全等三角形及其判定习题课讲解

合集下载

全等三角形判定的习题课

全等三角形判定的习题课

B
1 2
C
O
3 4
E
D
例3(1)如图,A,E,F,C在一条直线上,AE=CF,DE垂直于AC, BF垂直于AC,若A=C,求证BD平分EF. (2)若将图形变为图(2),其余条件不变,上述结论是否成立?
B
B E
A
E
G F
C
A
F
G
C
D
D
图1
图2
例1.已知:如图,Байду номын сангаас=2,3=4 求证:ADC=BCD。
D C
3 1 A 2
4 B
1.三角形全等解题的思路: (1)要说明边或角相等可证 它们所在的三角形全等; (2)寻找可用的直接或间接的已知条件, 选择判定全等的方法; (3)当条件不足时可根据已知条件先证 另外两个三角形全等,再从中选择需要的 对应角或对应边.
C′
A′
C A B
B
C′
C
边边 角
角角角
1.已知点B是线段AC的中点,∠1 =∠2. 添加一个条件使得⊿ABD≌⊿CBE
E
D
1
2 B
A
C
如图,已知BE与CD相交于点O,且BO=CO,∠ADC=∠AEB,那 么⊿BDO与⊿CEO全等吗?为什么?
A
D
E
O B
C
已知:如图,在△ABC中, ∠ACB= 90°,CD AB 于点D,点E 在AC上,CE=BC, 过E点作AC的垂线,交CD的 延长线于点F . 求证:AB=FC
(1)所有全等的准备工作放在最前面写; (2)说明时注意三角形的对应顶点写在对应 位置上; (3)大括号里按照所用判定的边角顺序写.
例2.已知,如图1=2,3=4, (1)求证:⊿ABC≌⊿ADC (2)连接BD,交AE于点O, 请问AE与BD的位置关系, A OB与OD数量关系 (3)连接BE,DE,求证 EA是BCD和BAD的 角平分线,并找出图中 所有相等的边和角。

全等三角形的判定边边边课件

全等三角形的判定边边边课件
都相等,则这两个三角形全等。
定理应用
总结词
边边边全等判定定理在几何证明、三角形计算和实际问题中有着广泛的应用。
详细描述
在几何证明中,可以利用边边边全等判定定理来证明两个三角形全等,从而得出其他几何性质和关系。在三角形 计算中,可以利用边边边全等判定定理来找出相等的三角形并计算它们的面积、周长等。在解决实际问题时,如 测量、工程、建筑设计等领域中,也可以利用边边边全等判定定理来解决问题。
总结词
等边三角形的高、中线和角平分线三线合一。
详细描述
在等边三角形中,高、中线和角平分线是重合的。这是因 为等边三角形的每个角都是60度,所以高也是角平分线 ,同时高也是中线。
04 边边边全等判定定理的例 题解析
例题一:求证两个三角形全等
总结词
理解边边பைடு நூலகம்全等判定定理
详细描述
本例题通过展示两个三角形的三边分别相等,证明这两个三角形全等。通过此例 题,学生可以深入理解边边边全等判定定理的运用。
AAS(两角及非 HL(直角边斜边
夹边全…
公理)
如果两个三角形的三组对 应边分别相等,则这两个 三角形全等。
如果两个三角形的两组对 应边和夹角分别相等,则 这两个三角形全等。
如果两个三角形的两个角 和夹边分别相等,则这两 个三角形全等。
如果两个三角形的两个角 和非夹边分别相等,则这 两个三角形全等。
全等三角形的判定边边边课件
目录
• 全等三角形的基本概念 • 边边边全等判定定理 • 边边边全等判定定理的推论 • 边边边全等判定定理的例题解析 • 练习题及答案
01 全等三角形的基本概念
全等三角形的定义
全等三角形
两个三角形能够完全重合,则这两个 三角形称为全等三角形。

