大学物理答案第6章

大学物理答案第6章
大学物理答案第6章

第六章 气体动理论

6-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子?

解:由式nkT p =,有

3

2023

52/1068.1573

1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为

个183201068.110101068.1?=???==?-nV N

6-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的数

密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列)

分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。

解:(l )单位体积分子数

3

25m 1044.2-?==kT p n

(2)氧气的密度

3m kg 30.1-?===RT pM V m ρ

(3)氧气分子的平均平动动能

J 1021.62321k -?==kT ε

(4)氧气分子的平均距离

m

1045.3193-?==n d

6-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。

解:(1)由分析知氢气分子的最概然速率为

1

3P s m 100.2/2)(22-??==H H M RT v

利用16/22H O =M M 可得氧气分子最概然速率为

1

2H P O O P s m 100.54)(/2)(222-??===v M RT v

(2)由M RT v /2p =得气体温度

K

1081.42/22

p ?==R M v T

6-4 有N 个质量均为m 的同种气体分子,它们的速率分布如本题图所示。(1)说明曲

线与横坐标所包围面积的含义;(2)由N 和v 0求a 值;(3)求在速率v 0/2到3v 0/2间隔内的分子数;(4)求分子的平均平动动能.

分析:处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义。v N N v f d /d )(=题中纵坐标v N v Nf d /d )(=,即处于速率v 附近单位速率区间内的分子数。同时要掌握)(v f 的归一化条件,即

1d )(0

=?

∞v v f 。在此基础上,根据分布函数并运用数学方

法(如函数求平均值或极值等),即可求解本题。

解:(l )由于分子所允许的速率在0到2v 0的范围内,由归一化条件可知图中曲线下的面积

()N

v v Nf S v ==?

020

d

即曲线下面积表示系统分子总数N 。 (2)从图中可知,在0到v 0区间内,0/)(v av v Nf =;而在v 0到2v 0

区间内,a v Nf =)(。

则利用归一化条件有

??

+=00

020

d d v v v v

a v v av

N

03/2v N a =

(3)速率在v 0/2到3v 0/2间隔内的分子数为

12/7d d 2/32/000

0N v a v v av

N v v v v =+=???

(4)分子速率平方的平均值按定义为

习题6-3图

习题6-4图

??∞

==0

20

2

2

d )(/d v

v f v N N v v

故分子的平均平动动能为

2

0223

00

236

31)(21210

mv dv v N a dv v Nv a m v m v v v

K =+

==?

?ε 6-5 当氢气的温度为300℃时,求速率在区间3000m/s 到3010m/s 之间的分子数ΔN 1与

速率在区间v p 到v p +10m/s 之间的分子数ΔN 2之比。

解:氢气在温度T =273+300=573开时的最可几速率v p 为

/2182002

.0573

31.822秒米××===

M RT v p 麦克斯韦速度分布公式可改写为 x e

x N

N x ?=?-2

2

4

π

则速度在3000米/秒~3010米/秒间的分子数

2182102182300042

218230002

1??

? ?????

? ??=???

? ??-e πN

N 速度在v p ~ v p 10米/秒间的分子数

e πN

N ??? ?????

? ??=???

?

??-2182102182218242

218221822

2 故 78021823000 2

218230002

21 .e

e N N =??

?

??=????

? ??

6-6 有N 个粒子,其速率分布函数为 C Ndv

dN

v f ==

)( (v 0>v >0) 0)(=v f (v >v 0) (1) 作速率分布曲线;(2)求常数C ;(3)求粒子的平均速率。 解: (2)由归一化式

??===∞

1)(v Cv

Cdv dv v f

得 0

1v C =

(3) 2

)(0

v vCdv dv v vf v v =

==?

?∞

6-7 根据麦克斯韦速率分布律证明:处于平均速率附近一固定小速率区间内的分子数与T 成反比。

解:由 m

RT

v π8=

则速率分布函数可化为

2432

222

32

232

24)(v e

v v e RT m

v f v v RT

mv ?=

??

