数学表达式为:\[f(t)=\delta(t)\]其中,\(\delta(t)\)为狄拉克函数,其在t=0时取无穷大,其余时刻均为0。
在实际系统中,当系统受到冲激信号的刺激时,系统的输出响应即为系统的冲激响应。
三、实验内容。
1. 阶跃响应实验。
(1)搭建系统,将阶跃信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的阶跃响应曲线;(3)分析并总结系统的阶跃响应特性。
2. 冲激响应实验。
(1)搭建系统,将冲激信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的冲激响应曲线;(3)分析并总结系统的冲激响应特性。
四、实验步骤。
1. 阶跃响应实验步骤。
(1)按照实验要求搭建系统,将阶跃信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的阶跃响应曲线;(3)分析系统的阶跃响应特性,包括超调量、调节时间等。
2. 冲激响应实验步骤。
(1)按照实验要求搭建系统,将冲激信号作为输入信号输入系统中;(2)记录系统的输出响应,并绘制出系统的冲激响应曲线;(3)分析系统的冲激响应特性,包括零状态响应、零输入响应等。
五、实验结果与分析。
1. 阶跃响应实验结果与分析。
经过实验测试,我们得到了系统的阶跃响应曲线,并对其特性进行了分析。
通过分析,我们发现系统的超调量较小,调节时间较短,表明系统的动态响应特性较好。
冲击响应和阶跃响应实验报告

冲击响应和阶跃响应实验报告冲击响应和阶跃响应是信号处理和控制系统中常用的两种响应模式,在测试和分析系统性能时具有重要意义。
以下是一个涵盖实验报告中必要内容的例子,可供参考。
1.实验简介冲击响应和阶跃响应实验是用于测试和分析控制系统的两种常见方法。
本实验旨在研究两种响应对于系统稳定性和响应速度等性能指标的影响,并掌握实际测试方法和数据处理技巧。
2.实验原理冲击响应和阶跃响应是两种由输入信号引起的系统响应模式。
冲击响应通常由短暂宽度的单个脉冲信号引发,可以分析系统的频率响应和幅度响应特性。
阶跃响应则是由持续波形的阶跃信号引发的,可以分析系统的稳态误差和响应速度特性。
3.实验装置本实验使用了示波器、信号发生器和控制系统模型等设备。
控制系统可以是机械、电子或者数学模型,实验中以PID电路模拟控制系统。
4.实验步骤(1)连接实验装置,按照电路图接线。
(2)设置信号发生器为单个脉冲波形,设置控制系统为PID模型,设定参数。
(3)将信号发生器的输出与控制系统输入连接,记录系统的冲击响应曲线。
(4)将信号发生器的输出设为阶跃信号,记录系统的阶跃响应曲线。
(5)根据曲线数据,计算系统的稳态误差、过冲量和响应时间等性能指标。
5.实验结果和分析通过本次实验,我们获得了系统的冲击响应曲线和阶跃响应曲线,并对曲线数据进行了处理和分析。
通过分析数据,我们可以得出以下结论:冲击响应曲线可以反映系统频率响应和幅度响应特性,适用于分析系统的高频性能和阻尼特性。
阶跃响应曲线可以反映系统的稳态误差和响应速度特性,适用于分析系统的动态响应性能。
根据系统性能指标的计算和分析,我们可以评估系统的运行状态和稳定性,并对控制参数做出调整,以达到更好的性能和响应速度。
6.实验总结本次实验让我们熟悉了两种响应模式的测试方法和分析技巧,对于掌握信号处理和控制系统设计具有指导意义。
同时,通过实验可得到的系统性能指标可以对系统的设计、调试和性能优化提供重要参考和依据。
系统的阶跃响应实验报告

系统的阶跃响应实验报告
《系统的阶跃响应实验报告》
在工程控制领域,系统的阶跃响应实验是一种常见的实验方法,用于研究系统
对阶跃信号的响应特性。
通过对系统的阶跃响应进行实验,可以了解系统的稳
定性、灵敏度和动态特性,为系统设计和控制提供重要的参考依据。
本次实验的目标是通过对一个给定系统的阶跃响应进行测量和分析,从而了解
系统的动态特性和性能。
实验使用了一台数字控制系统和相应的传感器设备,
通过对系统输入阶跃信号的激励,观察系统输出的响应,并利用数学模型和数
据分析方法对实验结果进行处理和分析。
实验过程中,首先对系统进行了初始化和校准,确保实验设备和测量仪器的正
常工作。
随后,通过设定输入信号的幅值和时间参数,对系统进行了阶跃激励,记录了系统输出的响应数据。
实验过程中,需要注意对实验环境和条件的控制,以确保实验数据的准确性和可靠性。
实验结果显示,系统的阶跃响应呈现出一定的时间延迟和过渡过程,随后逐渐
趋于稳定状态。
通过对实验数据的分析,可以得到系统的动态响应特性,包括
时间常数、阻尼比和过渡时间等重要参数。
这些参数可以帮助工程师和研究人
员深入了解系统的性能和特性,为系统设计和控制提供重要的参考依据。
总的来说,系统的阶跃响应实验是一种重要的实验方法,通过对系统的动态响
应进行测量和分析,可以为工程控制领域的研究和应用提供重要的数据和信息。
通过不断的实验研究和数据分析,可以进一步完善系统的设计和控制,提高系
统的性能和稳定性,为工程领域的发展做出贡献。
典型环节及其阶跃响应实验报告