12.2 三角形全等的判定1

12.2 三角形全等的判定1


BD =CD ,
B
D
C
AD =AD ,
∴ △ABD ≌ △ACD ( SSS ).
变式题
如图, △ABC是一个钢架,AB=AC,AD是连接A与BC
中点D的支架,求证:求求△证证AB::D∠A≌DB△⊥=A∠BCCD
A
证明:∵D是BC的中点
∴BD=CD 在△ABD与△ACD中
B
D
C
AB=AC(已知) BD=CD(已证) AD=AD(公共边) ∴△ABD≌△ACD(SSS)
A
用 数学语言表述:
在△ABC和△ DEF中
AB DE BC EF CA FD
B
C
D
∴ △ABC ≌△ DEF(SSS) E
F
判断两个三角形全等的推理过程,叫做证明三角形 全等。
证明的书写步骤:
①准备条件:证全等时要用的条件要先 证好;
②三角形全等书写三步骤: 写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
八年级 上册
12.2 三角形全等的判定 (第1课时)
课件说明
• 学习目标: 1.构建三角形全等条件的探索思路,体会研究几何 问题的方法. 2.探索并理解“边边边”判定方法,会用“边边 边”判定方法证明三角形全等. 3.会用尺规作一个角等于已知角,了解作图的道理.
• 学习重点、难点: 构建三角形全等条件的探索思路,“边边边”判定 方法.
A
画法:1. 画线段B′C′=BC.
2. 分别以B′、C′为圆心,BA、
B
C CA为半径画弧,两弧相交于
A′
点A′.
3. 连接A′B′、A′C′.
B′
C′ △ A′B′C′就是所要画的三角形.

初二数学《全等三角形》PPT课件

初二数学《全等三角形》PPT课件

02
全等三角形判定方法
SSS判定法
定义
三边对应相等的两个三角 形全等。
符号语言
在△ABC和△A'B'C'中, AB=A'B',AC=A'C', BC=B'C' ⟹ △ABC≌△A'B'C' (SSS)
注意事项
在应用SSS判定法时,需 要确保三个边分别对应相 等,不能只满足其中两个 边相等。
SAS判定法
注意事项
在应用AAS判定法时,需要确保两个角和其中一个角的对边分别对应相等。同时,需要注意 的是,AAS判定法和ASA判定法的区别在于,AAS判定法中的两个角不是夹边所对的角,而 是任意两个角。
03
全等三角形证明技巧
已知条件梳理与分析
已知条件分类
01
边、角、高、中线、角平分线等。
已知条件之间的关系
能够灵活运用这些判定方法解决相关问题。
关键知识点回顾与总结
全等三角形的应用 了解全等三角形在几何证明和实际问题中的应用。
能够运用全等三角形的知识解决一些实际问题。
拓展延伸:相似三角形简介
相似三角形的定义与性质 了解相似三角形的定义,即两个三角形对应角相等、对应边成比例。
掌握相似三角形的性质,如相似比、面积比等。
符号语言
在△ABC和△A'B'C'中,∠A=∠A', AB=A'B',∠B=∠B' ⟹ △ABC≌△A'B'C'(ASA)
注意事项
在应用ASA判定法时,需要确保 两个角和它们之间的夹边分别对
应相等。
AAS判定法
定义

