电磁感应与电路剖析

合集下载

电磁感应中的电路问题简析

电磁感应中的电路问题简析
石 涛
( 山东省邹平县长山中学 2 60 ) 5 25
电磁感 应 中电路 问题 ,既与 电路 的分析计

程中只受 电场力 ,根据牛顿第二定律粒子 的加
速不 变 ,C对. 3 由等势线和轨迹判断有关问题
电场线与等势线之间的关系 :等势线和电
场线垂 直 ; 电场 线 密 ( ) 的地 方 ,电 场 强 算密切相关 ,又与电容器、力的平衡、功能关 疏 度大 ( ) 小 ,等 势线 密 ( ) 匀强 电场 的 电 系 ,牛顿第二定律等知识有机结合 ;既可考查 疏 .
和 Ⅳ是 轨 迹 上 的 两 点. 不 计 重 力 ,下 动. 图中的虚线 为 等 势 线 ,所 以 从 0点 到 b 的过 程 中电场 力对 粒 子 做 功等 于零 ,D正 点 列 表述 正确 的是 :( ) A.粒子在 点 的速率最 大 B .粒 子所受 电场力 沿电场 方 向 C .粒子 在 电场 中的加速度 不变 D .粒 子在 电场 中的 电势 能始终在 增加 确. 根据 、Ⅳ粒 子 的运 动 轨 迹 可 知 Ⅳ 受 到



做 功 即 电 场 力 做 负 功 ,所 以 锩
根 据 场线是等间距的平行线 ,等势线也是等问砸的
U= d E ,0到 肘 的平均 电场强度 大于 到 Ⅳ 平行线 ;在等势线上移动电荷 电场力不做功. . 。 的平均电场强度 ,所以有 删 > 所以c错. 例3 0 :(9年全 国) 图 3中虚线 为匀 强 电 从 0点 释放 正 电子 后 ,电场 力 做 正 功 ,该 粒 场 中与 场强方 向垂直 的 等间距 平行直 线. 一两粒 子将沿 , , 轴做加速直线运动 ,所以 D对. 2 由电场线 和轨 迹判 断有关 问题

高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。

由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。

从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。

考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。

二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。

2.电磁感应与电路知识的综合。

3.电磁感应中的动力学问题。

4.电磁感应中动量定理、动能定理的应用。

5.电磁感应中的单金属棒的运动及能量分析。

6.电磁感应中的双金属棒运动及能量分析。

7.多种原因引起的电磁感应现象。

(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。

导线框与磁场区域的尺寸如图所示。

从t =0时刻开始线框匀速横穿两个磁场区域。

以a →b →c →d →e →f 为线框中有电动势的正方向。

以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)电磁感应中的电路问题(解析版)电磁感应是电磁学中的重要概念,也是我们日常生活中常常遇到的现象。

在电磁感应中,涉及到很多与电路相关的问题。

本文将围绕电磁感应中的电路问题展开讨论,解析其中的关键概念和原理。

一、电磁感应简介电磁感应是指由于磁场的变化而在导体中产生感应电动势的现象。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,穿过电路的感应电动势将产生导致电流的运动。