?? ??=??

?

??---ππππ

速率在 △v

v v +→ 区间内分子数?N 为 v e

v N

v v Nf N ??=

?=?--π

π4

1

2

32)(

可见: 11)(--∝∝?T v N

6-8 一密封房间的体积为5×3×3m 3,室温为20℃,室内空气分子热运动的平均平动

动能的总和是多少?如果气体温度升高1.0K ,而体积不变,则气体的内能变化多少?气体分子方均根速率增加多少?(已知空气的密度ρ=1.29Kg/m 3,摩尔质量M =29×10-3Kg / mol ,且空气分子可认为是刚性双原子分子。)

解:根据

KT,23

v m 212= ∴ NKT v m N 2

3

212=

()()()J. ×.=ρV M RT RT=M M =m N RTNm v m N mol mol A 6210317 2

3

232321= ()()J ×. =iR △R△T M ρV =iR △R△T M M △E=

mol mol 4101642

1

21 ()

()()

8560312

211212

12

212

s m .=T T

M R =v v v mol -??

? ??-??

? ??=?

6-9 在容积为2.0?10-3 m 3的容器中,有内能为6.75?102 J 的刚性双原子分子理想气体。

(1)求气体的压强;(2)设分子总数为5.4?1022个,求分子的平均平动动能及气体的温度。 解:(1)由RT i M m E 2=

和RT M

m

pV =可得气体压强 Pa

1035.1/25?==iV E p

(2)分子数密度n =N /V 为,则该气体的温度

K

1062.3/2?===)(Nk pV nk p T

气体分子的平均平动动能为

J 1049.72321k -?==kT ε

6-10 质点离开地球引力作用所需的逃逸速率为gR v 2=

,其中R 为地球半径。

(1)若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2)

说明大气层中为什么氢气比氧气要少。(取R= 6.40?106 m ) 分析:气体分子热运动的平均速率M RT v π/8=。对于摩尔质量M 不同的气体分子,为使

v 等于逃逸速率

v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容

易达到逃逸速率。

解:(1)由题意逃逸速率gr v 2=,而分子热运动的平均速率M RT v π/8=。当v v =时,

R

Mrg

v R

M

T 482ππ=

=

由于氢气的摩尔质量

1

3H mol kg 100.22--??=M ,

氧气的摩尔质量

1

2O mol kg 102.32--??=M

则它们达到逃逸速率时所需的温度分别为

K

1089.1,K 1018.15O 4H 22?=?=T T

(2)根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多。按大爆炸理论,宇宙在形成过程中经历了一个极高温过程。在地球形成的初期,虽然温度已大大降低,但温度值还是很高。因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸。另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率。从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子。

6-11 讨论气体分子的平动动能2

2

1mv =

ε的分布函数,归一化条件,及求任意函数)(εg 的平均值公式。并由麦克斯韦气体分子速率分布函数导出动能分布函数,求出最可几

动能。

解:在动能空间中取一小区间εεεd +-,小区间内分子数dN 占总分子数N 之比为

εεd f N

dN

)(= 其中)(εf 为分子动能分布函数,它满足归一化条件:

1)(0

=?∞

εεd f

任意函数)(εg 的平均值公式:

εεεεd f g g ?∞

=0

)()()(

dv kT

mv v kT m dv v f d f ?-?

?

?

??==)2exp(24)()(2

2

2

/3ππεε

可求出

εεεπεεd kT kT d f ?-?=

)ex p()1(

2

)(2/3

0)