(完整)全等三角形和角平分线专题讲解和练习题

(完整)全等三角形和角平分线专题讲解和练习题

C EODBA21C EDB A21OA全等三角形专题讲解专题一 全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS") 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS")而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O,且AO 平分∠BAC .那么图中全等的三角形有___对.图1(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE,还需添加的条件是(只需填一个)_____. 图2(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3 已知:如图3,AB=AC,∠1=∠2. 求证:AO 平分∠BAC .分析:要证AO 平分∠BAC ,即证∠BAO=∠BCO,要证∠BAO=∠BCO,只需证∠BAO 和∠BCO 所在的两个三角形全等.而由已知条件知,只需再证明BO=CO 即可.图3GABF DEC ODA CBFCEDBA(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:如图4,在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF .求证:∠ADC=∠BDF .说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件 限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数 学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒ 图5 (3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.解:(1)如图6示.(2)在陆地上找到可以直接到达A 、B 的一点O,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的延长线上取一点D ,并测得OD =OB,这时测出CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB . 又∠COD=∠AOB ,∴△COD ≌△AOB .∴CD=AB=a . 图6评注:本题的背景是学生熟悉的,提供了一个学生动手操作的机会,重点考查了学生的操作能力,培养了 学生用数学的意识﹒练习:1.已知:如图7,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE=FE . 求证:AE=CE .C ED B AAO Q M CPBN A D C PBHF EGAD CBADCFBEA2.如图8,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD=∠ACD ,∠BDE=∠CDE .求证:BD=CD .3.用有刻度的直尺能平分任意角吗?下面是一种方法:如图9所示,先在∠AOB 的两边上取OP=OQ ,再取PM=QN,连接PN 、QM,得交点C ,则射线OC 平分∠AOB .你能说明道理吗?4.如图10,△ABC 中,AB=AC,过点A 作GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G .试在图10中找出3对全等三角形,并对其中一对全等三角形给出证明.5.已知:如图11,点C 、D 在线段AB 上,PC=PD .请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为__________,你得到的一对全等三角形是△_____≌△_____.6.如图12,∠1=∠2,BC=EF ,那么需要补充一个直接条件_____(写出一个即可),才能使△ABC ≌△DEF .7图13,在△ABD 和△ACD 中,AB=AC,∠B=∠C .求证:△ABD ≌△ACD .AODCBAFCGBEAF DCB EOED218.如图14,直线AD与BC相交于点O,且AC=BD,AD=BC.求证:CO=DO.9.已知△ABC,AB=AC,E、F分别为AB和AC延长线上的点,且BE=CF,EF交BC于G.求证:EG=GF.10.已知:如图16,AB=AE,BC=ED,点F是CD的中点,AF⊥CD.求证:∠B=∠E.11.如图17,某同学把一把三角形的玻璃打碎成了三块,现在要到玻璃店去配一块大小形状完全一样的玻璃,那么最省事的办法是()﹒(A)带①和②去 (B)带①去(C)带②去(D)带③去12.有一专用三角形模具,损坏后,只剩下如图18中的阴影部分,你对图中做哪些数据度量后,就可以重新制作一块与原模具完全一样的模具,并说明其中的道理.13.如图19,将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB,那么判定△OAB≌△OAB的理由是( )(A)边角边(B)角边角(C)边边边(D)角角边专题二角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路.(1)利用角的平分线的性质证明线段或角相等F ED CB A 21A FH DCGBEADCBE AF DC BE C E D例6 如图20,∠1=∠2,AE ⊥OB 于E , BD ⊥OA 于D ,交点为C .求证:AC=BC .说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法. 例7 已知:如图21,△ABC 中, BD=CD ,∠1=∠2.求证:AD 平分∠BAC .说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等.(2)利用角的平分线构造全等三角形 ①过角平分线上一点作两边的垂线段例8 如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 求证:AE=ED .分析:由于角平分线上一点到角的两边的距离相等,而点E 是两条角平分线的交点,因此我们自然想到过点E 分别作AB 、BC 、CD 的垂线段.②以角的平分线为对称轴构造对称图形例9 如图23,在△ABC 中,AD 平分∠BAC,∠C=2∠B .求证:AB=AC+CD .分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.③延长角平分线的垂线段,使角平分线成为垂直平分线 例10 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F,即可构造全等三角形..(3)利用角的平分线构造等腰三角形如图25,在△ABC 中,AD 平分∠BAC ,过点D 作DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形. 因此,我们可以过角平分线上一点作角的一边的平行线,构造等腰三角形.CF E BADQPCBACB AD EA例11 如图26,在△ABC 中,AB=AC,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE .分析:要证CD=21BE ,可将BE 分成两条线段,然后再证明CD 与这两条线段都相等.练习:1.如图27,在△ABC 中,∠B=90º,AD 为∠BAC 的平分线,DF ⊥AC 于F,DE=DC .求证:BE=CF .2.已知:如图28,AD 是△ABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF .求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .3.在△ABC 中,∠BAC=60º,∠C=40º,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q . 求证:AB+BP=BQ+AQ .4.如图30,在△ABC 中,AD 平分∠BAC ,AB=AC+CD . 求证:∠C=2∠B .5.如图31,E 为△ABC 的∠A 的平分线AD 上一点,AB >AC . 求证:AB —AC >EB-EC .CB AD 4321C E BADF CE BAD CEBADCBADACBD6.如图32,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC . 求证:∠A+∠C=180º.7.如图33所示,已知AD ∥BC ,∠1=∠2,∠3=∠4,直线DC 过点E 作交AD 于点D ,交BC 于点C .求证:AD+BC=AB .8.已知,如图34,△ABC 中,∠ABC=90º,AB=BC,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE .9.△ABC 中,AB=AC,∠A=100º,BD 是∠B 的平分线.求证:AD+BD=BC .10.如图36,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( )A .9B .8C .7D .611.如图37,△ABC 中,AD 平分∠BAC ,AD 交BC 于点D ,且D 是BC 的中点.求证:AB=AC .A CF E B M D12.已知:如图38,△ABC 中,AD 是∠BAC 的平分线,E 是BC 的中点,EF ∥AD ,交AB 于M ,交CA 的延长线于F .求证:BM=CF .。