一、实验目的1. 了解并掌握典型环节的原理和特点。
2. 熟悉阶跃响应实验方法,分析典型环节阶跃响应的特性。
3. 通过实验,提高对自动控制理论的认识和实际操作能力。
二、实验原理1. 典型环节:比例环节、惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节等。
2. 阶跃响应:当系统输入信号从零突然跃变到某一值时,系统输出信号随时间的变化规律。
3. 阶跃响应特性:上升时间、调整时间、超调量、稳态误差等。
三、实验仪器1. 自动控制系统实验箱2. 计算机3. 数据采集卡4. 信号发生器5. 示波器四、实验内容1. 比例环节阶跃响应实验(1)搭建比例环节实验电路,包括比例环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使比例环节的传递函数为G(s) = K。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
2. 惯性环节阶跃响应实验(1)搭建惯性环节实验电路,包括惯性环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使惯性环节的传递函数为G(s) = Kτs/(τs+1)。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
3. 积分环节阶跃响应实验(1)搭建积分环节实验电路,包括积分环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使积分环节的传递函数为G(s) = 1/s。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
4. 比例积分环节阶跃响应实验(1)搭建比例积分环节实验电路,包括比例积分环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使比例积分环节的传递函数为G(s) = K(1+τs)/s。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告学院:电子信息与电气工程学院
班级: 13级电信<1>班
学号: 20131060104
姓名:李重阳
实验一 阶跃响应
一、实验目的
1.观察和测量RLC 串联电路的阶跃响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;
2.掌握有关信号时域的测量方法。
二、实验原理说明
实验如图1-1所示为RLC 串联电路的阶跃响应的电路连接图。
图1-1 阶跃响应电路连接示意图
其响应有以下三种状态:
(1) 当电阻R >2 L
C
时,称过阻尼状态; (2) 当电阻R = 2 L
C
时,称临界状态; (3) 当电阻R <2
L
C
时,称欠阻尼状态。
现将阶跃响应的动态指标定义如下:
上升时间t r :y(t)从0到第一次达到稳态值y (∞)所需的时间。
峰值时间t p :y(t)从0上升到y max 所需的时间。
调节时间t s :y(t)的振荡包络线进入到稳态值的5±%误差范围所需的时间。
最大超调量δ:100%y y )
(y max δ
p ⨯∞∞-=
⎪
⎪⎭
⎫ ⎝
⎛
10K Ω
信号源
C2 P914
L1 W902 1
TP906
10mH
P915
0.1μ
方波信号
5%
y(∞)
y(∞)
y max t r t p t s
y (t )
y max
图1-2 冲激响应动态指标示意图
冲激信号是阶跃信号的导数,所以对线性时不变电路冲激响应也是阶跃响应的导数。
为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号。
而用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。
三、实验内容
1.阶跃响应波形观察与参数测量
设激励信号为方波,其幅度为1.5V ,频率为500Hz 。
实验电路连接图如图1-1所示。
① 连接P04与P914。
② 调节信号源,使P04输出f=500Hz ,占空比为50%的脉冲信号,幅度调节为 1.5V ;(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载 后调节)
③ 示波器CH1接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过 阻尼三种状态,并将实验数据填入表格1-1中。
表1-1
状 态
参数测量
欠 阻 尼 状 态 临 界 状 态 过 阻 尼 状 态
参数测量
R<316.23
tr= ts= δ= R=316.23 tr=
R>316.23
波形观察
1.欠阻尼状态
2.临界状态
3,过阻尼状态
注:描绘波形要使三种状态的X轴坐标(扫描时间)一致。
四、实验报告要求
1.描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时,要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。
2.分析实验结果,说明电路参数变化对状态的影响。
五、实验设备
1.双踪示波器 1台
2.信号系统实验箱 1台。