二、电路中的电磁感应问题在电路中,由于电磁感应的存在,会出现一系列问题需要解决。

其中包括以下两个重要方面:1. 阻抗和电感在电路中,电感是指导体中感应电流的产生和变化所产生的自感现象。

与电感相关的一个重要概念是阻抗,它是交流电路中的电阻和电感的综合表达。

当电磁感应作用下,电路的阻抗会发生变化,从而影响电流的流动。

2. 感应电动势和电路中的能量转化电磁感应中产生的感应电动势可以引发电路中的能量转化。

当磁场发生变化时,电磁感应会引发感应电动势,从而使电流在电路中产生。

这种能量转化可以用于各种电器设备的工作。

三、解析实例:电动车发电机原理为了更好地理解电磁感应中的电路问题,我们以电动车发电机为例进行解析。

在电动车发电机中,磁场的变化产生感应电动势,从而驱动发电机工作。

首先,通过燃料燃烧,发动机带动发电机转子旋转。

转子上的永磁体与固定的线圈之间产生磁场的变化,导致感应电动势产生。

感应电动势通过电路中的导线,形成感应电流,进而为电动车提供所需的电能。

电动车发电机中的电路问题值得我们深入研究。

在这个电路中,电流的大小和方向需要合理设置,以保证发电机正常工作。

同时,电路中的电阻、电感和阻抗等参数的选择也对电磁感应的效果产生重要影响。

四、应用领域及进一步研究的方向电磁感应中的电路问题在许多领域都有重要的应用,值得我们进一步研究和探索。

例如,在能源领域,电磁感应可以用于发电机、变压器等设备中,实现能源的转化和传输。

高二物理电磁感应与电路分析

高二物理电磁感应与电路分析

高二物理电磁感应与电路分析电磁感应和电路分析是物理学中非常重要的两个概念。

电磁感应指的是在磁场中由于磁通量的改变而引起感应电动势的现象,而电路分析则是对电路中电流、电压和电阻等基本元件进行分析和计算的过程。

一、电磁感应电磁感应是基于法拉第电磁感应定律的。

法拉第电磁感应定律表明当导体线圈中的磁通量发生变化时,即磁通量的导数不为零时,感应在线圈中产生电动势。

根据该定律,感应电动势的大小与磁通量的变化速率成正比。

二、电路分析电路分析是对电路中各元件的电流、电压和电阻进行计算的过程。

电路分析中最基本的概念是欧姆定律,欧姆定律指出电流与电压之间存在线性关系,且电阻为常数。

根据欧姆定律,电流等于电压与电阻的比值。

在电路分析中,常用的方法包括串联和并联。

串联是指将电路中的元件按顺序连接起来,形成一个电路,而并联则是将电路中的元件平行连接起来。

串联和并联的特点决定了它们对电阻和电流的影响。

三、电磁感应与电路分析的应用电磁感应和电路分析的应用非常广泛。

在电力工程中,电磁感应被应用于发电机的工作原理中。

发电机利用磁场和线圈的相互作用,产生感应电动势,从而将机械能转换为电能。

另外,电路分析也被广泛应用于电子设备的设计和维修中。

通过对电路中的电流、电压和电阻进行分析,可以确定电路是否正常工作,以及找出电路中可能存在的故障。

四、电磁感应与电路分析的实验为了更好地理解电磁感应和电路分析的原理,学生通常会进行相关的实验。

例如,可以利用导线线圈和磁铁制作一个简单的发电机模型,观察磁铁在线圈附近移动时是否会产生电动势。

同时,学生还可以通过搭建不同类型的电路,如串联和并联电路,来研究电路中不同元件的电流和电压分布情况。

总结:电磁感应和电路分析是物理学中重要的概念。

电磁感应指的是磁通量的变化引起的感应电动势,而电路分析是对电路中各种元件的电流、电压和电阻进行计算和分析。

它们在电力工程和电子设备设计中都有广泛的应用。

通过实验,学生可以更好地理解和应用电磁感应和电路分析的原理。

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)

专题十六 电磁感应中的电路问题基本知识点解决电磁感应电路问题的基本步骤:1.用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r .2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.3.根据E =Blv 或E =n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题分析一、电磁感应中的简单电路问题例1 如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T 。

导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。

导轨和导体棒的电阻均可忽略不计。

在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s 。

(1)求感应电动势E 和感应电流I ;(2)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U 。

(对应训练)如图所示,MN、PQ为平行光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50 cm,导体棒AB在两轨道间的电阻为r=1 Ω,且可以在MN、PQ上滑动,定值电阻R1=3 Ω,R2=6 Ω,整个装置放在磁感应强度为B=1.0 T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=5 m/s的速度做匀速运动。

求:(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向;(2)导体棒AB两端的电压U AB。

二、电磁感应中的复杂电路问题例2如图所示,ab、cd为足够长、水平放置的光滑固定导轨,导体棒MN的长度为L=2 m,电阻r=1 Ω,有垂直abcd平面向下的匀强磁场,磁感强度B=1.5 T,定值电阻R1=4 Ω,R2=20 Ω,当导体棒MN以v=4 m/s的速度向左做匀速直线运动时,电流表的示数为0.45 A,灯泡L正常发光。