全等三角形的判定常考典型例题和练习题集

全等三角形的判定常考典型例题和练习题集

全等三角形的判定一、知识点复习①"边角边〞定理:两边和它们的夹角对应相等的两个三角形全等。

〔SAS 〕图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB ∴△ABC ≌△DEF 〔SAS 〕②"角边角〞定理:两角和它们的夹边对应相等的两个三角形全等。

〔ASA)图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠F C EF BC E B ∴△ABC ≌△DEF(ASA)③"角角边〞定理:两个角和其中一个角的对边对应相等的两个三角形全等。

〔AAS 〕图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC F C E B ∴△ABC ≌△DEF(AAS)图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF(AAS)⑤"斜边、直角边〞定理:斜边和一条直角边对应相等的两个直角三角形全等。

〔HL 〕图形分析:书写格式:在△ABC 和△DEF 中⎩⎨⎧==DFAC DEAB∴△ABC ≌△DEF 〔HL 〕一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比方说"SSA 〞、"AAA 〞能成为判定两个三角形全等的条件吗? 两个三角形中对应相等的元素 两个三角形是否全等 反例SSA⨯AAA⨯二、常考典型例题分析第一局部:根底稳固1.以下条件,不能使两个三角形全等的是〔 〕A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD〔〕A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.以下各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是〔〕A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是〔〕A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,∠ABC=∠DCB,以下所给条件不能证明△ABC≌△DCB的是〔〕A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边一样的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是〔〕A.SAS B.SSS C.ASA D.HL第二局部:考点讲解考点1:利用"SAS〞判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用"SAS 〞的判定方法解与全等三角形性质有关的综合问题3.:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用"SAS 〞判定三角形全等解决实际问题4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,则量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗"考点4:利用"ASA 〞判定两个三角形全等5. 如图,AB=AD ,∠B=∠D ,∠1=∠2,求证:△AEC ≌△ADE .6..jyeoo./math/report/detail/6ffc59c3-43e4-4008-9d1a-6c2c447db1f4如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;考点6:利用"ASA 〞与全等三角形的性质解决问题:7.如图,EC=AC ,∠BCE=∠DCA ,∠A=∠E ;求证:BC=DC考点7:利用"SSS 〞证明两个三角形全等8.如图,A 、D 、B 、E 四点顺次在同一条直线上,AC=DF ,BC=EF ,AD=BE ,求证:△ABC ≌△EDF .考点8:利用全等三角形证明线段〔或角〕相等9.如图,AE=DF ,AC=DB ,CE=BF .求证:∠A=∠D .考点9:利用"AAS 〞证明两个三角形全等10.如图,在△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,求证:△ABD ≌△ACE.考点10:利用"AAS 〞与全等三角形的性质求证边相等11.〔2017秋•娄星区期末〕:如下图,△ABC 中,∠ABC=45°,高AE 与高BD 交于点M ,BE=4,EM=3.〔1〕求证:BM=AC ;〔2〕求△ABC 的面积.考点11:利用"HL 〞证明两三角形全等12.如图,在△ABC 中,D 是BC 边的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,且DE=DF 。

