辽宁省大连市2013年中考数学试卷(解析版)
2013学年辽宁鞍山中考数学试卷及答案(word解析版)

2013年辽宁省鞍山市中考数学试卷一.选择题(共8小题,每小题2分,满分16分)1.(2013鞍山)3﹣1等于()A.3 B.﹣C.﹣3 D.考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂:a﹣p=(a≠0,p为正整数),进行运算即可.解答:解:3﹣1=.故选D.点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.(2013鞍山)一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6考点:众数.分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.(2013鞍山)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°考点:平行线的性质;三角形内角和定理.专题:探究型.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4.(2013鞍山)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,2﹣x≥0,解得x≤2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2013鞍山)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根考点:解一元二次方程-直接开平方法.分析:根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.解答:解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.点评:此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.(2013鞍山)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.2 9.2 9.2 9.2方差(环2)0.035 0.015 0.025 0.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁考点:方差.专题:图表型.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(2013鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个考点:二次函数图象与系数的关系.分析:由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c<0.解答:解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共8小题,每小题2分,满分16分)9.(2013鞍山)分解因式:m2﹣10m= .考点:因式分解-提公因式法.分析:直接提取公因式m即可.解答:解:m2﹣10m=m(m﹣10),故答案为:m(m﹣10).点评:此题主要考查了提公因式法分解因式,关键是找准公因式.10.(2013鞍山)如图,∠A+∠B+∠C+∠D= 度.考点:多边形内角与外角.分析:根据四边形内角和等于360°即可求解.解答:解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.点评:考查了四边形内角和等于360°的基础知识.11.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.考点:一次函数图象与系数的关系.专题:探究型.分析:先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.解答:解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.(2013鞍山)若方程组,则3(x+y)﹣(3x﹣5y)的值是.考点:解二元一次方程组.专题:整体思想.分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.解答:解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.(2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(2013鞍山)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.解答:解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.点评:依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.15.(2013鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.考点:二元一次方程组的应用.分析:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.解答:解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.16.(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.三.计算题(共2小题,每小题6分,满分12分)17.(2013鞍山)先化简,再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为后解答.解答:解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1,=﹣1=﹣1.点评:本题考查了分式的化简求值,能正确进行因式分解是解题的关键.18.(2013鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.四.应用题(共2小题,每小题6分,满分12分)19.(2013鞍山)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可解答:解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(2013鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.解答:解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.点评:本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.五.应用题(共2小题,每小题6分,满分12分)21.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.22.(2013鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.考点:平行四边形的判定;全等三角形的判定.专题:证明题.分析:(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.解答:证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).点评:此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.六.应用题(共2小题,每小题6分,满分12分)23.(2013鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.考点:切线的性质;勾股定理.专题:计算题.分析:(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.解答:解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.点评:此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(2013鞍山)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.考点:反比例函数综合题.专题:计算题;数形结合.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.七.应用题(满分10分)25.(2013鞍山)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?考点:正方形的性质;全等三角形的判定与性质.专题:证明题;探究型.分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD 成立.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)点评:本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.八.应用题(满分10分)26.(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c 的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。
(历年中考)辽宁省大连市中考数学试题含答案

2016 年辽宁省大连市中考数学试卷一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.﹣ 3 的相反数是( ) A . B .C .3D .﹣ 32.在平面直角坐标系中,点( 1, 5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.方程 2x+3=7 的解是( ) A .x=5 B .x=4 C . x=3.5 D .x=2A .x>﹣ 2B .x<1C .﹣ 1<x<2D .﹣2<x<1 6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4 随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是( )A .B .C .D .7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 8.如图,按照三AB ∥CD ,AE 平分∠CAB .AE 与 CD 相交于点 E , ∠ACD=40°,则 ∠BAE 5.不等式组 的解集是4.如图,直线140视图确定该几何体的全面积是(图中尺寸单位:cm)()二、填空题:本大题共 8小题,每小题 3 分,共 24分29.因式分解: x ﹣ 3x= .10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为 .11.如图,将△ ABC 绕点 A 逆时针旋转的到 △ADE ,点 C 和点 E 是对应点, 若∠CAE=90°,12.下表是某校女子排球队队员的年龄分布 年龄 /岁13 14 15 16 频数1173则该校女子排球队队员的平均年龄是 岁.15.如图,一艘渔船位于灯塔 P 的北偏东 30°方向,距离灯塔 18 海里的 A 处,它沿正南方 向航行一段时间后, 到达位于灯塔 P 的南偏东 55°方向上的 B 处,此时A .40π cm 2B . 65π cm 2C . 80π cm 2D . 105π cm 213.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是a 的取值范是渔船与灯塔 P的距离约为海里(结果取整数)(参考数据: sin55 °≈ 0,.8cos55°≈ 0,.6tan55 °≈1).4.20.为了解某小区某月家庭用水量的情况, 从该小区随机抽取部分家庭进行调查,据调查数据绘制的统计图表的一部分 分组 家庭用水量 x/ 吨 家庭数 /户A 0≤x ≤ 4.0 4B 4.0<x ≤ 6.513C 6.5<x ≤ 9.0D 9.0<x ≤ 11.5E11.5< x ≤ 14.06 F x>4.03根据以上信息,解答下列问题216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B ( m+2, 0)与 y 轴相交于点 在该抛物线上,坐标为( m , c ),则点 A 的坐标是 .C ,点 D三、解答题:本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分17.计算:( +1)( ﹣ 1)+(﹣2)0﹣.18.先化简,再求值:( 2a+b )2﹣a ( 4a+3b ),其中 a=1, b= . 19.如图, BD 是? ABCD 的对角线, AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F ,AE=CF .以下是根1)家庭用水量在 4.0< x ≤6.5范围内的家庭有 户,在 6.5< x ≤9.0范围内的家庭数占被调查家庭数的百分比是 %; ( 2)本次调查的家庭数为 户,家庭用水量在 9.0< x ≤11.5范围内的家庭数占被 调查家庭数的百分比是 %;3)家庭用水量的中位数落在组;四、解答题:本大题共 3小题, 21、22各 9分 23题 10分,共 28分21.A 、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速 开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶 30 千米,求甲、乙 两车的速度.222.如图,抛物线 y=x 2﹣3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,点 D 是直线BC 下方抛物线上一点,过点 D 作 y 轴的平行线,与直线 BC 相交于点 E ( 1)求直线 BC 的解析式; (2)当线段 DE 的长度最大时,求点 D 的坐标.23.如图, AB 是⊙O 的直径,点 C 、D 在⊙O 上, ∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上, ∠AED= ∠ABC ( 1)求证: DE 与⊙O 相切; (2)若 BF=2,DF= ,求⊙O 的半径.200 户家庭,请估计该月用水量不超过9.0 吨的家庭数. 4)若该小区共五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图 1,△ABC 中,∠ C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m< x ≤3时,函数的解析式不同)( 1)填空: BC 的长是;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D在BC 边上,∠DAB= ∠ABD, BE⊥AD ,垂足为 E,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠ BEA ,从而可证△ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL中”的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3,△ ABC 中, AB=AC ,∠BAC=90° ,D为BC的中点, E为 DC的中点,点 F 在 AC 的延长线上,且∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长;3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D、E分别在 AB、AC 边上,且AD=kDB其中 0<k< ),∠AED= ∠BCD ,求的值(用含 k 的式子表示).26.如图,在平面直角坐标系xOy 中,抛物线 y=x2+ 与 y 轴相交于点 A,点 B 与点 O关于点 A 对称1)填空:点 B 的坐标是2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l 平行于 y轴,P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点P是否在抛物线上,说明理由;3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求2016 年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.﹣ 3 的相反数是()A. B.C.3 D.﹣ 3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣ 3)+3=0 .故选 C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点( 1, 5)所在的象限是()A .第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点( 1, 5)所在的象限是第一象限.