(=ε

εd df 可得最可几动能 2

kT p =

ε 6-12 已知在单位时间内撞击在容器壁单位面积上的分子数为

v n 4

1

。假定一边长为1米的立方箱子,在标准情况下盛有25

103×个氧分子,计算1秒钟内氧分子与箱子碰撞的次数。

解:氧分子在标准状态下算术平均速率v 425032

.014.3273

31.888=???==

M RT v π米/秒 每边长为1米的立方箱的总面积

S =6?1?1=6米2 则

28251091.164251034

1

41?=*???=?=

S v n N 次/秒 6-13 在标准状态下氦气(He )的内摩擦系数η=1.89×10-5帕秒,摩尔质量M 为0.004

千克,平均速率v 为1.20×103

米/秒。试求:(1)在标准状态氦原子的平均自由程。(2)氦原子的半径。

解:(1)由公式λρηv 3

1

=

,则 v

ρηλ3=

因为气体密度

178.010

4.221043

3=??==--v M ρ千克/米3

7

3

51065.21020.1178.01089.133 --?=????==∴v ρηλ米 (2) ρ

πηπλ2

2221 d RT

d ==Θ 由氦原子直径

105

7231079.110013.114.31065.241.1273

1038.12---?=???????==

ρλπRT

d 米 氦原子半径为

101089.02

-?==

d

R 米 6-14 (1)求氮气在标准状态下的平均碰撞次数。(2)若温度不变,气压降到 1.33×10- 4帕,平均碰撞次数又为多少?(设分子有效直径为10 - 10米)

解:(1)在标准状态下,氮气分子的算术平均速度 454028

.014.3273

31.888=???==M RT v π米/秒 由公式p =nRT 得

32523

5/1069.22731038.110013.1米个××××===-RT p n 由平均自由程n

d 221

πλ=得

()

米×××××λ725

2

101039.81069.21014.321

--== 平均碰撞次数

/1042.510

39.81055.4Z 87

2

秒次×××λ===-v (2)气压降低之后的平均碰撞次数为Z '

p p Z

Z '

=' ∵

/71.01042.510

013.11033.1Z 8

5

4秒次××××∴=='='-Z p p 6-15 若在标准压强下,氢气分子的平均自由程为6×10 - 8米,问在何种压强下,其平

均自由程为1厘米?(设两种状态的温度一样)

解:按p = nKT 和 21 2

n

d πλ

=,有

21

2

λ

d n π=

,λ22 d KT

p π= 则

λλλλ00

011==p p

()() 0.61= 10611061 66

0帕大气压×××λ

λ--===p p

6-16 如果理想气体的温度保持不变,当压强降为原值的一半时,分子的平均碰撞频

率和平均自由程如何变化?

分析: 在温度不变的条件下,分子的平均碰撞频率p Z ∝,而分子的平均自由程

p /1∝λ,由此可得压强变化时,平均碰撞频率和平均自由程的变化。

解:由分析知p Z ∝,当压强由p 0降至p 0/2时,平均碰撞频率为

2/2

/00

00

Z p p Z Z ==

又因p /1∝λ,故当压强减半时,平均自由程为

00

22

/λλλ==p p

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理第六章-恒定磁场习题解劝答

第6章 恒定磁场 1. 空间某点的磁感应强度B 的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C ) (A )小磁针北(N )极在该点的指向; (B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向; (D )载流线圈稳定平衡时,磁矩在该点的指向。 2. 下列关于磁感应线的描述,哪个是正确的? ( D ) (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。 3. 磁场的高斯定理 0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化? ( D ) (A ) 增大,B 也增大; (B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。 5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C ) (A )0; (B )R I 2/0 ; (C )R I 2/20 ; (D )R I /0 。 6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A ) A 、等于零 B 、不一定等于零 C 、为μ0I D 、为 i n i q 1 1 7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B ) A 、 B /2 B 、2B C 、B D 、–B 8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B ,导线质量为m , I

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理第六章练习答案

大学物理第六章练 习答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 热力学基础 练 习 一 一. 选择题 1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变。 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。 3. 一定量的理想气体,分别经历如图 1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。 判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。 4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。 二.填空题 图.2 图1

1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。 3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E -= -380 J 。 4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。 三.计算题 1. 一定量氢气在保持压强为4.00×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了6.0×104 J 的热量。 (1) 求氢气的摩尔数 (2) 氢气内能变化多少 (3) 氢气对外做了多少功 (4) 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量 解: (1)由,2 2 p m i Q vC T v R T +=?=? 得 4 22 6.01041.3(2)(52)8.3150 Q v mol i R T ??= ==+?+?? (2)4,5 41.38.3150 4.291022 V m i E vC T v R T J ?=?=??=???=? (3)44(6.0 4.29)10 1.7110A Q E J =-?=-?=? (4)44.2910Q E J =?=?