第十二章 全等三角形

第十二章  全等三角形

图12.1-1第十二章 全等三角形12.1 全等三角形素读检测1. 叫做全等形.2. 叫做全等三角形.3.一个图形经过平移、翻折、旋转后, 变化了,但 、 都没有改变,即平移、翻折、旋转前后的图形 .4.把两个全等的三角形重合到一起. 叫做对应顶点. 叫做对应边. 叫做对应角.如图12.1-1,△ABC 和△DEF 全等,记作 .记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.其中 , , 是对应顶点, , , 是对应边, , , 是对应角.5.全等三角形的性质: ; .问题思考1.对边和对应边有什么区别?2.如图,指出下列各对全等三角形的对应边和对应角.对应边: 对应边: 对应角: 对应角:DCBAO△AOB ≌△DOCCBEDA△AEB ≌△ADC图12.1-2△ABC ≌△CDA△ABC ≌△AEF对应边: 对应边: 对应角: 对应角:对应边: 对应边: 对应角: 对应角:当堂检测1.下列各图中的两个图形是全等图形的是 .2.如图12.1-6,△ADE ≌△BCF ,(1)若AD =8cm ,CD =6cm ,则BD = (2)若∠B =30°,∠E =80°,则∠ADE =3.如图12.1-7,点A 、B 、C 、D 在一条直线上,△ABF ≌△DCE .你能得出哪些结论?(请写出三个以上的结论)△ABC ≌△DEF△ABN ≌△ACMNMCBA图12.1-4图12.1-5EFDCBA图12.1-6A FBEDC图12.1-7图12.1-7巩固拓展1.如图12.1-8,已知△ABC 是边长为1的正三角形,△BMD ≌△CPD ,△MND ≌△PND ,点P 在AC 的延长线上,求△AMN 的周长.2.如图12.1-9,A 、D 、E 三点在同一直线上,且△BAD ≌△ACE ,试说明: (1)BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE .12.2 .1 三角形全等的判定第一课时素读检测1.如果△ABC ≌△A′B′C ′,那么它们的对应边相等,对应角相等.反过来,如果△ABC 和△A′B′C′满足 , 即这六个条件,就能保证△ABC ≌△A′B′C′.2. 的两个三角形全等(可以简写成“边边边”或“SSS ”).PDNMC BA图12.1-8ACE BD图12.1-9问题思考1.六个条件满足一个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?2.六个条件满足两个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?3.六个条件满足三个条件时,分几种情况考虑?请一一罗列出来.4.已知△ABC ,如何画一个△A′B′C′,使AB =A′B′,BC =B′C′,CA =C′A′,你是怎样画的?可以参照第36页上面画法.并说明画法中第(2)步的意义.5.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?此结果反映了什么规律?6.仿照第36页例1的格式,解答下列问题: 如图12.2-2,在四边形ABCD 中,AB =CD ,AD =CB . 求证:∠A =∠C .CBDA 图12.2-2 C BA图12.2-17.已知∠AOB ,求作:∠A′O′B′,使∠A′O′B′=∠AOB .(保留作图痕迹) 想一想为什么这样作出∠A′O′B′和∠AOB 是相等的?当堂检测1.如图12.2-4,AC =BD ,若根据“SSS ”证得△ABC ≌ △BAD ,需要添加的条件是 .2.工人师傅常用角尺平分一个任意角.做法如下:如图12.2-5,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由此做法得△MOC ≌△NOC 的依据是( ) A. AAS B. SAS C. ASA D. SSS3.如图12.2-6,AD =AC ,BD =BC ,∠DAC =31°,∠D =29°,∠DBE = °.4.如图12.2-7,在△ABC 中,AB =AC ,D 为BC 的中点,那么下面结论正确的有 (填序号).① △ABD ≌ △ACD ;② ∠B =∠C ; ③ AD 是△ABC 的角平分线; ④ AD 是△ABC 的高.巩固拓展如图12.2-8,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)若E 、F 运动至如图①所示的位置,且有AF =CE ,求证:△ADE ≌△CBF .(2)若E 、F 运动至如图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?BOA 图12.2-3图12.2-4CBDA图12.2-6CBEDA图12.2-7CBDA图12.2-5 DFCBAED FCBAE图12.2-812.2.2 全等三角形的判定第二课时素读检测已知:△ABC求作:△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.AB C问题思考1.