故选 A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).3.方程 2x+3=7 的解是() A.x=5 B.x=4 C . x=3.5 D .x=2 【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把 x 系数化为1,即可求出解.【解答】解: 2x+3=7 ,移项合并得: 2x=4 ,解得: x=2,故选 D点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线 AB ∥CD, AE 平分∠CAB.AE 与 CD 相交于点 E,∠ACD=40°,则∠BAE【考点】平行线的性质.【分析】先由平行线性质得出∠ACD 与∠BAC 互补,并根据已知∠ACD=4°0 计算出∠ BAC 的度数,再根据角平分线性质求出∠ BAE 的度数.【解答】解:∵AB ∥CD,∴∠ ACD+ ∠ BAC=18°0 ,∵∠ ACD=4°0 ,∴∠ BAC=18°0 ﹣ 40°=140°,∵AE 平分∠CAB ,∴∠ BAE= ∠ BAC= ×140°=70°,故选 B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③ 同旁内角互补;并会书写角平分线定义的三种表达式:若 AP 平分∠BAC ,则①∠ BAP= ∠PAC,②∠ BAP= ∠ BAC ,③∠ BAC=2 ∠BAP .5.不等式组的解集是A.x>﹣ 2 B.x<1 C.﹣ 1<x<2 D.﹣2<x<1考点】解一元一次不等式组.分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解答】解: 解① 得 x>﹣2, 解② 得 x<1, 则不等式组的解集是:﹣ 2< x<1. 故选 D .【点评】 本题考查了一元一次不等式组的解法: 解一元一次不等式组时, 一般先求出其中各 不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大 中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1,2,3,4 随机摸出个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于考点】列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球 标号的积小于 4 的情况,再利用概率公式求解即可求得答案. 解答】解:画树状图得:故选 C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为: 概率 =所求情况数与总情况数之比.4 的概率是( )A .B .C .D .∵共有 12 种等可能的结果,两次摸出的小球标号的积小于 4 的有 4 种情况, ∴ 两次摸出的小球标号的积小于 4 的概率是: =.7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 【考点】由实际问题抽象出一元二次方程. 【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是 100( 1+x ),五月份的产量是 100(1+x )2,据此列方程即可. 【解答】解:若月平均增长率为x ,则该文具店五月份销售铅笔的支数是: 100(1+x ) 2, 故选: B .【点评】 本题考查数量平均变化率问题, 解题的关键是正确列出一元二次方程. 原来的数量 为 a ,平均每次增长或降低的百分率为 x 的话,经过第一次调整,就调整到a ×( 1±x ),再经过第二次调整就是 a ×(1±x )( 1±x )=a (1±x )2.增长用 “+”,下降用 “﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆 锥的母线长和底面半径,从而确定其表面积.【解答】 解: 由主视图和左视图为三角形判断出是锥体, 由俯视图是圆形可判断出cm )( )A .40π cm 2B . 65π cm 2C .80π cm 2D .105π cm 2这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为 10÷2=5cm ,2 2 2故表面积 =π rl+ π=rπ× 5× 8+ π=6×55π cm.故选: B.【点评】考查学生对三视图掌握程度和灵活运用同时也体现了对空间想象能力方面的能力,考查.二、填空题:本大题共8小题,每小题 3 分,共24分29.因式分解: x2﹣3x= x( x﹣3).【考点】因式分解 -提公因式法.【专题】因式分解.【分析】确定公因式是 x ,然后提取公因式即可.【解答】解: x 2﹣ 3x=x (x﹣3).故答案为: x(x﹣ 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点( 1,﹣ 6)代入反比例函数 y= ,求出 k 的值即可.【解答】解:∵反比例函数 y= 的图象经过点( 1,﹣ 6),∴ k=1×(﹣ 6) =﹣6.故答案为:﹣ 6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ ABC 绕点 A 逆时针旋转的到△ADE ,点 C和点 E是对应点,若∠ CAE=90°,【分析】由旋转的性质得: AB=AD=1 ,∠BAD= ∠CAE=90° ,再根据勾股定理即可求出 BD .【解答】解:∵将△ABC 绕点 A 逆时针旋转的到△ADE ,点C和点 E 是对应点,∴ AB=AD=1 ,∠BAD= ∠CAE=90° ,∴ BD= = = .故答案为.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;② 对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄 /岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是 15 岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得: (13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15 岁.故答案为: 15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是 24【分析】直接利用菱形的性质结合勾股定理得出 BD 的长,再利用菱形面积求法得出答案.【解答】解:连接 BD ,交 AC 于点 O,考点】旋转的性∵ 四边形 ABCD 是菱形,∴AC ⊥BD ,AO=CO=4 ,∴ BO= =3,故 BD=6 ,则菱形的面积是:×6×8=24 .点评】此题主要考查了菱形的性质以及勾股定理,正确求出214.若关于 x 的方程 2x 2+x ﹣a=0 有两个不相等的实数根,则实数 a的取值范围是 a>﹣【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:2∵关于 x 的方程 2x2+x﹣a=0 有两个不相等的实数根,2∴△ =12﹣ 4×2×(﹣ a)=1+8a>0,解得: a>﹣.故答案为: a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a> 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P的北偏东 30°方向,距离灯塔 18海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东 55°方向上的 B 处,此时渔船与灯塔 P的距离约为 11 海里(结果取整数)(参考数据:BD 的长是解题关键.sin55 °≈0,.8cos55°≈0,.6tan55°≈1).4.考点】解直角三角形的应用 - 方向角问题.分析】作 PC⊥AB 于 C,先解 Rt△ PAC ,得出 PC= PA=9 ,再解 Rt△PBC,得出PB= ≈ 11.解答】解:如图,作 PC⊥ AB 于 C,在 Rt△PAC 中,∵PA=18 ,∠A=30°,∴PC= PA= ×18=9,在 Rt△PBC中,∵ PC=9,∠ B=55°,∴ PB= ≈≈11,答:此时渔船与灯塔 P 的距离约为 11海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B( m+2, 0)与 y 轴相交于点 C,点 D 在该抛物线上,坐标为( m, c),则点 A 的坐标是(﹣ 2,0).【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据 A 、B 关于对称轴对称,可得 A 点坐标.【解答】解:由 C ( 0, c ), D ( m , c ),得函数图象的对称轴是 x= , 设 A 点坐标为( x ,0),由 A 、 B 关于对称轴 x= ,得=,解得 x= ﹣2,即 A 点坐标为(﹣ 2, 0), 故答案为:(﹣ 2,0).【点评】本题考查了抛物线与 x 轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题: 本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分 17.计算:(+1)( ﹣ 1)+(﹣2)0﹣ . 【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简 3 个考点.在计算时,需要针对每 个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:( +1)(﹣ 1) +(﹣ 2)0﹣=5﹣ 1+1﹣3 =2.【点评】 本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类 题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:( 2a+b)2﹣ a( 4a+3b),其中 a=1, b= .考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 a与 b的值代入计算即可求出值.【解答】解:原式 =4a2+4ab+b2﹣4a2﹣ 3ab=ab+b2,当 a=1, b= 时,原式 = +2 .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图, BD 是? ABCD 的对角线, AE⊥BD,CF⊥BD,垂足分别为 E、F,求证:AE=CF .【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD,根据平行线的性质得出∠ABE= ∠CDF ,求出∠AEB=∠CFD=90°,根据 AAS 推出△ ABE ≌△ CDF,得出对应边相等即可.【解答】证明:∵ 四边形 ABCD 是平行四边形,∴ AB=CD ,AB ∥CD,∴∠ ABE= ∠CDF,∵AE ⊥BD ,CF⊥BD ,∴∠ AEB= ∠ CFD=90° ,在△ ABE 和△CDF 中,,∴△ ABE ≌△ CDF( AAS ),∴AE=CF .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ ABE ≌△ CDF 是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在 4.0<x≤6.5范围内的家庭有13 户,在 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比是 30 %;( 2)本次调查的家庭数为50 户,家庭用水量在 9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 18 %;( 3)家庭用水量的中位数落在 C 组;(4)若该小区共有 200 户家庭,请估计该月用水量不超过 9.0 吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】( 1)观察表格和扇形统计图就可以得出结果;(2)利用 C 组所占百分比及户数可算出调查家庭的总数,从而算出 D 组的百分比;( 3)从第二问知道调查户数为50,则中位数为第 25、26 户的平均数,由表格可得知落在 C组;( 4)计算调查户中用水量不超过 9.0 吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:( 1)观察表格可得 4.0< x≤6.5的家庭有 13 户, 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比为 30%;(2)调查的家庭数为: 13÷26%=50 ,6.5<x≤ 9.0的家庭数为: 50×30%=15 ,D 组 9.0<x≤ 11.5的家庭数为: 50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤ 11.5 的百分比是: 9÷50×100%=18%;(3)调查的家庭数为 50 户,则中位数为第 25、26 户的平均数,从表格观察都落在C组;故答案为:( 1)13,30;(2)50,18;( 3)C;( 4)调查家庭中不超过 9.0吨的户数有: 4+13+15=32 ,=128(户),答:该月用水量不超过 9.0 吨的家庭数为 128 户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是 x 千米 /时,乙车的速度为( x+30 )千米 /时,解得, x=60,则 x+30=90 ,即甲车的速度是 60千米/时,乙车的速度是 90 千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.考点】抛物线与 x 轴的交点;二次函数的性质.分析】( 1)利用坐标轴上点的特点求出 A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;2)设点 D 的横坐标为 m ,则纵坐标为 (m , ),E 点的坐标为 ( m , ),解答】解:( 1)∵抛物线 y=x 2﹣ 3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C , ∴ 令 y=0,可得 x= 或 x= , ∴A ( ,0), B ( ,令 x=0 ,则 y= , ∴ C 点坐标为( 0, )设 DE 的长度为 d ,可得两点间的距离为 d=,利用二次函数的最值可得 m ,可得点 D 的坐标.0);设直线 BC 的解析式为: y=kx+b ,则有,解得:∴ 直线 BC 的解析式为: y= x ;2)设点 D 的横坐标为 m ,则纵坐标为( m , ),∴ E 点的坐∵ 点 D 是直线 BC 下方抛物线上一点,整理得, d=﹣m2+ m,a=﹣1<0,∴ 当 m= = 时, d= 时, d 最大= = = ,∴ D 点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出 D 的坐标,利用二次函数最值得 D 点坐标是解答此题的关键.23.如图, AB 是⊙O 的直径,点 C、D 在⊙O 上,∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上,∠AED= ∠ABC( 1)求证: DE 与⊙O 相切;(2)若 BF=2,DF= ,求⊙O 的半径.【考点】切线的判定.【分析】( 1)连接 OD,由 AB 是⊙O的直径,得到∠ACB=90° ,求得∠A+∠ABC=90°,等量代换得到∠ BOD= ∠A ,推出∠ODE=9°0 ,即可得到结论;(2)连接 BD,过 D 作 DH⊥BF 于 H,由弦且角动量得到∠BDE= ∠BCD,推出△ACF 与△ FDB 都是等腰三角形,根据等腰直角三角形的性质得到 FH=BH= BF=1,则FH=1,根据勾股定理得到 HD= =3,然后根据勾股定理列方程即可得到结论.【解答】( 1)证明:连接 OD,∵ AB 是⊙O 的直径,∴∠ ACB=90° ,∴∠ A+ ∠ABC=90° ,∵∠ BOD=2 ∠BCD ,∠A=2∠BCD , ∴∠ BOD= ∠A , ∵∠ AED= ∠ABC , ∴∠ BOD+ ∠ AED=90° , ∴∠ ODE=9°0 , 即 OD ⊥DE ,∴DE 与⊙O 相切; (2)解:连接 BD ,过 D 作 DH ⊥BF 于 H , ∵DE 与⊙O 相切, ∴∠ BDE=∠ BCD , ∵∠ AED= ∠ABC , ∴∠ AFC=∠ DBF ,∵∠ AFC=∠ DFB , ∴△ ACF 与 △FDB 都是等腰三角形, ∴ FH=BH= BF=1,则 FH=1 ,∴ HD==3, 在 Rt △ ODH 中, OH 2+DH 2=OD 2,2 2 2 即( OD ﹣ 1)2+32=OD 2,∴ OD=5 ,五、解答题:本大题共 3小题, 24题 11 分, 25、26 各 12分,共 35分【点评】 本题考查了切线的判定和性质, 正确的作出辅助线是解题的等腰三角形的判定, 直角三角形的性质, 勾股定理, ∴⊙ O 的半径是24.