电磁感应与含电容器电路的综合分析

电磁感应与含电容器电路的综合分析
01
当前研究主要集中在理想条件下的理论分析和数值模拟,对于实际应用中存在 的复杂环境和影响因素考虑不足。
02
需要进一步开展实验研究,验证理论分析的正确性和有效性,并探索实际应用 中可能出现的问题和解决方案。
03
随着科技的发展,可以预见未来含电容器电路将在能源转换、信号处理、智能 控制等领域发挥更加重要的作用。因此,需要加强基础研究,推动相关技术的 创新和应用。
实验设备:电磁铁、线圈、电容器、直流电源 、电流表、电压表、导线等。
01
1. 搭建实验电路,将线圈与电容器串联, 连接到直流电源上。
03
02
实验步骤
04
2. 调整磁场,观察线圈中产生的感应电动 势和电容器两端电压的变化。
3. 调整电场,观察电容器充电和放电过程 中电流的变化。
05
06
4. 记录实验数据,分析电磁感应与电容器 相互作用的规律。
实验结果与数据分析
实验结果
通过观察和记录实验数据,可以发现线圈中产生的感应电动势与磁场的变化率成正比,电容器两端电 压与电场强度成正比。在电磁感应与电容器相互作用的过程中,线圈中产生的感应电动势会改变电容 器两端的电压,而电容器两端电压的变化也会影响线圈中感应电动势的大小。
数据分析
根据实验数据,可以进一步分析电磁感应与电容器相互作用的规律。例如,通过比较不同磁场和电场 条件下线圈中感应电动势和电容器两端电压的变化,可以得出它们之间的定量关系。这些规律有助于 深入理解电磁场理论在电路分析中的应用。
阻尼振荡
电容器可以吸收多余的能量,起到阻尼振荡的作 用,稳定电路的工作状态。
滤波作用
电容器可以过滤掉电路中的高频噪声,提高信号 的纯度。
电磁感应与电容器的相互作用实例分析

电磁感应中的电路问题分析

电磁感应中的电路问题分析

技法点拨电磁感应中的电路问题分析■胡楚兵摘要:《电磁感应及其用》是高中物理必修2第一主题的内容,电磁感应中的电路问题是《电磁感应及其用》的一个方面,是高考的热点内容,解题时需要将电磁感应、电路的知识综合起来应用,需要学生找出等效电源,弄清电路结构,利用电路规律。

关键词:电磁感应;电路;剖析;探究;回访一、2019年考试大纲:电磁感应、电路1.电磁感应I :电磁感应现象,磁通量,自感、涡流。

II :法拉第电磁感应定律,楞次定律。

2.电路I :电阻定律,电阻的串联、并联,电功率、焦耳定律。

II :电源的电动势和内阻,欧姆定律,闭合电路欧姆定律。

二、经典题型剖析如图所示,光滑金属导轨ac 、bd 水平平行放置,处在方向竖直向下、磁感应强度为B 的匀强磁场中,导轨左侧接有阻值为R =2r 的定值电阻,导轨间距为L ,导轨电阻不计。

一质量为m 、电阻为r 、长度也为L 的金属导体棒MN 垂直导轨放置在导轨上,在水平向右的拉力作用下向右匀速运动,速度为v 。

问:(1)画出其等效电路图。

(2)金属棒MN 产生的电动势E =____,___(M 或N )端是电源正极。

(3)电阻R 中的电流方向是_______,U MN =_____。

(4)若导体棒向右运动距离为x ,则此过程中通过导体棒的电荷量q =_____。

r 答案:BLv ,M ,a →b ,23BLv ,BLx 3r 三、科学探究(一)寻找电源:探究供电方式1.(2016年全国Ⅱ卷20)法拉第圆盘发动机的示意图如图所示。

铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触。

圆盘处于方向竖直向上的匀强磁场B 中。

圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是()A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的两倍,则电流在R 上的热功率也变为原来的2倍答案:AB2.(2019年全国Ⅰ卷20)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。