你画出的△ABC与△A'B'C'满足六个条件中的哪几个条件?把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?你还有其他的检验方法吗?2.两边及其中一边的对角对应相等的两三角形一定全等吗?为什么?3.课本给出了测量池塘两端距离的一种方法,你能说说这种方法的道理吗?A BCE D当堂检测1.如图12.2-9,AD ⊥AB 于A ,BE ⊥AB 于B ,AD =BC ,AC =BE ,则∠DCE = °. 2.如图12.2-10,AB =AC ,要想利用SAS 证明△ABE ≌△ACD ,需要添加的一个条件 是 .3.如图12.2-11,AB =AC ,AD 平分∠BAC ,E 是AD 上一点,写出图中所有的全等 三角形: .4.已知:如图12.2-12,AB =AC ,AD =AE ,∠BAC =∠DAE . 求证:∠B =∠C .巩固拓展1.如图12.2-13,点E,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C . 求证:∠A =∠D .AEDCB图12.2-9AEDCB图12.2-11图12.2-10D AB CE图12.2-9图12.2-10图12.2-11CAB FD图12.2-12ABCDE图12.2-122.已知,如图12.2-14, △ABC 中,AB =AC .求证: ∠B =∠C . 你能用几种方法证明出来? 试着写出来.12.2.3 全等三角形的判定第三课时素读检测已知:△ABC .画出△A 'B 'C ',使A 'B '=AB ,∠A '=∠A ,∠B '=∠B .问题思考1.你画出的△ABC 与△A 'B 'C '满足六个条件中的哪三个条件?把画好的△A 'B 'C '剪下,放到△ABC 上,它们全等吗?你还有其他的验证方法吗?2.两角及其中一角的对边对应相等的两三角形一定全等吗?ASA 与AAS 有什么区别与联系?CBA图12.2-14图12.2-15ABC3.如图12.2-15,AD 是∠BAC 的平分线,∠1=∠2. 求证: BD =CD .当堂检测1.如图12.2-16,∠A =∠D,BC =EF ,还需要添加一个条件 ,使△ABC ≌△DEF ,理由是 . _.2.如图12.2-17,AB ⊥BC ,AD ⊥DC ,∠1=∠2.求证:AB =AD3.如图12.2-18,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .求证:BD =CE巩固拓展1.如图12.2-19, AB, CD, EF 交于O 点, 且AC =BD , AC ∥DB . 求证:O 是EF 的中点.图12.2-16图12.2-1912图12.2-17CBDA图12.2-17图12.2-18DBEA OC图12.2-182.如图11.2-20, AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC =DF . 求证:AC =EF .12.2.4三角形全等的判定第四课时素读检测1.三角形全等的判定方法有 、 、 、 四种. 它们的共同特点是需要 个条件,这些条件中至少有一个是 的条件.2.由三角形全等的条件可知,对于两个直角三角形,满足一边和一锐角对应相等,可以根据 判定它们全等;满足两直角边对应相等可以根据 判定它们全等.3.直角三角形可以用符号 表示.图12.2-204.已知Rt △ABC .画Rt △A 'B 'C ',使∠C '=90°,B 'C '=BC ,A 'B '=AB .(保留画图痕迹) 画法:(1)画∠MC′N =90°; (2)在射线C′M 上取B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′; (4)连结A′B′.问题思考1.观察所画△ABC 与△A 'B 'C ',它们全等吗?你是怎样验证的?2.由上可以得到的判定两个直角三角形全等的方法是什么?3.怎样利用HL 进行证明?你会用几何语言表示吗? 证明:∵ ∠C =∠ C′=90°,∴△ABC 和△A′B′C′都是直角三角形 在Rt △ABC 和Rt △A′B′C′中 AB = (已知)= B′C′(已知) ∴ △ABC ≌△A′B′C′( )4.你能够用几种方法判定两个直角三角形全等?5.斜边、直角边判定与前面几个判定方法的不同之处是什么?6.阅读课本第14页例4.写出下面题目规范的证明过程.CBA如图12.2-21,AC ⊥BC ,BD ⊥CB ,AB =DC . 求证:∠ABD =∠ACD .当堂检测1.