如图 1,△ABC 中,∠C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m<x≤3时,函数的解析式不同)( 1)填空: BC 的长是 3 ;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.【考点】四边形综合题.【分析】( 1)由图象即可解决问题.(2)分三种情形①如图 1中,当 0≤x≤1时,作 DM ⊥AB 于 M,根据 S=S△ABC﹣S△BDF﹣S 四边形ECAG 即可解决.②如图 2中,作AN∥DF 交 BC 于 N,设 BN=AN=x ,在RT△ANC 中,利用勾股定理求出 x,再根据 S=S△ABC﹣S△BDF﹣S四边形ECAG 即可解决.③如图 3 中,根据 S= CD?CM ,求出 CM 即可解决问题.【解答】解;( 1)由图象可知 BC=3 .故答案为 3.(2)①如图 1中,当 0≤x≤1时,作 DM⊥AB 于 M,由题意 BC=3 , AC=2 ,∠C=90°,∴ AB= = ,∵∠ B=∠B,∠DMB= ∠ C=90°,∴△ BMD ∽△ BCA ,====∴DM= ∵BM=BD=DF ,DM⊥BF,∴ BM=MF ,∴ S △BDF = x 2 ∵EG ∥AC ,∴EG= (x+2 ),∴S四边形 ECAG = [2+ (x+2)]?(1﹣ x ),22∴ S=S△ ABC﹣ S △BDF ﹣ S 四边形 ECAG =3﹣x ﹣ [2+ (x+2)]?(1﹣x )=﹣ x + x+ .作 AN ∥DF 交 BC 于 N ,设 BN=AN=x ,③如图 3 中,当 <x ≤3时, ∵DM ∥AN ,∴ = ,∴ CM= (3﹣x ),综上所述 S=② 如图 ②中,在 RT △ ANC 中, ∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x ) 2,∴ x= ,∴当 1< x ≤ 时,2S=S △ABC ﹣S△BDF =3﹣ x ,∴S= CD?CM= (3﹣x ) 2,【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D 在 BC 边上,∠DAB= ∠ABD, BE ⊥ AD ,垂足为 E ,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠BEA ,从而可证△ABF ≌△ BAE (如图 2),使问题得到解决.( 1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3, △ ABC 中, AB=AC ,∠BAC=90°,D 为 BC 的中点, E 为 DC 的中点,点 F 在 AC 的延长线上,且 ∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长; (3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D 、E 分别在 AB 、AC 边上,且 AD=kDB(其中 0<k< ), ∠AED= ∠BCD ,求 的值(用含 k 的式子表示).【考点】相似形综合题.【分析】( 1)作 AF ⊥ BC ,判断出 △ABF ≌△ BAE ( AAS ),得出 BF=AE ,即可;( 2)先求出 tan ∠DAE= ,再由 tan ∠ F=tan ∠ DAE ,求出 CG ,最后用 △DCG ∽△ ACE 求 出 AC ;( 3)构造含 30°角的直角三角形,设出 DG ,在 Rt △ABH ,Rt △ ADN ,Rt △ABH 中分别用 a ,k 表示出 AB=2a ( k+1 ),BH= a (k+1),BC=2BH=2 a ( k+1),CG= a (2k+1 ),DN= ka ,最后用 △NDE ∽△ GDC ,求出 AE ,EC 即可. 【解答】证明:( 1)如图 2,∵BE ⊥AD ,∴∠AFB= ∠BEA , 在△ ABF 和△BAE 中,作 AF ⊥BC ,,∴△ ABF≌△ BAE (AAS ),∴ BF=AE∵ AB=AC ,AF ⊥BC,∴BF= BC ,∴ BC=2AE ,故答案为 AAS( 2)如图 3,在 Rt△ABC 中, AB=AC ,点 D 是 BC 中点,∴ AD=CD ,∵点 E是 DC 中点,∴DE= CD= AD ,∴ tan ∠ DAE= ∵ AB=AC ,∠BAC=90° ,点 D 为 BC 中点,∴∠ ADC=9°0 ,∠ ACB= ∠DAC=4°5 ,∴∠ F+∠CDF=∠ACB=45° ,∵∠ CDF=∠ EAC ,∴∠ F+∠ EAC=45° ,∵∠ DAE+ ∠EAC=45° ,∴∠ F=∠DAE ,∴ tan∠ F=tan ∠ DAE= ,,∴,∴,∴ CG= ×2=1,∵∠ ACG=9°0 ,∠ ACB=45° ,∴∠ DCG=4°5 ,∵∠ CDF=∠ EAC ,∴△ DCG∽△ ACE,∴,∴ AC=4 ; ∴ AB=4 ; 3)如图 4,过点 D 作 DG ⊥BC ,设 DG=a , 在 Rt △BGD 中, ∠B=30°, ∴ BD=2a , BG= a , ∵ AD=kDB ,∴ AD=2ka , AB=BD+AD=2a+2ka=2a ( k+1 ), 过点 A 作 AH ⊥BC , 在 Rt △ABH 中, ∠B=30°. ∴ BH= a (k+1), ∵ AB=AC ,AH ⊥BC , ∴ BC=2BH=2 a ( k+1), ∴ CG=BC ﹣BG= a ( 2k+1), 过 D 作 DN ⊥ AC 交 CA 延长线与 N , ∵∠ BAC=12°0 , ∴∠ DAN=6°0 ,∴ AN=ka , DN= ka , ∵∠ DGC= ∠ AND=9°0 ,∠AED= ∠BCD , ∴△ NDE ∽△ GDC .∴∠∴,∴,∴ NE=3ak (2k+1),∴ EC=AC ﹣ AE=AB ﹣AE=2a ( k+1)﹣ 2ak( 3k+1) =2a(1﹣ 3k2),【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.226.如图,在平面直角坐标系 xOy中,抛物线 y=x2+ 与y轴相交于点 A,点B与点 O 关于点 A 对称( 1)填空:点 B 的坐标是( 0,);(2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l平行于 y轴, P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;( 3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求此时点 P 的坐标.考点】二次函数综合题.分析】( 1)由抛物线解析式可求得 A 点坐标,再利用对称可求得 B 点坐标; 2)可先用 k 表示出 C 点坐标,过 B 作 BD ⊥l 于点 D ,条件可知 P 点在 x 轴上方,设 P 点纵坐标为 y ,可表示出 PD 、PB 的长,在 Rt △PBD 中,利用勾股定理可求得 y ,则可求出PB 的长,此时可得出 P 点坐标,代入抛物线解析式可判断 P 点在抛物线上; ∠ OBC=∠ CBP= ∠C ′BP=60°,则可求得OC 的长, 代入抛物线解析式可求得 P 点坐标. 解答】解:∴A (0, ), ∵点 B 与点 O 关于点 A 对称, ∴BA=OA= ,∴OB= ,即 B 点坐标为( 0, ), 故答案为:( 0, ); (2)∵B 点坐标为( 0, ),∴ 直线解析式为 y=kx+ ,令 y=0 可得 ∴OC= ﹣ , ∵ PB=PC , ∴点 P 只能在 x 轴上方, 如图 1,过 B 作 BD ⊥l 于点 D ,设 PB=PC=m ,3)利用平行线和轴对称的性质可得到 1)∵抛物线 y=x 2+ 与 y 轴相交于点 A ,kx+ =0,解得 x=﹣ ,∵l ∥y 轴, ∴∠ OBC= ∠PCB , 又 PB=PC , ∴∠ PCB=∠ PBC , ∴∠ PBC=∠OBC ,又 C 、C ′关于 BP 对称,且 C ′在抛物线的对称轴上,即在 ∴∠ PBC=∠ PBC ′,∴∠ OBC= ∠CBP=∠C ′BP=60°, 在 Rt △OBC 中, OB= ,则 BC=1则 BD=OC= ﹣ , CD=OB= , ∴PD=PC ﹣CD=m ﹣ ,在 Rt △PBD 中,由勾股定理可得 PB 2=PD 2+BD 2,即 m 2=(m ﹣ )(﹣)∴ PB + , 2+( )2,解得 m= + ,∴P 点坐标为(﹣),当 x= ﹣ 时,代入抛物线解析式可得 y= + , ∴点 P 在抛物线上; y 轴上, 3)如图 2,连接CC ′,∴OC= ,即 P 点的横坐标为,代入抛物线解析式可得 y=()2+ =1,∴P 点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于 PC 的长的方程是解题的关键,在( 3)中求得∠OBC= ∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.222.如图,抛物线 y=x2﹣3x+ 与 x轴相交于 A、B 两点,与 y 轴相交于点 C,点 D 是直线BC 下方抛物线上一点,过点 D 作 y轴的平行线,与直线 BC 相交于点 E( 1)求直线 BC 的解析式;( 2)当线段 DE 的长度最大时,求点 D 的坐标.。
大连市2013年二模数学答案

大连市2013年初中毕业升学考试试测(二)数学参考答案与评分标准一、选择题1.C ; 2.A ; 3.B ; 4.C ; 5.D ; 6.D ; 7.C ; 8.B . 二、填空题9.)5(-x x ; 10.1010; 11.4>x ; 12.9; 13.31 ; 14.x ≤2- ; 15.(1,−4)或(−1, 4); 16.53.三、解答题17.解:原式=3)13(1--- …………………………………………………………………6分 =321--=−4..…………………………………………………………………………9分 18.解:方程两边同乘)1)(1(-+x x ,得)1)(1(2)1(-+=-+x x x x .………………………………………………………4分 解得 1=x . …………………………………………………………………………7分检验:1=x 时0)1)(1(=-+x x ,1=x 不是原分式方程的解,原分式方程无解.………………………………………………………………………………………9分 19.证明:∵四边形ABCD 是等腰梯形,∴AB =DC ,∠B =∠C . ………………………………2分 ∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . …………………………………………4分∴△ABF ≌△DCE .…………………………………5分∴∠AFB =∠DEC .……………………………………7分∴GE =GF . ……………………………………………………………………………9分 20.解:(1)120;72 . ……………………………………………………………………4分(2)200%2040=÷,答:这次调查一共抽取了200名女生的测试成绩. …………………………………8分(3)13202001202200=⨯,…………………………………………………………11分 答:估计该区达到“优秀” 等级的女生人数共有1320.……………………12分 四、解答题21. 解:(1)∵610=vt ,∴vt 610=.……………………………………………………………………………4分∴v 与t 之间具有反比例函数关系. …………………………………………………5分F 第19题(2)当v =410时,461010=t ,…………………………………………………………7分 解得t =100. …………………………………………………………………………8分 答:该公司完成全部运输任务需要100天. …………………………………………9分 22.解:(1)令y=0,则01=+x ,解得x=−1,∴点A 的坐标是(−1,0). ………………………………………………………………1分∵直线b x y +=31经过点A , ∴,0)1(31=+-⨯b 31=b .…………………………………………………………2分∴直线A C 的解析式为3131+=x y .……………………………………………3分 (2)作点C 关于直线AB 的对称点D ,直线AD 即为所求. 连接DB .可得 BD =BC ,∠DBA=∠CBA . ………………………………………………………4分 ∵直线y=x+1,当x=0时,y=1, ∴点B 的坐标是(0,1).∴OA =OB =1,∠OAB =∠OBA=45º. ∴BD =BC =OB −OC =32. ∵∠DBO +∠AOB =45º+45º+90º=180º,∴DB ∥x 轴. ………………………………………6分 ∴点D 的坐标是(32-,1). ……………………7分设直线AD 的解析式为,m kx y +=则⎪⎩⎪⎨⎧=+-=+-.1320m k m k ,∴⎩⎨⎧==.33m k , ∴直线A D 的解析式为33+=x y .…………………………………………………9分 23. 解:(1)∵ 点D 是的中点,∴ ∠ABD =∠DAC . ∵ ∠BDA =∠ADE ,∴ △ABD ∽△EAD .……………………………………………………………………2分∴AD BDED AD =. ∴ADAD 124=, ∴34=AD .…………………………………………………………………………3分 ∵AB 为⊙O 的直径,∴∠ADB =90︒.…………………………………………………………………………4分第22题AC∴A B =3812)34(22=+.即⊙O 的直径为38. ……………………………5分(2)猜想:△B E F 是等边三角形.………………………………………………… 6分 ∵ BF 是⊙O 的切线, ∴ BF ⊥AB .∴ ∠ABF =90︒.………………………………………… 7分 ∴∠ABD +∠FBE =90︒=∠DAC +∠AED ,由(1)知,∠DAC =∠ABD , ∴∠AED=∠FBE ,∵∠AED =∠FEB , ∴∠FEB=∠FBE ,∴FB =FE . …………………………………………………8分 在Rt △ABD 中, tan ∠ABD =331234==BDAD ,∴ ∠ABD =30︒.∴∠EBF=∠ABF −∠ABD =90︒−30︒=60︒.∴ △B E F 是等边三角形.……………………………………………………………10分 五、解答题 24.解:(1)根据题意,BD =AE =t ,则CD =20−t ,CE =15−t . ∵∠ACB =90º,∴CD CE S ⋅⋅=21=21)15)(20(t t --, =150235212+-t t ,其中0≤t ≤15. ………………………………………………1分 (2),20152121150235212⨯⨯⨯=+-t t 整理,得 0150352=+-t t .解得 30521==t t ,(舍).即t =5时,S 等于△A B C 的面积的一半.………………3分 (3)画出图形(如图)…………………………………………………………………4分 解法一:如图①,在CD 上取一点G ,使DG =EC ,连接FG .设EF 与CD 相交于点H . ∵E D DF '⊥, ∴︒=∠=∠90ACB DFE . ∵,EHC DHF ∠=∠∴FEC FDG ∠=∠. ……………………………6分 ∵︒=∠45DEF ,︒=∠90DFE ,∴DEF EDF ∠=︒=︒--=∠454590180.∴FE FD =.∴△DFG ≌△EFC . ……………………………7分∴EFC DFG FC FG ∠=∠=,.………………8分∴C G =C D −D G =C D −C E =(20−t )−(15−t )=5.……………………………………9分 ︒=∠+∠=∠+∠=∠90EFG DFG EFG EFC GFC .…………………………10分 在Rt △GFC 中, 222CG FG CF =+ ,第23题F第24题图①即2252=CF . ∴225=CF .即C F 的长不变,值为225.………………………………………11分解法二:如图②,在AC 的延长线上取一点P ,使EP =DC ,连接FP . (评分标准参考解法一).25.解:(1)证明:解法一:如图①,过点B 作BH ⊥DC ,交DC 延长线于点H . 则∠BHC =90°.∴∠BCD =∠BHC+∠CBH =90°+∠CBH . ∴∠BCD -∠CBH =90°.∵∠BCD -∠ABE =90°,∴∠CBH =∠ABE . …………………………………1分 ∵BE ⊥AD ,∴∠BEA =90°=∠BHC . ∵AB=BC , ∴△B E A ≌△B H C . …………………………………………………………………2分∴B H =B E . ……………………………………………………………………………3分 ∴∠A D B =∠H D B . ……………………………………………………………………4分 ∵CF ∥AD ,∴∠C F D =∠A D B . ……………………………………………………………………5分 ∴∠CFD =∠HDB .∴C F =C D . ……………………………………………………………………………6分解法二:如图②,作∠DBG =∠ABC ,边BG 交DA 的延长线于点G .∴∠G B A =∠D B C . ……………………………………………………………………1分∵∠GAB =∠AEB +∠ABE =90°+∠ABE , ∴∠GAB −∠ABE =90°.