电磁感应中的电路与图像问题-PPT课件

电磁感应中的电路与图像问题-PPT课件

【解析】 (1)把切割磁感线的金属棒看成一个具有内阻为 R,电动势为 E 的电源,两个半圆环看成两个并联电阻,画出 等效电路如右图所示.
等效电源电动势为 E=BLv=2Bav
外电路的总电阻为 R 外=RR+·RR=12R 棒上电流大小为 I=RE总=122RB+avR=43BRav 根据分压原理,棒两端的电压为
3.电磁感应中电路问题的分析步骤 (1)先明确哪部分是电源,哪部分是外电路. (2)再分析外电路是怎样连接的,较复杂的要画出等效电 路. (3)用 E=nΔΔΦt 或 E=Blv 计算出感应电动势. (4)最后应用闭合电路的欧姆定律和部分电路欧姆定律,并 结合串、并联电路知识进行电流、电压以及电功率的计算.
例 2 (2011·河南郑州)如图所示,等腰三角形内分布有垂
直于纸面向外的匀强磁场,它的底边在 x 轴上且长为 2L,高为
L.纸面内一边长为 L 的正方形导线框沿 x 轴正方向做匀速直线
运动穿过匀强磁场区域,在 t=0 时刻恰好位于图中所示的位
置.以顺时针方向为导线框中电流的正方向,在下面四幅图中
UMN=R外R+外 R·E=23Bav (2)圆环和金属棒上消耗的总热功率 P=IE=8B32aR2v2
大家学习辛苦了,还是要坚持
继续保持安静
题后反思 (1)有些同学误认为电源两端电压就等于电源电动势,即 UMN=2Bav.实际上电源两端的电压就是路端电压(外电路的两 端),并不等于电源电动势.只有在特殊情况下,即内阻 r=0 时,电源两端电压在数值上才等于电源电动势.此处应引起注 意. (2)除了上面提到的易错点以外,对外电路连接特点搞不清 以及电路计算的基本功不扎实,也是导致错误的常见原因.
电磁感应中的电路与图像问题
一、电磁感应中的电路问题 规律方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题七.电磁感应(4课时)课时1: 电磁感应与电路要点分析:思想方法提炼电磁感应是电磁学的核心内容,也是高中物理综合性最强的内容之一,高考每年必考。

题型有选择、填空和计算等,难度在中档左右,也经常会以压轴题出现。

在知识上,它既与电路的分析计算密切相关,又与力学中力的平衡、动量定理、功能关系等知识有机结合;方法能力上,它既可考查学生形象思维和抽象思维能力、分析推理和综合能力,又可考查学生运用数学知识(如函数数值讨论、图像法等)的能力。

高考的热点问题和复习对策:1.运用楞次定律判断感应电流(电动势)方向,运用法拉第电磁感应定律,计算感应电动势大小.注重在理解的基础上掌握灵活运用的技巧.2.矩形线圈穿过有界磁场区域和滑轨类问题的分析计算。