如图12.2-22,BD ⊥AC 于D,CE ⊥AB 于E,BE=CD,则△BEC ≌△CBD 的理由是 .2.如图12.2-23,AC ⊥BD 于点O ,AO =CO ,添加一个条件使△ABO ≌△CDO ,你添加的条件是 .3.如图12.2-24,已知AB =AC ,AD ⊥BC 于D , 且△ABC 的周长是50cm ,△ABD 的周长是40cm ,则AD = .4.如图12.2-25,AB =CD ,DE ⊥AC ,BF ⊥AC ,E 、F 是垂足,DE =BF . 求证:(1)AE =CF . (2)AB ∥CD .巩固拓展1.如图12.2-26,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD . 求证:BE ⊥AC .FEDCBA图12.2-25图12.2-21A BCDDCBAOD CBAEDCBA图12.2-22 图12.2-23 图12.2-24图12.2-26F EDCBA图12.2-262.如图12.2-27,△ABC 中,AB =AC . (1)求证:∠B =∠C .(2)你用了几种方法证明?这些方法的基本思路是什么?(3)在证明的过程中你发现了等腰三角形有哪些性质?用简练的语言叙述出来.12.2.5三角形全等习题课问题思考1.如图12.2-28, 90=ACB 中,∠ABC 在△,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D . 求证:△BEC ≌△CDA .图12.2-28图12.2-27CAB图12.2-272.如图12.2-29所示,在△ADF 和△BCE 中,B =A ∠ ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①BC =AD ;②CF =DE ;③AF ∥BE .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写 出命题书写形式,如如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.3.如图12.2-30,已知AC=BC,EC=CD,BC ⊥AD 于C ,A 、C 、D 三点在同一直线上,连接BD ,AE ,并延长AE 交BD 于F . (1)求证:△ACE ≌△BCD ;(2)请说出AE 与BD 的关系,并证明你的结论.巩固拓展1.如图12.2-31,已知在四边形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F,交BC 于点G ,交AB 的延长线于点E ,且AE =AC . 求证:BG =FG .图12.2-29图图12.2-30 图12.2-31G FEB C DA图12.2-312.如图12.2-32,已知AD∥BC,EA,EB分别平分∠DAB,∠CBA,点E在DC上.求证:AD+BC=AB.12.3.1角的平分线的性质第一课时素读检测1.从一个角的顶点出发,把这个角分成的两个角的,叫做这个角的平分线.2.直线一点到这条直线的,叫做点到直线的距离.3.角的平分线性质: .4.证明一个几何命题的步骤:(1)明确命题中的和 .(2)根据题意,,并用表示和 . (3)经过分析,找出由推出要证的的途径,写出 .3.如图12.3-1是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE 就是角的平分线.你能说明它的道理吗?图12.2-32E CAB D图12.2-32图12.3-1问题思考1.如图12.3-2用直尺和圆规作出∠AOB 的平分线OC .2.射线OC 为什么是∠AOB 的平分线?3.在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上的测量,你发现了角的平分线的什么性质?4.用所学的知识证明你猜想的角的平分线的性质.梳理深化:1.角的平分线的画法的依据是 .2.角平分线的性质的应用:①证明两条 相等(比运用全等证明两条 相等更简捷); ②为证明三角形全等准备条件. 3.运用时要注意: ①点要在角的平分线上;②点到角两边的距离是指这点到角两边的 的长度.③解决有关角的平分线的问题时常做的辅助线是过角平分线上的点做角两边的垂线段.当堂检测1.如图12.3-3,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E , DE =3cm ,BC =7cm ,则BD 的长为 .2.如图12.3-1,BE 是∠ABC 的平分线,DE ⊥AB 于D ,S △ABC =90cm 2, AB =18cm ,BC =12cm ,则DE = .ED CBA图 12.3-3EDCBA图12.3-4 AOB 图12.3-23.如图12.3-5,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:BE=CF。