∵∠BCD −∠ABE =90° ,∴∠GAB =∠BCD .∵AB=BC ,∴△GBA ≌△DBC .∴GB=DB . ………………………………3分∴∠AGB =∠ADB . ………………………4分 ∵CF ∥AD ,∴∠CFD =∠ADB . ………………………5分 又∠AGB =∠CDB ∴∠CFD =∠CDB .∴C F =C D . (6)分(2)如图③,作∠DBG =∠ABC ,边BG 交DA 的延长线于点G .第25题图①第25题图②P H F D'E BC A D第24题图②∴∠GBA =∠DBC .由(1)知,∠GAB =∠BCD ,∴△GBA ∽△DBC . ……………………………8分 ∴k BCBCk BC AB DB GB =⋅==.……………………9分 由(1)知,∠ADB =∠CFD ,∠AGB =∠CDB ,∴△BDG ∽△CFD . ……………………………10分 ∴CD GB CF BD =.……………………………………11分 ∴k DB GB CF CD ==. ∴kCD CF 1=.…………………………………………………………………………12分 26. 解:(1)抛物线2)(21m x y +-=的顶点A 的坐标为(−m ,0),当x =−m 时,y = −(−m )−m =0,∴点A 是在直线m x y --=上. ……………………………………………………1分 (2)直线m x y --=,令x =0,则y =−m ,∴点B 的坐标是(0,−m ). ∵m >0,∠AOB =90º,∴O B =O A =m ,∠O A B =∠O B A =45º. ………………………………………………2分 ∴△AOB 是等腰直角三角形.若以C 、D 、A 为顶点的三角形与△AOB 全等,则△ACD 为等腰直角三角形. 因为∠DAC <90º,所以分两种情况:① 当∠ACD =90º时(如图①),∠DAC =∠ADC =45º=∠BAC ,即点D 与点B 重合(记为D 1∴点D 1的坐标为(0,−m ),…………………………3分 ∴221m m -=-, ∴0,221==m m (舍).∴2=m .………………………………………………4分 ∴点D 1的坐标为(0,−2). ………………………5分由抛物线的对称性,得D 2(−4,−2). ……………………………………………6分 ②当∠ADC =90º时(如图②),AD 3=D 3C =OA =m ,∠D 3AC =∠D 3CA =45º,作D 3E ⊥AC ,垂足为E . ∴AE =EC ,AC =m m m 222=+.∴D 3E =m AC 2221==AE . ∴点D 3的坐标为)22,22(m m m --.……………9分 第25题图③ 第26题图①∴2)22(2122m m m m +--=-.∴0,2221==m m (舍).∴22=m .…………………………………………………………………………10分 ∴点D 3的坐标为(222-,−2). ………………………………………………11分 由抛物线的对称性,得D 4)2,222(---. 综上,当m =2时,点D的坐标为(0,−2)、(−4,−2);当m =22时,点D 的坐标为(222-,−2)、)2,222(--- .……………………………………………12分。
2013大连中考数学冲刺试卷

2013大连中考数学冲刺试卷
中考数学考什么,这是考生和家长最关心的问题。
以往的中考考题主要体现在对知识点的考查上,强调知识点的覆盖面,对能力的考查没有放在一个突出的位置上。
近几年的中考命题发生了明显的变化,既强调了由知识层面向能力层面的转化,又强调了基础知识与能力并重。
注重在知识的交汇处设计命题,对学生能力的考查也提出了较高的要求。
中考数学重点考查学生的数学思维能力已经成为趋势和共识。
初三学生可利用寒假时间对数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维程序和操作程序。
有针对性地通过典型题目进行训练,能够真正适应中考命题。
125[一键打印]【解析版】2013年辽宁省抚顺市中考数学试卷及答案
![125[一键打印]【解析版】2013年辽宁省抚顺市中考数学试卷及答案](https://img.taocdn.com/s3/m/8bcfd50779563c1ec5da7184.png)
辽宁省抚顺市2013年中考数学试卷一、选择题B•抚顺)如果分式有意义,则x的取值范围是()2.(2013B4.(2013•抚顺)如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()B5.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()6.(2013•抚顺)下列计算正确的是()(﹣a×8.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设.9.(2013•抚顺)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸B,得出蓝球的个数,进而得出小球总数,即可得出,∴=随机摸出一个球是蓝球的概率是:10.(2013•抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为()B××=)=二、填空题11.(2013•抚顺)人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为 1.56×10﹣7.12.(2013•抚顺)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是乙.解:∵,,13.(2013•抚顺)计算:=3.14.(2013•抚顺)已知a、b为两个连续整数,且a<<b,则a+b=9.<<15.(2013•抚顺)从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.=.故答案为:.16.(2013•抚顺)把直线y=2x﹣1向上平移2个单位,所得直线的解析式是y=2x+1.17.(2013•抚顺)若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是20.AC=BD=18.(2013•抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(﹣1,﹣1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,﹣2).点P关于点A的对称点为P1,点P1关于点B的对称点为P2,点P2关于点C的对称点为P3,点P3关于点A的对称点为P4,点P4关于点B的对称点为P5,点P5关于点C的对称点为P6,点P6关于点A的对称点为P7…,按此规律进行下去,则点P2013的坐标、是(2,﹣4).三、解答题19.(2013•抚顺)先化简,再求值:,其中a=﹣1.==,=20.(2013•抚顺)某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这四个班共植树200棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?)丁所占的百分比是:四、解答题21.(2013•抚顺)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)的长是=π22.(2013•抚顺)2013年第十二届全国运动会将在辽宁召开,某市掀起了全民健身运动的热潮.某体育用品商店预测某种品牌的运动鞋会畅销,就用4800元购进了一批这种运动鞋,上市后很快脱销,该商店又用10800元购进第二批这种运动鞋,所购数量是第一批购进数量的2倍,但每双鞋进价多用了20元.(1)求该商店第二次购进这种运动鞋多少双?(2)如果这两批运动鞋每双的售价相同,且全部售完后总利润率不低于20%,那么每双鞋售价至少是多少元?+20=,×五、解答题23.(2013•抚顺)在与水平面夹角是30°的斜坡的顶部,有一座竖直的古塔,如图是平面图,斜坡的顶部CD是水平的,在阳光的照射下,古塔AB在斜坡上的影长DE为18米,斜坡顶部的影长DB为6米,光线AE与斜坡的夹角为30°,求古塔的高().ED=9=6+6×=18+6六、解答题24.(2013•抚顺)某服装店以每件40元的价格购进一批衬衫,在试销过程中发现:每月销售量y(件)与销售单价x(x为正整数)(元)之间符合一次函数关系,当销售单价为55元时,月销售量为140件;当销售单价为70元时,月销售量为80件.(1)求y与x的函数关系式;(2)如果每销售一件衬衫需支出各种费用1元,设服装店每月销售该种衬衫获利为w元,求w与x之间的函数关系式,并求出销售单价定为多少元时,商场获利最大,最大利润是多少元?,七、解答题25.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.BCDEDEBF+BP=BF+BP=BP=八、解答题26.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.,××﹣3+m+3=m=的坐标为(n=)=,=,)==为秒时,以。
2023年辽宁省大连市中考数学真题(原卷版和解析版)

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.162.如图所示的几何体中,主视图是()A.B.C.D.3.如图,直线,45,20AB CD ABE D∠=∠=︒︒∥,则E∠的度数为()A.20︒B.25︒C.30︒D.35︒4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯5.下列计算正确的是()A.22= B.3336+= C.842= D.)323263-=-6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x+-=- C.133x x-+=- D.()1313x x+-=7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π9.已知抛物线221y x x =--,则当03x ≤≤时,函数的最大值为()A .2- B.1- C.0D.210.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒二、填空题(本题共6小题,每小题3分,共18分)11.93x >-的解集为_______________.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF的长为_______________.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A 供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B 供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B 、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A7575743.07Ba75bc根据以上信息,回答下列问题:(1)表格中的=a _______________,b =_______________,c =_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若35,4AD DE ==,求DG 的长.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边ED A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B.2.如图所示的几何体中,主视图是()A.B.C.D.【答案】B 【解析】【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是,故选:B .【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键.3.如图,直线,45,20AB CD ABE D ∠=∠=︒︒∥,则E ∠的度数为()A.20︒B.25︒C.30︒D.35︒【答案】B 【解析】【分析】先根据平行线的性质可得45ABE BCD ∠∠==︒,再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=︒ ∥,45ABE BCD ∴=∠=∠︒,20D ∠=︒ ,25BCD D E ∠-∠==∴∠︒,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:417000 1.710=⨯.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.5.下列计算正确的是()A.0=B.+=C.= D.)26-=-【答案】D【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=,故该选项不正确,不符合题意;C.=D.)26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x +-=- C.133x x-+=- D.()1313x x +-=【答案】B【解析】【分析】根据解分式方程的去分母的方法即可得.【详解】解:13311x x x+=--,两边同乘()1x -去分母,得()1313x x +-=-,故选:B .【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解析】【分析】利用待定系数法求出U 的值,由此即可得.【详解】解:由题意得:UR I =,∵当4A I =时,10ΩR =,104U∴=,解得40U =,40R I ∴=,则当5A I =时,()Ω4085R ==,故选:B .【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键.8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π【答案】C【解析】【分析】根据弧长公式180n rl π=(弧长为l ,圆心角度数为n ,圆的半径为r ),由此计算即可.【详解】解:该扇形的弧长90331801802n r l πππ⨯===,故选:C .【点睛】本题考查了扇形的弧长计算公式180n r l π=(弧长为l ,圆心角度数为n ,圆的半径为r ),正确记忆弧长公式是解答此题的关键.9.已知抛物线221y xx =--,则当03x ≤≤时,函数的最大值为()A.2- B.1- C.0 D.2【答案】D【解析】【分析】把抛物线221y x x =--化为顶点式,得到对称轴为1x =,当1x =时,函数的最小值为2-,再分别求出0x =和3x =时的函数值,即可得到答案.【详解】解:∵()222112y x x x =--=--,∴对称轴为1x =,当1x =时,函数的最小值为2-,当0x =时,2211y x x =--=-,当3x =时,232312y =-⨯-=,∴当03x ≤≤时,函数的最大值为2,故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒【答案】D【解析】【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答;B.由扇形统计图中喜欢篮球的占比解答;C.用总人数乘以40%即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用360︒乘以排球的占比即可解答.【详解】解:A.随机选取100名学生进行问卷调查,数量100就是样本容量,故A正确;B.由统计图可知,最喜欢篮球的人数占被调查人数的30%,故B正确;C.最喜欢足球的学生为10040%40⨯=(人),故C正确;D.“排球”对应扇形的圆心角为360(140%30%20%)36010%36︒⨯---=︒⨯=︒,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11.93x>-的解集为_______________.【答案】3x>-【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:93x>-,解得:3x>-,故答案为:3x>-.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】1 2【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为2142P ==,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF 的长为_______________.【答案】5【解析】【分析】根据题意得出BDC 是等边三角形,进而得出10DC BD ==,根据中位线的性质即可求解.【详解】解:∵在菱形ABCD 中,AC BD 、为菱形的对角线,∴AB AD DC BC ===,AC BD ⊥,∵60DBC ∠=︒,∴BDC 是等边三角形,∵10BD =,∴10DC BD ==,∵E 是BD 的中点,点F 为BC 中点,∴152EF DC ==,故答案为:5.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.