要培养良好的分析习惯,运用动力学知识,逐步分析整个动态过程,找出关键条件,运用运动定律特别是功能关系解题。

3.实际应用问题,如日光灯原理、磁悬浮原理、电磁阻尼等复习时应多注意。

此部分涉及的主要内容有: 1.电磁感应现象.(1)产生条件:回路中的磁通量发生变化.(2)感应电流与感应电动势:在电磁感应现象中产生的是感应电动势,若回路是闭合的,则有感应电流产生;若回路不闭合,则只有电动势,而无电流.(3)在闭合回路中,产生感应电动势的部分是电源,其余部分则为外电路.2.法拉第电磁感应定律:E=n ,E=BLvsin θ, 注意瞬时值和平均值的计算方法不同.3.楞次定律三种表述:(1)感应电流的磁场总是阻碍磁通量的变化(涉及到:原磁场方向、磁通量增减、感应电流的磁场方向和感应电流方向等四方面).右手定则是其中一种特例. (2)感应电流引起的运动总是阻碍相对运动. (3)自感电动势的方向总是阻碍原电流变化. 4.相关链接(1)受力分析、合力方向与速度变化,牛顿定律、动能定理、动量守恒定律、匀速圆周运动、功和能的关系等力学知识.(2)欧姆定律、电流方向与电势高低、电功、电功率、焦耳定律等电路知识. (3)能的转化与守恒定律.t ∆∆Φ2.典型例题【例1】三个闭合矩形线框Ⅰ、Ⅱ、Ⅲ处在同一竖直平面内,在线框的正上方有一条固定的长直导线,导线中通有自左向右的恒定电流,如图所示,若三个闭合线框分别做如下运动:Ⅰ沿垂直长直导线向下运动,Ⅱ沿平行长直导线方向平动,Ⅲ绕其竖直中心轴OO′转动.(1)在这三个线框运动的过程中,哪些线框中有感应电流产生?方向如何?(2)线框Ⅲ转到图示位置的瞬间,是否有感应电流产生?【例2】如图所示,在倾角为θ的光滑的斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,一个质量为m,边长也为L的正方形线框(设电阻为R)以速度v进入磁场时,恰好做匀速直线运动.若当a b边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则:(1)当a b边刚越过ff′时,线框加速度的值为多少?(2)求线框开始进入磁场到a b边到达gg′与ff′中点的过程中产生的热量是多少?【例3】如图所示,d a、cb为相距L的平行导轨(电阻可以忽略不计).a、b间接有一个固定电阻,阻值为R.长直细金属杆MN可以按任意角架在水平导轨上,并以速度v匀速滑动(平移),v的方向和d a平行. 杆MN有电阻,每米长的电阻值为R.整个空间充满匀强磁场,磁感应强度的大小为B,方向垂直纸面(dabc平面)向里(1)求固定电阻R上消耗的电功率为最大时θ角的值(2)求杆MN上消耗的电功率为最大时θ角的值.【例4】如图所示,光滑的平行导轨P、Q相距L=1m,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨电阻不计.磁感应强度B=0.4T的匀强磁场竖直向下穿过导轨面.当金属棒a b沿导轨向右匀速运动(开关S断开)时,电容器两极板之间质量m=1×10-14kg、带电量Q=-1×10-15C的微粒恰好静止不动;当S闭合时,微粒以加速度a=7m/s2向下做匀加速运动,取g=10m/s2,求:(1)金属棒a b运动的速度多大?电阻多大?(2)S闭合后,使金属棒a b做匀速运动的外力的功率多大?3.针对训练1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。

导线框与磁场区域的尺寸如图所示。

从t =0时刻开始线框匀速横穿两个磁场区域。

以a →b →c →d →e →f 为线框中有电动势的正方向。

以下四个ε-t 关系示意图中正确的是【 】2.(2005理综Ⅱ卷)处在匀强磁场中的矩形线圈abcd ,以恒定的角速度绕ab 边转动,磁场方向平行于纸面并与ab 垂直。

在t=0时刻,线圈平面与纸面重合(如图),线圈的cd 边离开纸面向外运动。

若规定由a→b→c→d→a 方向的感应电流为正,则能反映线圈中感应电流I 随时间t 变化的图线是【 】3.(2005北京理综)现将电池组、滑线变阻器、带铁芯的线圈A 、线圈B 、电流计及开关如下图连接。

在开关闭合、线圈A 放在线圈B 中的情况下,某同学发现当他将滑线变阻器的滑动端P 向左加速滑动时,电流计指针向右偏转。

由此可以推断【 】A .线圈A 向上移动或滑动变阻器的滑动端P 向右加速滑动,都能引起电流计指针向左偏转B .线圈A 中铁芯向上拔出或断开开关,都能引起电流计指针向右偏转C .滑动变阻器的滑动端P 匀速向左或匀速向右滑动都能使电流计指针静止在中央D .因为线圈A 、线圈B 的绕线方向未知,故无法判断电流计指针偏转的方向4.(2002全国理综)图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆。

有均匀磁场垂直于导轨平面。

若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB 【 】A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠05.(2007北京理综)电阻R 1、R 2交流电源按照图1所示方式连接,R 1=10Ω,R 2=20Ω。

合上开关后S 后,通过电阻R 2的正弦交变电流i 随时间t 变化的情况如图2所示。

则【 】t ε B . 0 1 2 3 4 t ε C . 0 1 2 3 4 t ε D . 0 1 2 3 4t ε A . 0 1 2 3 4 tI Ct 0I D tI AtI BB a bcdA.通过R1的电流的有效值是1.2A B.R1两端的电压有效值是6VC.通过R2的电流的有效值是1.22A D.R2两端的电压有效值是62V6.(2006江苏物理)如图所示电路中的变压器为理想变压器,S为单刀双掷开关,P 是滑动变阻器R的滑动触头,U1为加在原线圈两端的交变电压,I1、I2分别为原线圈和副线圈中的电流。