全等三角形的判定角边角课件

全等三角形的判定角边角课件

培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
B
CE
F
平移
D
A
E B
F B C
AD
E
C
F
E B
A
E
C
D
B
D A
C
旋转
A
E
C
B
A
D
A
E
C
O
B
D
翻折
A
B
C
DA
B
C
D
DE
B
C
3.若△ABD≌△ACD,对应边是
,
对应角是
.
A
AB和AC,AD和AD,BD和CD
∠ABD和∠ ACD, ∠ ADB和
∠ ADC, ∠ BAD和∠ CAD
B
D
C
4分
4.如图,某同学把一块三角形的玻璃打碎成了 三块,现在要到玻璃店去配一块完全一样的玻 璃,那么最省事的方法是( C ),并说明理由。
角形全等.(简写成__角__边__角____或“___A_S_A____”)
③ 两角和__其__中__一__个__角__的__对__边__对应相等的两个三
角形全等.(简写成_角__角__边___或“AAS”)
④ 两边和_它__们__的__的__夹__角____对应相等的两个三角
形全等(简写成“边角边”或“SA__S______”);
△AED,需要添加的一个条件是
.
A
4分
D
C
思路: 已知两角:
E 找夹边 AB=AE (ASA) 找一角的对边 AC=பைடு நூலகம்D 或DE=BC
(AAS)
5.如图,AM=AN, BM=BN
请说明△AMB≌△ANB的理由
解:在△AMB和△ANB中
AM __A__N___(__已__知__) __B_M____ BN(已知) __A_B____ ___A_B_____(公共边)
知识梳理: 三角形全等判定方法1
三边对应相等的两个三角形全等(可
以简写为“边边边”或“SSS”A)。
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
知识梳理: 三角形全等判定方法2
两边和它们的夹角对应相等的两个三角
形全等。(可以简写成“边角边”或
全等三角形的判定 (习题课)
蒲河九年制学校 八年级
1、①全等三角形的概念: 能完全重合的两个三角形叫做全等三角形。 ②全等三角形的特征:
全等三角形的对应边相等,对应角相等。
4分
2、三角形全等的条件:
4分
①___三__边____对应相等的两个三角形全等(简写成
“边边边”或“SSS”);
②两角和____它__们__的__夹__边______对应相等的两个三
13.
如图,已知AB=AC,∠BAC=90°, EC⊥AF,EC=AF。 试说明:AE⊥BF。 A
充一个条件
,使△ABC≌ △DCB.
A
D
4分
B
C
思路: 找夹角
已知两边:
∠ABC=∠DCB (SAS)
找第三边 AC=DB (SSS)
2.如图,已知∠C=∠D,要识别△ABC≌△ABD,
需要添加的一个条件是
.
C
4分
A
B
思路
D
已知一边一角 (边与角相对)
∠CAB=∠DAB
找任一角 或者
(AAS)
∠CBA=∠DBA
4分
例3:如图,在四边形ABCD中, AB=CD,AD=CB,求证:∠ A= ∠ C.
你能说明AB∥CD,AD∥BC吗?
• 证明:在△ABD和△CDB中 D
C
AB=CD (已知)
AD=CB (已知) A
B
BD=DB (公共边)
∴△ABD≌△ACD(SSS)
∴ ∠ A=∠ C(全等三角形的对应角相等)
∴△ABM ≌ △ABN ( SSS )
N
M
B
A
4分
例1、如图,已知∠B=∠DEF,AB=DE,要说 明△ABC≌△DEF, (1)若以“SAS”为依据,还须添加的一个条件
为 BC=EF ;
(2)若以“ASA”为依据,还须添加的一个条件
为 ∠A= ∠ D;
(3)若以“AAS”为依据,还须添加的一个条件
AB=DE(已知 )
B
∠B=∠E(已知 )
∴ △ABC≌△DEF(ASA)
A
D
CF E
知识梳理: 三角形全等判定方法4
有两角和其中一个角的对边对应相等的两个三角 形全等(可以 简写成“角边角”或“AAS”)。
A
D
B
CF
E
知识梳理:
A
A
B
C
SSA不能
A
判定全等
B
C
D
B D
二、几种常见全等三角形基本图形
处,如果AD=7cm, DM=5cm,∠DAM=300,则
AN= 7 cm, NM=_5__cm, ∠NAM= 300 .
A
D
4分
M
B
N
C
5.如图,AB=AC,∠B=∠C,你能证明 △ABD≌△ACE吗?
A
证明:在△ABD≌△ACE中
∠A=∠A,
E
D
∵ AB=AC, ∠B=∠C,
B
C ∴△ABD≌△ACE(ASA).
为 ∠ACB= ∠ .F
AD
B E CF
1.如图, 已知直线AD, BC交于点E, 且AE=BE, 欲说明△AEC≌△BED,需增加的条件可以 是______________________(只填一个即可).
4分
解: 根据“SAS”, 可添加CE=DE; 根据 “ASA”,可添加∠A=∠B; 根据“AAS”, 可添 加∠C=∠D.
故填CE=DE或∠A=∠B或∠C=∠D.
3.如图,已知AC⊥BD于点P,AP=CP,请增
加一个条件,使△ABP≌△CDP (不能添加
辅助线),你增加的条件是
.
4分
A
B
P
D
C
解:添加的条件为BP=DP或AB=CD或 ∠A=∠C或∠B=∠D或AB//CD.
4.如图,沿AM折叠,使D点落在BC上的N点
A.带①去 B.带②去 C.带③去 D.带①和③去
4分
2
3
1
5.在下列说法中,正确的有( B )个.并说明 判断的理由。
①三角对应相等的两个三角形全等
②三边对应相等的两个三角形全等
③两角、一边对应相等的两个三角形全等
④两边、一角对应相等的两个三角形全等
A.1 B.2 C.3
D.4 4分
1.如图,已知△ABC和△DCB中,AB=DC,请补
3.如图,已知∠1=∠2,要识别△ABC≌△CDA,
需要添加的一个条件是
.
D
C
2
4分
1
A
B
思路: 已知一边一角 (边与角相邻):
找夹这个角的另一边 AD=CB (SAS)
找夹这条边的另一角 ∠ACD=∠CAB (ASA)
找边的对角 ∠D=∠B (AAS)
4.如图,已知∠B=∠E,要识别△ABC≌
“SA用S符”)号语言表达为:
在△ABC与△DEF中
A
D
AC=DF ∠C=∠F BC=EF
CF
B
E
∴△ABC≌△DEF(SAS)
知识梳理: 三角形全等判定方法3 有两角和它们夹边对应相等的两个三角形 全等(可以简写成“角边角”或“ASA”)。
用符号语言表达为:
在△ABC和△DEF中
∠A=∠D (已知 )
相关文档
最新文档