【答案】1+1+【解析】【分析】根据勾股定理求得AB ,根据题意可得BC AB ==,进而即可求解.【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===,∴BC AB ==,∴1OC OB BC =+=,O为原点,OC 为正方向,则C 点的横坐标为1+;故答案为:1+.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.【答案】8374x x -=+【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,则可列方程为:8374x x -=+故答案为:8374x x -=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【答案】4【解析】【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=︒,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =-,证明EFM EAB ∽,则FM ME AB BE =,即2332a a -=+,解得34a =,94DN CD CN =-=,由勾股定理得DF =【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =-,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a -=+,解得34a =,∴94DN CD CN =-=,由勾股定理得4DF ==,故答案为:4.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.【答案】23a -【解析】【分析】先计算括号内的加法,再计算除法即可.【详解】解:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =-【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息,回答下列问题:(1)表格中的=a_______________,b=_______________,c=_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为1(72375478277273767179)75 15⨯⨯+⨯+⨯+⨯++++=,故75a=,75出现的次数最多,故众数75b=,方差22222222 1[3(7275)4(7575)2(7875)2(7775)(7375)(7675)(7175)(7975)]6 15c=-+-+-+-+-+-+-+-=故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.【答案】证明见解析【解析】【分析】由180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,可得ACB AED ∠=∠,证明()SAS ABC ADE △≌△,进而结论得证.【详解】证明:∵180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,∴ACB AED ∠=∠,∵BC DE =,ACB AED ∠=∠,AC AE =,∴()SAS ABC ADE △≌△,∴AB AD =.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.【答案】20%【解析】【分析】设20202022-年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ⨯+建立方程,解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x ,由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =-<(不符合题意,舍去),答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)【答案】楼AE 的高度为11m【解析】【分析】延长CD 交AE 于点F ,依题意可得 1.26m EF BC ==,在Rt ACF ,根据sin AF AC ACF =⋅∠,求得AF ,进而根据AE AF EF =+,即可求解.【详解】解:如图所示,延长CD 交AE 于点F ,∵,,AE BE BC BE CD BE ⊥⊥∥,∴ 1.26mEF BC ==在Rt ACF 中,70ACF ∠=︒,10.4m AC =,∵sin AF ACF AC∠=,∴sin 10.4sin 7010.40.949.776mAF AC ACF =⋅∠=⨯︒≈⨯=∴9.776 1.2611m AE AF EF =+=+≈,答:楼AE 的高度为11m .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m(2)315m【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以2,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,求得女生的速度,进而得出解析式为 3.580y x =+,联立求得30s x =,进而即可求解.【小问1详解】解:∵开始时男生跑了50m ,男生的跑步速度为4.5m /s ,从开始匀速跑步到停止跑步共用时100s .∴男生跑步的路程为50 4.5100500+⨯=m ,∴男女跑步的总路程为50021000m ⨯=,故答案为:1000m .【小问2详解】解:男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,设女生从开始匀速跑步到停止跑步的直线解析式为:80y kx =+,依题意,女生匀速跑了50080420-=m ,用了120s ,则速度为420120 3.5÷=m/s ,∴ 3.580y x =+,联立50 4.53.580y xy x =+⎧⎨=+⎩解得:30x =将30x =代入50 4.5y x=+解得:185y =,∴此时男、女同学距离终点的距离为500185315-=m .【点睛】本题考查了一次函数的应用,根据题意求得函数解析式是解题的关键.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若4AD DE ==,求DG 的长.【答案】(1)90︒;(2).【解析】【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【小问1详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵AD 平分CAB ∠,∴12BAD BAC ∠=∠,即2BAC BAD ∠=∠,∵OA OD =,∴BAD ODA ∠=∠,∴2BOD BAD ODA BAD ∠=∠+∠=∠,∴BOD BAC ∠=∠,∴OD AC ,∴90OEB ACB ∠=∠=︒,∴90BED ∠=︒,【小问2详解】如图,连接BD ,设OA OB OD r ===,则4OE r =-,228AC OE r ==-,2AB r =,∵AB 是O 的直径,∴90ADB ∠=︒,在Rt ADB 中,有勾股定理得:222BD AB AD =-由(1)得:90BED ∠=︒,∴90BED BEO ∠=∠=︒,由勾股定理得:222BE OB OE =-,222BE BD DE =-,∴22222222BD AB AD BE DE OB OE DE =-=+=-+,∴()(()22222244r r r -=--+,整理得:22350r r --=,解得:7r =或5r =-(舍去),∴214AB r ==,∴BD ==,∵AF 是O 的切线,∴AF AB ⊥,∵DG AF ,∴DG AB ⊥,∴11··22ABD S AD BD AB DG == ,∴·23521414AD BD DG AB ===【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)4,83(2)2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩【解析】【分析】(1)根据函数图象即可求解.(2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【小问1详解】解:当0=t 时,P 点与O 重合,此时83ABO S S == ,当4t =时,0S =,即P 点与B 点重合,∴4OB =,则()4,0B ,故答案为:4,83.【小问2详解】∵A 在y x =上,则45OAB ∠=︒设(),A a a ,∴1184223AOB S OB a a =⨯⨯=⨯⨯= ∴43a =,则44,33⎛⎫⎪⎝⎭A 当403t ≤≤时,如图所示,设DP 交OA 于点E ,∵45OAB ∠=︒,DP OB ⊥,则EP OP t==∴28132S t =-当443t <≤时,如图所示,∵()4,0B ,44,33⎛⎫ ⎪⎝⎭A 设直线AB 的解析式为y kx b =+,∴404433k b k b +=⎧⎪⎨+=⎪⎩解得:212b k =⎧⎪⎨=-⎪⎩,∴直线AB 的解析式为122y x =-+,当0x =时,2y =,则()0,2C ,∴2OC =,∵21tan 42DP OC CBO PD OB ∠====,∵4BP t =-,则122DP t =-,∴12DPB S S DP BP ==⨯ ()()222111144242244t t t t =⨯⨯-=-=-+,综上所述:2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩.【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.【答案】(1)见解析;(2)3572+;问题2:BC =【解析】【分析】(1)根据等边对等角可得ABC C ∠=∠,根据折叠以及三角形内角和定理,可得BDE A ∠=∠1802C =︒-∠,根据邻补角互补可得180EDC BDE ∠+∠=︒,即可得证;(2)连接AD ,交BE 于点F ,则EF 是ADC △的中位线,勾股定理求得,AF BF ,根据BE BF EF =+即可求解;问题2:连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,根据已知条件可得BM CD ∥,则四边形CGMD 是矩形,勾股定理求得AD ,根据三线合一得出,MD CG ,根据勾股定理求得BC 的长,即可求解.【详解】(1)∵等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到∴ABC C ∠=∠,BDE A ∠=∠1802C =︒-∠,∵180EDC BDE ∠+∠=︒,∴2EDC ACB ∠=∠;(2)如图所示,连接AD ,交BE 于点F ,∵折叠,∴EA ED =,AF FD =,122AE AC ==,AD BE ⊥,∵E 是AC 的中点,∴EA EC =,∴1322EF CD ==,在Rt AEF 中,72AF ==,在Rt ABF 中,572BF ===,∴3572BE BF EF =+=;问题2:如图所示,连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,∵AB BD =,∴AM MD =,12ABM DBM ABD ∠=∠=∠,∵2BDC ABD ∠=∠,∴BDC DBM ∠=∠,∴BM CD ∥,∴CD AD ⊥,又CG BM ⊥,∴四边形CGMD 是矩形,则CD GM =,在Rt ACD △中,1CD =,4=AD ,AD ===,∴152AM MD ==,152CG MD ==在Rt BDM 中,72BM ===,∴75122BG BM GM BM CD =-=-=-=,在Rt BCG 中,BC ===.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边E D A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.【答案】(1)224y x x =--+(2)①()2404n m m m =-+<<;②5172m =;③5959,636C ⎛⎫' ⎪ ⎪⎝⎭或5959,636C ⎛⎫'- ⎪ ⎪⎝⎭【解析】【分析】(1)根据题意得出点()2,4A -,()1,1B ,待定系数法求解析式即可求解;(2)①根据平移的性质得出()2,4C m n '--,根据点C 的对应点C '落在抛物线1C 上,可得()224m n -=-,进而即可求解;②根据题意得出()()222,442,24,P m m m Q m m m --++----+,求得中点坐标,根据题意即可求解;③连接MN ,过点N 作NG E D ''⊥于点G ,勾股定理求得23MG =,设N 点的坐标为()2,24a a a --+,则22,263M a a a ⎛⎫---+ ⎪⎝⎭,将22,263M a a a ⎛⎫---+ ⎪⎝⎭代入224y x x =--+,求得56a =,求得559,636N ⎛⎫ ⎪⎝⎭,进而根据C '落在抛物线1C 上,将5936y =代入21:C y x =,即可求解.【小问1详解】解:依题意,点A 的横坐标为2-,点B 的横坐标为1,代入抛物线21:C y x=∴当2x =-时,()224y =-=,则()2,4A -,当1x =时,1y =,则()1,1B ,将点()2,4A -,()1,1B ,代入抛物线22:C y x bx c =-++,∴()222411b c b c ⎧---+=⎪⎨-++=⎪⎩解得:24b c =-⎧⎨=⎩∴抛物线2C 的解析式为224y x x =--+;【小问2详解】①解:∵AC x ∥轴交抛物线21:C y x =另一点为点C ,当4y =时,2x =±,∴()2,4C ,∵矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上∴()2,4C m n '--,()224m n-=-整理得24n m m=-+∵0,0m n >>∴04m <<∴()2404n m m m =-+<<;②如图所示,。
2013年辽宁省丹东市中考数学试题及参考答案(word解析版)
2013年辽宁省丹东市中考数学试题及参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.25-的相反数是( ) A .52- B .52 C .25 D .25- 2.一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是( )A .追B .逐C .梦D .想3.丹东地区人口约为245万,245万用科学记数法表示正确的是( )A .245×104B .2.45×106C .24.5×105D .2.45×1074.如图,在△ABC 中AB 的垂直平分线交AB 于点D ,交线段BC 于点E .BC=6,AC=5,则△ACE 的周长是( )A .14B .13C .12D .115.不等式组3213x x -⎧⎨-⎩>≤的解集在数轴上表示正确的是( ) A . B . C . D .6.顺次连接等腰梯形各边中点所得到的四边形一定是( )A .正方形B .菱形C .矩形D .等腰梯形7.李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的( )A .平均数B .方差C .众数D .中位数8.如图,矩形ABCD 中,AB=3cm ,BC=4cmP ,Q 两点同时从点C 出发,点P 沿从C →D →A 方向运动,速度为2cm/s ;点Q 沿从C →B 的方向运动速度为1cm/s ,当运动时间为t (0≤t ≤3.5)时,设△PCQ的面积为y(cm2)(当P,Q两点未开始运动时,△PCQ的面积为0).则y(cm2)和t (s)的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式:a3b-9ab= .10.某奥运射击冠军射击一次,命中靶心.这个事件是(填“必然”、“不可能”或“不确定”)事件.11.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.12.如图,直线AC∥BD,AE平分∠BAC交直线BD于点E,若∠1=64°,则∠AED= °.13.双曲线kyx=和直线y=x+1交于点(-2,m),则双曲线的表达式为.14.如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为.15.观察下列数据:54-,79,916-,1125,…它们是按一定规律排列的,依照此规律,第19个数据是.16.如图,在平面直角坐标系中,点A(-6,0),点B(0,P在第二象限内,若以点P、B、O为顶点的三角形与△AOB相似(不包括全等的情况),则点P的坐标为.三、解答题(每小题8分,共16分)17.(8分)计算:222cos 45|3|3-⎛⎫+︒+ ⎪⎝⎭. 18.(8分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC 和△A 1B 1C 1在平面直角坐标系中位置如图所示.(1)△ABC 与△A 1B 1C 1关于某条直线m 对称,画出对称轴m .(2)画出△A 1B 1C 1绕原点O 顺时针旋转90°所得的△A 2B 2C 2.