下列说法正确的是【】A.保持P的位置及U1不变,S由b切换到a,则R上消耗的功率减小B.保持P的位置及U1不变,S由a切换到b,则I2减小C.保持P的位置及U1不变,S由b切换到a,则I1增大D.保持U1不变,S接在b端,将P向上滑动,则I1减小7.如图所示,线圈abcd每边长L=0.20m,线圈质量m1=0.10kg、电阻R=0.10Ω,砝码质量m2=0.14kg.线圈上方的匀强磁场磁感强度B=0.5T,方向垂直线圈平面向里,磁场区域的宽度为h=L=0.20m.砝码从某一位置下降,使ab边进入磁场开始做匀速运动.求线圈做匀速运动的速度.图33-18、如图所示,两根互相平行、间距d=0.4米的金属导轨,水平放置于匀强磁场中,磁感应强度B=0.2T,磁场垂直于导轨平面,金属滑杆ab、cd所受摩擦力均为f=0.2N。

两根杆电阻均为r=0.1Ω,导轨电阻不计,当ab杆受力F=0.4N的恒力作用时,ab杆以V1做匀速直线运动,cd杆以V2做匀速直线运动,求速度差(V1-V2)等于多少?图32-1 9.如图a所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨距L= 0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg、电阻r=0.1Ω的金属杆,导轨电阻可忽略不计,整个装置处于磁感强度B= 0.5T的匀强磁场中,磁场方向竖直向下.现用一外力F沿水平方向拉杆,使之由静止开始运动,若理想电压表的示数U随时间t变化的关系如图b所示(1)试分析说明金属杆的运动情况;(2)求第2s末外力F的瞬时功率.10.(2009届盐城市高三摸底试题)如图所示,电阻忽略不计的、两根两平行的光滑金属导轨竖直放置,其上端接一阻值为3Ω的定值电阻R。

在水平虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B,磁场区域的高度为d=0.5m。

导体棒a的质量m a=0.2kg、电阻R a=3Ω;导体棒b的质量m b=0.1kg、电阻R b=6Ω,它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,且都能匀速穿过磁场区域,当 b 刚穿出磁场时a正好进入磁场.设重力加速度为g=10m/s2。

(不计a、b之间的作用)求:(1)在整个过程中,a、b两棒克服安培力分别做的功;(2)M点和N点距L1的高度。

11.如图所示,MN、PQ为平行光滑导轨,其电阻忽略不计,与地面成30°角固定.N、Q间接一电阻R′=10Ω,M、P端与电池组和开关组成回路,电动势E=6V,内阻r=1.0Ω,导轨区域加有与两导轨所在平面垂直的匀强磁场.现将一条质量m=10g,电阻R=10 Ω的金属导线置于导轨上,并保持导线ab水平.已知导轨间距L=0.1m,当开关S接通后导线ab恰静止不动.(1)试计算磁感应强度的大小.(2)若某时刻将电键S断开,求导线ab能达到的最大速度.(设导轨足够长)RabMN1LLd B12.如图13所示,平行的光滑金属导轨EF和GH相距L ,处于同一竖直平面内,GE间解有阻值为R的电阻,轻质金属杆ab长为2L ,近贴导轨数值放置,离b端0.5L 处固定有质量为m的小球,整个装置处于磁感应强度为B并与导轨平面垂直的匀强磁场中,当ab杆由静止开始紧贴导轨绕b端向右倒下至水平位置时,球的速度为v,若导轨足够长,导轨及金属杆电阻不计,求在此过程中: (1)通过电阻R的电量;(2)R中通过的最大电流强度.13.如图14所示,磁感应强度B=0.2T 的匀强磁场中有一折成30°角的足够长的金属导轨aob ,导轨平面垂直于磁场方向。

一条长度m l 100=的直导线MN 垂直ob 方向放置在轨道上并接触良好。

相关文档
最新文档