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3 2 2 0) (41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

式中:θ为dq 到场点的连线与x 轴负向的夹角。 ?+= 2 32 2 0) (4dq R x x E x πε 2 32210)(24R x R x +?= πλπε2 32201)(2R x x R += ελ 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 dq E dF x =dx R x x R 2 3 22021)(2+= ελλ 方向沿x 轴正方向。 直线段受到的电场力大小为 ?=dF F dx R x x R l ?+= 02 3220 21)(ελλ2 ()?? ????+- = 2/1220211 1R l R R ελλ2 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强; (2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为 20π4R dq dE ε= ?ελ d R 0π4= ,方向沿半径向外 根据电荷分布的对称性知,0=y E ??ελ ?d R dE dE x sin π4sin 0= = R d R E x 000 π2sin π4ελ ??ελπ ==? 故 R E E x 0π2ελ = =,方向沿x 轴正向。 (2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。

大学物理第一章答案

1.5一质点沿半径为 0.10m的圆周运动,其角位置(以弧度表示)可用公式表示:θ= 2 +4t 3.求: (1)t = 2s时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答] (1)角速度为 ω= dθ/dt = 12t2 = 48(rad2s-1), 法向加速度为 an = rω2 = 230.4(m2s-2); 角加速度为 β= dω/dt = 24t = 48(rad2s-2), 切向加速度为 at = rβ= 4.8(m2s-2). (2)总加速度为, 当at = a/2时,有4at2 = at2 + an2,即.由此得, 即,

解得. 所以=3.154(rad). (3)当at = an时,可得rβ= rω2, 即24t = (12t2)2, 解得. 1.7一个半径为R = 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体 A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h= 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度. [解答]圆盘边缘的切向加速度大小等于物体A下落加速度. 由于,所以 at = 2h/Δt2 = 0.2(m2s-2). 物体下降3s末的速度为 v = att = 0.6(m2s-1), 这也是边缘的线速度,因此法向加速度为 =

0.36(m2s-2). 1.8一升降机以加速度 1.22m2s-2上升,当上升速度为 2.44m2s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m.计算: (1)螺帽从天花板落到底面所需的时间; (2)螺帽相对于升降机外固定柱子的下降距离. [解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为.由题意得h = h1 - h2,所以,解得时间为 = 0.705(s). 算得h2 = - 0.716m,即螺帽相对于升降机外固定柱子的下降距离为 0.716m. [注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程, 由此可计算钉子落下的时间,进而计算下降距离. 第一章质点运动学 1.1一质点沿直线运动,运动方程为x(t) = 6t2 - 2t 3.试求: (1)第2s内的位移和平均速度;

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理第十章答案讲解

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s ) 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m ) 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s ) 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1) 易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率) 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同) 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数) 易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T ) 易:9、作谐振动的小球,速度的最大值为,振幅为 ,则 振动的周期为 ;加速度的最大值为 。( 3 4π ,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长 为 。(468.75m ) 易:11、已知平面简谐波的波动方程式为 则 时,在X=0处相位为 ,在 处相位为 。 (4.2s,4.199s) 易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅; 圆频率 ;初相 。(10m, 1.2 -s rad π ,0) 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 , 初相位?为 。(5Hz , 0.2s , 0.03m , 23 π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12 cos(05.0π ω- =t x ) 中:15、A 、B 是在同一介质中的两相干波源,它们的 位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

大学物理答案第6章

大学物理答案第6章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 气体动理论 6-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 6-2 一容器内储有氧气,其压强为1.01105 Pa ,温度为27℃,求:(l ) 气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 6-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

相关文档
最新文档