此时点A 2的坐标为 .求出点A 1旋转到点A 2的路径长.(结果保留根号)四、(每小题10分,共20分)19.(10分)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.(10分)为帮助雅安地震灾区人们重建家园,某中学学生积极捐献.已知高中部捐款总额为7200元,初中部捐款总额为6000元,高中部人数比初中部人数多80人,而且初中部和高中部人均捐款恰好相等.求该校学生总数是多少人.五、(每小题10分,共20分)21.(10分)现有三张不透明的卡片A,B,C,他们背面完全一样,正面分别画有圆、长方形和等腰三角形,将三张卡片背面朝上,洗匀后放在桌子上.(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率为.(2)从中随机抽取一张卡片,放回后洗匀,在随机抽取一张卡片.请用列表法或画树状图的方法,求两次抽取的卡片正面图形都是中心对称图形的概率.22.(10分)如图,CD是⊙O的直径,OB⊥CD交⊙O于点B,连接CB,AB是⊙O的弦,AB交CD于点E,F是CD的延长线上一点且AF=EF.(1)判断AF和⊙O的位置关系并说明理由(2)若∠ABC=60°,BC=1cm,求阴影部分的面积.(结果保留根号)六、(每小题10分,共20分)23.(10分)如图,新城区新建了三个商业城A,B,C,其中C在A的正东方向,在A处测得B 在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,已知A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修建一条从A到C的笔直道路AC,乙修建一条从B到直线AC 最近的道路BD.求甲、乙修建的道路各是多长.(结果精确到1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)24.(10分)有甲、乙两军舰在南海执行任务.它们分别从A ,B 两处沿直线同时匀速前往C 处,最终到达C 处(A ,B ,C ,三处顺次在同一直线上).设甲、乙两军舰行驶x (h )后,与B 处相距的距离分别是y 1(海里)和y 2(海里),y 1,y 2与x 的函数关系如图所示(1)①在0≤x ≤5的时间段内,y 2与x 之间的函数关系式为 .②在0≤x ≤0.5的时间段内,y 1与x 之间的函数关系式为(2)A ,C 两处之间的距离是 海里.(3)若两军舰的距离不超过5海里是互相望到,当0.5≤x ≤3时.求甲、乙两军舰可以互相望到时x 的取值范围.七、(本题12分)25.(12分)已知四边形ABCD 是正方形(1)如图1.点M 在边BA 的延长线上,点N 在边BC 上,且AM=CN ,连接MN ,DM ,DN ,判断△DMN 的形状(直接写出答案).(2)如图2,当店N 在边AB 上,点N 在边BC 的延长线上,AM=CN ,连接MN ,取线段MN 的中点G ,连接DG ,DM ,判断线段DG 和线段MG 的关系并说明理由.(3)如图3,当点M 在边AB 的延长线上,点N 在边BC 的延长线上,AM=CN ,连接MN ,DM ,DN ,点G 是线段MN 的中点,连接BG ,DG ,连接GC 并延长交BD 于点H ,若∠AMN=75°,判断线段GH 和线段BD 的关系并说明理由.八、(本题14分)26.(14分)如图1.已知抛物线212y x bx c =-++与x 轴分别交于A ,B 两点,与y 轴交于点C ,A 点坐标为(-2,0),B 的坐标为(4,0).直线l 过B ,C 两点.点P 是线段BC 上的一个动点(点P 不与B ,C 两点重合).在点P 运动过程中,始终有一条过点P 且和y 轴平行的直线也随之运动,该直线与抛物线的交点为M ,与x 轴的交点为N .(1)①求出抛物线的函数表达式;②直接写出直线l 的函数表达式;(2)若直线MN把△OBC的面积分成1:3的两部分,求出此时点P的坐标.(3)如图2,①连接BM,CM,设△MBC的面积是S,在点P的运动过程中,S是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.②当△MBC的面积最大时,直线MN上另有一动点E,在坐标平面内是否存在点F,使以点A,P,E,F为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.25-的相反数是()A.52-B.52C.25D.25-【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答过程】解:25-的相反数是25,故选:C.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是()A.追B.逐C.梦D.想【知识考点】展开图折叠成几何体.【思路分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答过程】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“追”.故选:A.【总结归纳】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.丹东地区人口约为245万,245万用科学记数法表示正确的是()A.245×104B.2.45×106C.24.5×105D.2.45×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:245万=2450000=2.45×106,故选B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE 的周长是()A.14 B.13 C.12 D.11【知识考点】线段垂直平分线的性质.【思路分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答过程】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:D.【总结归纳】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.5.不等式组3213xx-⎧⎨-⎩>≤的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】先解出各个不等式,确定不等式的解集,找出在数轴上正确表示解集的一项.【解答过程】解:3213xx-⎧⎨-⎩>①≤②,解①得,x>-3,解②得,x≤2,∴不等式的解集为:-3<x≤2,故选:C.【总结归纳】本题考查的是解一元一次不等式组和在数轴上表示不等式的解集,正确解出不等式确定不等式组的解集是解题的关键,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.顺次连接等腰梯形各边中点所得到的四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【知识考点】中点四边形.【思路分析】根据等腰梯形的对角线相等和三角形中位线定理,所得四边形的各边都相等,所以判定为菱形.【解答过程】解:如图所示,根据三角形中位线定理,EF=GH=12BD,FG=EH=12AC,∵ABCD为等腰梯形,∴AC=BD,∴EF=GH=FG=EH,∴EFGH为菱形.故选:B.【总结归纳】此题考查了菱形的判定方法、等腰梯形的性质、三角形中位线定理等知识点,掌握菱形的判别方法:①定义;②四边相等;③对角线互相垂直平分是解题的关键.7.李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的()A.平均数B.方差C.众数D.中位数【知识考点】统计量的选择.【思路分析】21人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前10名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答过程】解:由于总共有21个人,且他们的分数互不相同,第11的成绩是中位数,要判断是否进入前10名,故应知道中位数的多少.故选:D .【总结归纳】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.8.如图,矩形ABCD 中,AB=3cm ,BC=4cmP ,Q 两点同时从点C 出发,点P 沿从C →D →A 方向运动,速度为2cm/s ;点Q 沿从C →B 的方向运动速度为1cm/s ,当运动时间为t (0≤t ≤3.5)时,设△PCQ 的面积为y (cm 2)(当P ,Q 两点未开始运动时,△PCQ 的面积为0).则y (cm 2)和t (s )的函数关系的图象大致是( )A .B .C .D .【知识考点】动点问题的函数图象.【思路分析】分两种情况分析,当P 、Q 分别在CD 边和BC 边上运动时,(0<t≤1.5);当P 、Q 分别在AD 边和BC 边上运动时,(1.5<t≤3.5);分别求出函数解析式,即可解答.【解答过程】解:∵矩形ABCD 中,AB=3cm ,BC=4cm ,∴CD=3,∴点P 在CD 上运动的时间为:3÷2=1.5(秒),当P 、Q 分别在CD 边和BC 边上运动时,(0<t≤1.5),如图1,CP=2t ,CQ=t , ∴211222PCQ S PC CQ t t t =⨯=⨯⨯=; 当P 、Q 分别在AD 边和BC 边上运动时,(1.5<t≤3.5),如图2,过点P作PE⊥BC于点E,则PE=AB=3,CQ=t,∴113 1.522PCQS CQ PE t t =⨯=⨯⨯=,由以上可得:当0<t≤1.5时,则y(cm2)和t(s)的函数关系的图象为抛物线的一部分;当1.5<t≤3.5时,则y(cm2)和t(s)的函数关系的图象为直线,所以C选项符合题意.故选:C.【总结归纳】本题考查了函数与矩形相结合的问题,解决本题的关键是根据运动情况进行分类讨论,求出△PCQ面积的表达式,根据解析式确定图象.二、填空题(每小题3分,共24分)9.分解因式:a3b-9ab= .【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答过程】解:a3b-9ab=a(a2-9)=ab(a+3)(a-3).故答案为:ab(a+3)(a-3).【总结归纳】本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解因式,注意分解要彻底.10.某奥运射击冠军射击一次,命中靶心.这个事件是(填“必然”、“不可能”或“不确定”)事件.【知识考点】随机事件.【思路分析】根据必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答.【解答过程】解:某奥运射击冠军射击一次,命中靶心,这个事件是不确定事件;故答案为:不确定.【总结归纳】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.【知识考点】一元二次方程的应用.【思路分析】根据题意表示出中央长方形图案的长与宽,进而利用面积为6000cm2,进而求出即可.【解答过程】解:设花边宽为x,根据题意可得:(120-2x)(80-2x)=6000解得:x1=10,x2=90(不符合题意,舍去).所以,花边的宽为10cm.故答案为:10cm.【总结归纳】此题主要考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12.如图,直线AC∥BD,AE平分∠BAC交直线BD于点E,若∠1=64°,则∠AED= °.【知识考点】平行线的性质.【思路分析】由邻补角定义求出∠BAC的度数,再根据AE为角平分线求出∠CAE的度数,由直线AC与BD平行,得到同旁内角互补,求出所求角的度数即可.【解答过程】解:∵∠1+∠BAC=180°,∠1=64°,∴∠BAC=116°,∵AE平分∠BAC,∴∠BAE=∠CAE=58°,∵AC∥BD,∴∠CAE+∠AED=180°,∴∠AED=122°,故答案为:122【总结归纳】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.双曲线kyx=和直线y=x+1交于点(-2,m),则双曲线的表达式为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】先由一次函数的解析式确定点的坐标,再把点的坐标代入反比例函数的解析式即可.【解答过程】解:把点(-2,m)代入y=x+1得:m=-2+1=-1,∴点(-2,-1),把点(-2,-1)代入kyx=得,k=2,∴双曲线的表达式为2yx =.故答案为:2yx =.【总结归纳】本题考查了由函数的解析式确定点的坐标,待定系数法确定函数的解析式,注意知识的综合运用.14.如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为.【知识考点】含30度角的直角三角形;平行四边形的性质;矩形的性质;梯形. 【思路分析】根据矩形ABCD 的面积是▱FBCE 面积的2倍,得出CH=12AB ,再由三角函数即可求出∠E 的度数,解直角三角函数求得EH 的值,进而求得FH 的值,然后根据梯形的面积公式即可求得.【解答过程】解:∵四边形ABCD 是矩形, ∴DC ⊥BC ,∵▱FBCE 中,EF ∥BC , ∴DC ⊥EF ,根据题意得:AB=CD=BF=CE ,AD=BC=EF ,▱FBCE 面积=BC•CH=12BC•AB , ∴CH=12AB , ∵CE=BF=AB ,∴CH=12CE , ∴1sin 2CH E CE ==,∴∠E=30°,∴EH=cos30°•CE=202=,∴FH=EF-HE=30-∴四边形FBCH 的面积=12(FH+BC )•CH=()(213030103002cm -+⨯=-,故答案为:(2300cm -.【总结归纳】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键. 15.观察下列数据:54-,79,916-,1125,…它们是按一定规律排列的,依照此规律,第19个数据是 .【知识考点】规律型:数字的变化类.【思路分析】首先判断出每个数的正负,然后根据每个数的分子分别是5、7、9、11、…,判断出第n 个数的分子是多少;最后根据每个数的分母分别是4、9、16、25、…,判断出第n 个数的分母是多少,进而判断出这组数的第n 个数是多少,再把n=19代入,求出第19个数数据为多少即可.【解答过程】解:∵这组数分别是负数、正数、负数、正数、…,∴这组数的第n个数的正负即(-1)n的正负;∵5=2×1+3,7=2×2+3,9=2×3+3,11=2×4+3,∴第n个数的分子是:2n+3;∵4=(1+1)2,9=(2+1)2,16=(3+1)2,25=(4+1)2,∴第n个数的分母是:(n+1)2;∴这组数的第n个数是:∴第19个数据是:.故答案为:.【总结归纳】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出这组数的第n个数是多少.16.如图,在平面直角坐标系中,点A(-6,0),点B(0,P在第二象限内,若以点P、B、O为顶点的三角形与△AOB相似(不包括全等的情况),则点P的坐标为.【知识考点】坐标与图形性质;相似三角形的判定.【思路分析】由三角函数可求出∠A=30°,∠ABO=60°,作OP1⊥AB于P1,作P1C⊥y轴,过点B 作BP2⊥y轴交OP1于P2,作∠ABO的平分线BD,过点O作OP3⊥BD于P3,过P3作P3E⊥x轴于E,如图,根据有两组角对应相等的两个三角形相似可判断△BP1O∽△BOA,△P2OB∽△BAO,△P3OB ∽△OBA,然后分别确定P1、P2、P3的坐标.【解答过程】解:∵点A(-6,0),点B(0,),∴OA=6,OB=,∴,∴∠A=30°,∴∠ABO=60°,作OP1⊥AB于P1,作P1C⊥y轴,过点B作BP2⊥y轴交OP1于P2,作∠ABO的平分线BD,过点O作OP3⊥BD于P3,过P3作P3E⊥x轴于E,如图,∵∠BP1O=∠BOA=90°,∠P1BO=∠OBA,∴△BP1O∽△BOA,在Rt△OBP1中,∵sin∠OBP1=,∴OP1=sin60°=3,在Rt△OP1C中,∵∠P1OC=30°,∴,∴P1点的坐标为;∵∠P2OB=∠A=30°,∴△P2OB∽△BAO,在Rt△OP2B中,∵∠P2OB=30°,∴,∴P2点的坐标为(-2,);∵∠P3BO=∠A=30°,∴△P3OB∽△OBA,在Rt△OP3B中,∵∠P3BO=30°,∴,∴∠P3OE=30°,在Rt△P3OE中,,∴P3点的坐标为;综上所述,满足条件的P点坐标为.故答案为.【总结归纳】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了坐标与图形性质、含30度的直角三角形三边的关系.根据题意画出几何图形是解题的关键. 三、解答题(每小题8分,共16分)17.(8分)计算:222cos 45|3|3-⎛⎫+︒+ ⎪⎝⎭.【知识考点】实数的运算;负整数指数幂;特殊角的三角函数值.【思路分析】首先根据算术平方根、负整数指数幂的运算方法,以及45°的三角函数值,还有绝对值的求法计算,然后根据加法交换律和加法结合律,求出算式=的值是多少即可.【解答过程】解:原式92342=+⨯+- 934=+-154=【总结归纳】(1)此题主要考查了算术平方根的含义以及求法,以及绝对值的含义和求法,要熟练掌握.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)(a≠0,p 为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°等特殊角的三角函数值. 18.(8分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC 和△A 1B 1C 1在平面直角坐标系中位置如图所示.(1)△ABC 与△A 1B 1C 1关于某条直线m 对称,画出对称轴m .(2)画出△A 1B 1C 1绕原点O 顺时针旋转90°所得的△A 2B 2C 2.此时点A 2的坐标为 .求出点A 1旋转到点A 2的路径长.(结果保留根号)【知识考点】弧长的计算;作图-轴对称变换;作图-旋转变换.【思路分析】(1)直接利用轴对称图形的性质结合网格得出对称轴m;(2)利用旋转的性质得出对应点位置进而得出答案,再利用弧长公式求出点A1旋转到点A2的路径长.【解答过程】解:(1)如图所示:直线m即为所求;(2)如图所示:△A2B2C2,即为所求,点A2的坐标为:(1,4),点A1旋转到点A2的路径长为:.故答案为:.【总结归纳】此题主要考查了轴对称变换以及旋转变换、弧长公式等知识,根据题意得出对应点位置是解题关键.四、(每小题10分,共20分)19.(10分)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答过程】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)为帮助雅安地震灾区人们重建家园,某中学学生积极捐献.已知高中部捐款总额为7200元,初中部捐款总额为6000元,高中部人数比初中部人数多80人,而且初中部和高中部人均捐款恰好相等.求该校学生总数是多少人.【知识考点】分式方程的应用.【思路分析】设该校初中部有x人,则高中部有(x+80)人,根据初中部和高中部人均捐款恰好相等列出方程,求出方程的解即可得到结果.【解答过程】解:设该校初中部有x人,则高中部有(x+80)人,根据题意得:,去分母得:7200x=6000x+480000,解得:x=400,经检验x=400是分式方程的解,且符合题意,∴x+80=400+80=480(人),480+400=880(人),则该校学生总数是880人.【总结归纳】此题考查了分式方程的应用,找出题中等量关系“初中部和高中部人均捐款恰好相等”是解本题的关键.五、(每小题10分,共20分)21.(10分)现有三张不透明的卡片A,B,C,他们背面完全一样,正面分别画有圆、长方形和等腰三角形,将三张卡片背面朝上,洗匀后放在桌子上.(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率为.(2)从中随机抽取一张卡片,放回后洗匀,在随机抽取一张卡片.请用列表法或画树状图的方法,求两次抽取的卡片正面图形都是中心对称图形的概率.【知识考点】中心对称图形;概率公式;列表法与树状图法.【思路分析】(1)由中心对称图形的定义可知:A,B卡片,由此可求出其概率;(2)画出树形图即可求出两次抽取的卡片正面图形都是中心对称图形的概率.【解答过程】解:(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率23 ,故答案为:23;(2)画树形图得:总共有6种结果,即使中心对称又是轴对称图形的结果有4种,∴所求概率为49.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,CD是⊙O的直径,OB⊥CD交⊙O于点B,连接CB,AB是⊙O的弦,AB交CD于点E,F是CD的延长线上一点且AF=EF.(1)判断AF和⊙O的位置关系并说明理由(2)若∠ABC=60°,BC=1cm,求阴影部分的面积.(结果保留根号)【知识考点】切线的判定;扇形面积的计算.【思路分析】(1)连结OA,如图,由AF=AE得∠FAE=∠FEA,再利用对顶角相等和∠OBA=∠OAB可得∠OAB+∠FEA=90°,即∠OAF=90°,则OA⊥AF,然后根据切线的判定定理可判断AF 为⊙O的切线;(2)先判断△OBC为等腰直角三角形得到OB= ,再利用圆周角定理得到∠AOC=2∠ABC=120°,则∠AOF=180°-∠AOC=60°,接着根据正切定义计算AF= ,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S△OAF-S扇形AOD进行计算.【解答过程】解:(1)AF和⊙O相切.理由如下:连结OA,如图,∵AF=AE,∴∠FAE=∠FEA,∵∠FEA=∠OEB,∴∠FAE=∠OEB,∵OB⊥CD,∴∠BOE=90°,∴∠OBE+∠OEB=90°,而OB=OA,∴∠OBA=∠OAB,∴∠OAB+∠FEA=90°,即∠OAF=90°,∴OA⊥AF,∴AF为⊙O的切线;(2)∵OB⊥CD,而OB=OC,∴△OBC为等腰直角三角形,∴OB= ,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOF=180°-∠AOC=60°,在Rt△OAF中,∵tan∠AOF= ,∴AF= ,∴S阴影部分=S△OAF-S扇形AOD【总结归纳】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.六、(每小题10分,共20分)23.(10分)如图,新城区新建了三个商业城A,B,C,其中C在A的正东方向,在A处测得B 在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,已知A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修建一条从A到C的笔直道路AC,乙修建一条从B到直线AC 最近的道路BD.求甲、乙修建的道路各是多长.(结果精确到1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)。
【2013年】辽宁沈阳中考数学试卷及答案(word解析)
2013年沈阳市中考数学(满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c的顶点是(-,4ac-b4a2),对称轴是直线x=-.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.(2013沈阳,1,3分)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为A.1.96×108B. 19.6×108C. 1.96×1010D. 19.6×1010【答案】C2.(2013沈阳,2,3分)右图是一个几何体的三视图,这个几何体的名称是A.圆柱体B.三棱柱C.球体D.圆锥体【答案】A3.(2013沈阳,3,3分)下面的计算一定正确的是A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3·3y5=15y8D.b9÷b3=b3【答案】C4.(2013沈阳,4,3分)如果m=7-1,那么m的取值范围是A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【答案】B5.(2013沈阳,5,3分)下列事件中,是不可能事件的是A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【答案】D6.(2013沈阳,6,3分)计算2x-1+31-x的结果是A.1x-1B.11-xC.5x-1D.51-x【答案】B7.(2013沈阳,7,3分)在同一平面直角坐标系中,函数y=x-1与函数y=1x的图象可能是b 2ab 2a主视图左视图俯视图A .B .C .D .【答案】C 8.( 2013沈阳,8,3分)如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD=4,BC=8,BD :DC=5:3,则DE 的长等于A .203 B .154 C .163 D .174【答案】B二、填空题(每小题4分,满分32分.)9. (2013沈阳,9,4分)分解因式:3a 2+6a +3= . 【答案】3(a+1)2 10.( 2013沈阳,10,4分)一组数据2,4,x ,-1的平均数为3,则x 的值是 . 【答案】7 11.( 2013沈阳,11,4分)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 . 【答案】(3,-2) 12.( 2013沈阳,12,4分)若关于x 的一元二次方程x 2+4x+a=0有两个不相等的实数根,则a 的取值范围是 . 【答案】a <4 13.( 2013沈阳,13,4分)如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是 . 【答案】3 14.( 2013沈阳,14,4分)如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .【答案】13yxO y xOy xOyxOBADCEBAC OD15.(2013沈阳,15,4分)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 【答案】82+92+722=732 16.(2013沈阳,16,4分)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 . 【答案】1,7三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.(2013沈阳,17,8分)计算: (12)-2-6sin30°+(-2)0+|2-8|.【答案】22-6×21+1+22-2=22 18.(2013沈阳,18,8分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B(一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题: (1)本次调查的人数为 人;(2)图①中,a = ,C 等级所占的圆心角的度数为 度; (3)请直接在答题卡中补全条形统计图. 【答案】(1)200; (2) 35,126 (3)19. (2013沈阳,19,10分)如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,,AD 与BE 交于点F ,连接CF.60 - 40 -20 - 80 -204664ABC D O人数(人) 等级C:a %D:32%B:23%A:10%图①图②60 - 40 - 20 - 80 - 204664ABC D O人数(人) 等级图②70(1)求证:BF=2AE; (2)若CD=2,求AD 的长.【答案】(1)证明:∵AD ⊥BC, ∠BAD=45°, ∵∠ABD=∠BAD=45°. ∵AD=BD ,∵AD ⊥BC, BE ⊥AC, ∵∠CAD+∠ACD=90°, ∠CBE +∠ACD=90°, ∵∠CAD=∠CBE.又∵∠CDA=∠BDF=90°, ∵△ADC ≌△BDF. ∵AC=BF.∵AB=BC,BE ⊥AC, ∵AE=EC 即AC=2AE, ∵BF=2AE;(2)解:∵△ADC ≌△BDF ∵DF=CD=2,∵在Rt △CDF 中,CF=2=+22CD DF , ∵BE ⊥AC, AE=EC, ∵AF=FC=2, ∵AD=AF+DF=2+2.四、(每小题10分,共20分)20.(2013沈阳,20,10分)在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,2,2+6.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数; 卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1)31(2)画树状图得:BAFE由树状图可知,共有6种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的实数之差为有理数的结果有两种,因此,两次抽取的卡片上的实数之差为有理数的概率是31=62. 五、(本题10分)21.(2013沈阳,21,10分)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物上方的树枝点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF ;(2)在建筑物后面有长5米的梯子MN ,梯脚M 在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)过点A 作AP ⊥GP 于P ,由题意得AP=BF=12,AB=PF=14,∠GAP=37° 在Rt △PAG 中,tan ∠GAP=APGP, ∴GP=AP·tan37°≈12×0.75=9, ∴GF=GP+PF=9+1.4=10.4.答:风筝距地面的高度为10.4米. (2)由题意可知MN=5,MF=3,∴在Rt △MNF 中,NF=4=22MF MN -, ∵10.4-5-1.65=3.75<4开 始3+6+6 3+6 3MFCBA 37°DE NG∴能触到挂在树上的风筝.22.(2013沈阳,22,10分)如图,OC 平分∵MON ,点A 在射线OC 上,以点A 为圆心,半径为2的∵A 与OM 相切于点B ,连接BA 并延长交∵A 于点D ,交ON 于点E. (1)求证:ON 是∵A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【答案】(1)证明:过点A 作AF ⊥ON 于F. ∵∵A 与OM 相切于点B , ∵AB ⊥OM,∵OC 平分∵MON , ∵AF=AB=2,∵ON 是∵A 的切线;(2) ∵∠MON=60°,AB ⊥OM, ∵∠OEB=30°, ∵AF ⊥ON, ∵∠FAE=60°在Rt △AEF 中,tan ∠FAE=AFFE, ∵EF=AF·tan60°=32,∵S 阴=S △AEF -S 扇形ADF =21AF·EF-36060πAF 2=32-32π 六、(本题12分)23.(2013沈阳,23,12分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的正比例函数关系满足图∵中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图∵中的图象.(1)图∵中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x 的取值范围是 ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图∵中图象的后半段一次函数的表达式.O BAMCDEN【答案】(1)y=60x 2,0≤x ≤23(2)上午9点y 1=80,y 2=60. 设需要开放x 个普通售票窗口. 依题意得80x+60×5≥1450, x ≥1483. ∵x 为整数,∴x 取15.答:至少需要开放15个普通售票窗口.、 (3)设y 1= k 1x ,把(1,80)代入得80= k 1 ∴y 1= 80x.当x=2时,y 1= 160, 上午10点,y 2= y 1=160,由(1)得当x=23时,y 2=135, ∴图②中一次函数过点(23,135)、(2,160)设一次函数表达式为y 2= k 2x+b,23k 2+b=135,2k 2+b=160, 解得:k 2=50,b=60,∴一次函数表达式为y 2= 50x+60. 七、(本题12分)24.(2013沈阳,24,12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图∵,在∵ABC 中,CD 是AB 边上的中线,那么∵ACD 和∵BCD 是“友好三角形”,并且S ∵ACD =S ∵BCD . 应用:如图∵,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O. (1) 求证:∵AOB 和∵AOE 是“友好三角形”;(2) 连接OD ,若∵AOE 和∵DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在∵ABC 中,∵A=30°,AB=4, 点D 在线段AB 上,连接CD ,∵ACD 和∵BCD 是“友好三角形”,将∵ACD沿CD 所在直线翻折,得到∵A′CD ,若∵A′CD 与∵ABC 重合部分的面积等于∵ABC 面积的41,请直接写出∵ABC的面积.80160 -240 -y 1(张) x (小时)O 1 2 3 60 120 -180 -y 2(张) x (小时)O1 23240 - 图①图②【答案】(1)证明:∵ 四边形ABCD 为矩形, ∵AD ∥BC,∵∵EAO=∵BFO,又∵∵AOE=∵FOB,AE=BF , ∵∵AOE ≌∵FOB , ∵EO=BO.∵∵AOB 和∵AOE 是“友好三角形”.(2)∵∵AOE 和∵DOE 是“友好三角形”, ∵S ∵AOE =S ∵DOE ,AE=ED=21AD=3. ∵∵AOB 和∵AOE 是“友好三角形” ∵S ∵AOB =S ∵AOE∵∵AOE ≌∵FOB , ∵S ∵AOE =S ∵FOB , ∵S ∵AOD =S ∵ABF ,∵S 四边形CDOF =S 矩形ABCD -2S ∵ABF =4×6-2×21×4×3=12. 探究:2或32. 八、(本题14分)25.(2013沈阳,25,14分)如图,在平面直角坐标系中,抛物线y=c bx x ++5282经过点A (23,0)和点B (1,22),与x 轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∵BAD=∵DAC ,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE. ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当∵BMF=31∵MFO 时,请直接写出线段BM 的长.CA DB A BCF OE D图①图②【答案】(1)将A (23,0)、B (1,22)代入y=c bx x ++5282得,0=+23+49×528c b ,22=++528c b ,得b=-,28c=5242. ∵y=2528x -28x+5242. (2)当∵BAD=∵DAC 时,BD ∥x 轴. ∵B (1,22),∵当y=22时,22=2528x -28x+5242, 解得:x 1=1,x 2=4 ∵D(4, 22).(3)①四边形OAEB 是平行四边形. 理由如下:抛物线的对称轴是x=25, ∵BE=25-1=23, ∵B (23,0),∵OA=BE=23,又∵BE ∥OA∵四边形OAEB 是平行四边形.∵21或25. yxO A C BF。
2023年辽宁省大连市中考数学试卷(含解析)
2023年辽宁省大连市中考数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −6的绝对值是( )A. 6B. 16C. −16D. −62. 如图,几何体的主视图是( )A. B.C. D.3. 2023年5月10日“大连1号——连理卫星”搭乘天舟六号货运飞船飞向太空,它的质量为17000g .数17000用科学记数法表示为( )A. 17×103B. 0.17×105C. 1.7×104D. 1.7×1054.如图,AB //CD ,∠A =45°,∠C =20°,则∠E 的度数为( )A. 20°B. 25°C. 35°D. 45°5. 下列计算正确的是( )A. ( 2)0= 2B. 327=9C. 8=4 2D. 3( 3− 2)=3− 66. 解方程1x−1−2=3x 1−x 去分母,两边同乘(x−1)后的式子为( )A. 1−2=−3xB. 1−2(x−1)=−3xC. 1−2(1−x )=−3xD. 1−2(x−1)=3x7. 在半径为3的圆中,90°的圆心角所对的弧长是( )A. 92πB. 9πC. 32πD. 14π8. 某种蓄电池的电压U (单位:V )为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当R =5时,I =8,则当R =10时,I 的值是( )A. 4B. 5C. 10D. 09. 已知二次函数y =x 2−2x−1,当0≤x ≤3时,函数的最大值为( )A. −2B. −1C. 0D. 210. 2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是( )A. 最喜欢看“文物展品”的人数最多B. 最喜欢看“文创产品”的人数占被调查人数的14.3%C. 最喜欢看“布展设计”的人数超过500人D. 统计图中“特效体验及其他”对应的圆心角是23.76°二、填空题(本大题共6小题,共18.0分)11. 不等式−3x >9的解集是______ .12. 一个不透明的口袋中有2个完全相同的小球,分别标号为1,2.随机摸出一个小球记录标号后放回,再随机摸出一个小球记录标号,两次摸出小球标号的和等于3的概率是______ .13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,∠ADC=60°,AC =10,E 是AD 的中点,则OE 的长是______ .14. 如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是______ .15. 我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为______ .16. 如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE相交于点F,连接DF,则DF的长为______ .三、解答题(本大题共10小题,共102.0分。
大连市2013年二模数学试题word版
大连市2013年初中升学考试试测(二)数学一、 选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.85-的相反数是( )A . 58-B . 85-C . 85D . 582.图1是由五个完全相同的正方体组成的几何体,这个几何体的主视图是( )3.下列运算正确的是( )A . x 2+ x 2=2x 4B .x 4·x 2 =x 6C .3x 2÷x=2xD .(x 2)3=x 54.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是( ) A .61 B . 21 C . 31D .325.在平面直角坐标系中,把点(2,3)向下平移4个单位长度,得到对应点的坐标是( ) A . (2,7) B . (6,3) C . (-2,3) D . (2,-1)6.在Rt △ABC 中,∠C =90º,若BC=2AC ,则∠A 的正切值是( ) A .55 B . 21 C . 552 D . 27.在一次体检中,抽得某班8位同学的身高(单位:cm )分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是( )A . 170,165B . 166.5,165C . 165.5,165D . 165,165.58.如图2,抛物线y=-x 2-4x +c (c <0)与x 轴交于点A 和点B(n ,0),点A 在点B 的左侧,则AB 的长是( )A .4-2n B . 4+2n C . 8-2n D . 8+2n二、填空题(本题共8小题,每小题3分,共24分)9.因式分解:x 2-5x =10.今年我市投入10 000 000 000元用于绿化、造林,将10 000 000 000用科学记数法表示为 11.不等式-2x+4<x -8的解集是12.一个正多边形的每一个内角都是140º,则这个正多边形的边数是13.在一个不透明的袋子中,装有3个完全相同的小球,把它们分别标号为1,2,3.在看不到球的条件下,随机摸出一个小球后放回,再随机摸出一个小球.则两次摸出的小球的标号相同的概率是 14.如图3,直线y 1=k 1x+b 1和直线y 2=k 2x+b 2相交于点A (-2,3),当y 1≤y 2时,自变量x 的取值范围是15.在平面直角坐标系中,有两点A (2,-8)、B (10,0).以原点O 为位似中心,相似比为21,把线段AB 缩小.则点A 的对应点A’的坐标为16.如图4,将矩形纸片ABCD 折叠,使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE .若AD =8,EF =3,则AE 的长为三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算:3027)13)(13()41(-++--18.解方程:11212=---x x x19.如图5,等腰梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,且BE=CF ,AF 与DE 相交于点G . 求证:GE=GF图3图4G DA20.某区为了解八年级女生“立定跳远”试测情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分成“优秀”“良好”“及格”和“不及格”四个等级,并绘制出统计图的一部分(如图6)(1)在被调查的女生中,等级为“优秀”的有 人,“及格”等级对应的扇形圆心角的度数是 °(2)在这次调查中,一共抽取了多少名女生的测试成绩?(3)该区八年级共有2200名女生,试估计该区达到“优秀”等级的女生人数共有多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省大连市2013年中考数学试卷 一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)(2013•大连)﹣2的相反数是( ) A. ﹣2 B. ﹣ C. D. 2
考点: 相反数. 分析: 一个数的相反数就是在这个数前面添上“﹣”号. 解答: 解:﹣2的相反数是2.故选D. 点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )
A. B. C. D. 考点: 简单组合体的三视图. 分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 解答: 解:从上面看易得三个横向排列的正方形. 故选A. 点评: 本题考查了三视图的知识,要求同学们掌握俯视图是从物体的上面看得到的视图.
3.(3分)(2013•大连)计算(x2)3的结果是( ) A. x B. 3x2 C. x5 D. x6
考点: 幂的乘方与积的乘方. 分析: 根据幂的乘方法则进行解答即可. 解答: 解:(x2)3=x6,
故选:D. 点评: 本题考查的是幂的乘方法则,即幂的乘方法则:底数不变,指数相乘.
4.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( ) A. B. C. D.
考点: 概率公式. 分析: 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解答: 解;袋子中球的总数为:2+3=5,
取到黄球的概率为:. 故选:B. 点评: 此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )
A. 35° B. 70° C. 110° D. 145° 考点: 角平分线的定义. 分析: 首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数. 解答: 解:∵射线OC平分∠DOB. ∴∠BOD=2∠BOC, ∵∠COB=35°, ∴∠DOB=70°, ∴∠AOD=180°﹣70°=110°, 故选:C. 点评: 此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.
6.(3分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( ) A. m<﹣4 B. m>﹣4 C. m<4 D. m>4
考点: 根的判别式. 专题: 计算题. 分析: 由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围. 解答: 解:∵△=(﹣4)2﹣4m=16﹣4m<0,
∴m>4.
故选D 点评: 此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.
7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示: 金额/元 5 6 7 10 人数 2 3 2 1 这8名同学捐款的平均金额为( ) A. 3.5元 B. 6元 C. 6.5元 D. 7元
考点: 加权平均数. 分析: 根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案. 解答: 解:根据题意得: (5×2+6×3+7×2+10×1)÷8=6.59(元); 故选C. 点评: 此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.
8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是( ) A. OP1⊥OP2 B. OP1=OP2
C. OP1⊥OP2且OP1=OP2 D. OP1≠OP2
考点: 轴对称的性质. 分析: 作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.
解答: 解:如图,∵点P关于直线OA、OB的对称点P1、P2,
∴OP1=OP2=OP,
∠AOP=∠AOP1,∠BOP=∠BOP2,
∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,
=2(∠AOP+∠BOP), =2∠AOB, ∵∠AOB度数任意,
∴OP1⊥OP2不一定成立.
故选B.
点评: 本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观. 二、填空题(本题8小题,每小题3分,共24分) 9.(3分)(2013•大连)因式分解:x2+x= x(x+1) .
考点: 因式分解-提公因式法. 分析: 根据观察可知原式公因式为x,直接提取可得. 解答: 解:x2+x=x(x+1).
点评: 本题考查了提公因式法分解因式,通过观察可直接得出公因式,结合观察法是解此类题目的常用的方法.
10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第 四 象限. 考点: 点的坐标. 分析: 根据各象限内点的坐标特征解答. 解答: 解:点(2,﹣4)在第四象限. 故答案为:四. 点评: 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
11.(3分)(2013•大连)把16000 000用科学记数法表示为 1.6×107 . 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原
数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:将16 000 000用科学记数法表示为:1.6×107.
故答案为:1.6×107. 点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 12.(3分)(2013•大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示: 移植总数(n) 400 750 1500 3500 7000 9000 14000 成活数(m) 369 662 1335 3203 6335 8073 12628
成活的频率 0.923 0.883 0.890 0.915 0.905 0.897 0.902
根据表中数据,估计这种幼树移植成活率的概率为 0.9 (精确到0.1). 考点: 利用频率估计概率. 分析: 对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法. 解答: 解:=(0.923+0.883+0.890+0.915+0.905+0.897+0.902)÷7≈0.9,
∴这种幼树移植成活率的概率约为0.9.
故本题答案为:0.9. 点评: 此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
13.(3分)(2013•大连)化简:x+1﹣= . 考点: 分式的加减法. 专题: 计算题. 分析: 先通分,再把分子相加减即可. 解答: 解:原式=﹣
= =. 故答案为:. 点评: 本题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.
14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 8 cm.
考点: 圆锥的计算. 分析: 半径为32cm,圆心角为90°的扇形的弧长是=16π,圆锥的底面周长等于侧面展开图
的扇形弧长,因而圆锥的底面周长是16π,设圆锥的底面半径是r,则得到2πr=16π,求出r的值即可. 解答: 解:∵=16π,
圆锥的底面周长等于侧面展开图的扇形弧长, ∴圆锥的底面周长是16πcm,
设圆锥的底面半径是r, 则得到2πr=16π, 解得:r=8(cm). 故答案为:8. 点评: 本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系: (1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
15.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为 15.3 m(精确到0.1m).(参考数据:≈1.41,,1.73)
考点: 解直角三角形的应用-仰角俯角问题. 分析: 在Rt△ACD中求出AC,在Rt△BCD中求出BC,继而可得出AB. 解答: 解:在Rt△ACD中,CD=21m,∠DAC=30°, 则AC=CD≈36.3m; 在Rt△BCD中,∠DBC=45°, 则BC=CD=21m, 故AB=AC﹣BC=15.3m. 故答案为:15.3. 点评: 本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,理解俯角的定义,能利用三角函数表示线段的长度.
16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为 y=x2﹣x+ .