第二章气体放电和低温等离子体
《气体放电中等离子体的研究》报告

气体放电中等离子体的研究姓名_____学号_____院系_____气体放电中等离子体的研究一引言等离子体是由大量的自由电子和离子组成,在整体上表现为近似电中性的电离气体。
由于等离子体有着许多独特的物理和化学性质,它已广泛应用于能源、航空、表面处理及垃圾焚烧等领域。
准确测量等离子体的参数,是各领域研究及应用的关键环节。
在众多等离子体测量手段中,郎缪尔探针法被认为是最简便的一种方法。
郎缪尔探针法由伸入等离子体内的导体作为探针向它施加电压,通过测定探针电流得到电流-电压(I-V)特性曲线,从而求得等离子体的参数。
本文主要介绍了探针法的工作原理,利用探针法测量等离子体的一些主要参量,并通过实验分析了影响实验结果的各种因素。
二实验原理1 等离子体定义及其物理特性等离子体是一种由等量正负电荷离子和中性粒子组成的电离气体,其中正负电荷密度相等,整体上呈现电中性。
等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。
描述等离子体的一些主要参量有电子温度Te、带电粒子密度、轴向电场强度EL、电子平均动能Ee、空间电位分布等。
2 气体放电原理气体放电可以采用多种能量激励形式,如直流、微波、射频等能量形式。
其中直流放电因为结构简单、成本低而受到广泛应用。
直流放电形成辉光等离子体的典型结构如图1所示。
图1 气体放电管工作原理图图2辉光放电的唯相结构示意图3 稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
辉光放电是气体导电的一种形态。
当放电管内的压强保持在10-102Pa时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图2所示。
正辉区是我们感兴趣的等离子区。
其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。
这使得其中带电粒子的无规则热运动胜过它们的定向运动。
所以它们基本上遵从麦克斯韦速度分布律。
由其具体分布可得到一个相应的温度,即电子温度。
气体放电等离子体实验报告

气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的物理实验,通过对气体放电现象的研究,可以深入了解等离子体的性质和行为。
本实验旨在通过观察和分析气体放电等离子体的特性,揭示等离子体的基本原理和应用。
实验目的:1. 研究气体放电的基本特性,如放电现象、放电形态等;2. 探索气体放电等离子体的性质,如等离子体的密度、温度等;3. 分析气体放电等离子体的应用领域,如等离子体在光谱分析、材料处理等方面的应用。
实验材料和装置:1. 气体放电实验装置:包括气体放电管、高压电源、电流表、电压表等;2. 气体:常见的气体有氢气、氦气、氮气等;3. 实验记录仪器:如摄像机、数据采集器等。
实验步骤:1. 准备实验装置,并确保安全;2. 连接高压电源和气体放电管,调节电压和电流;3. 打开电源,观察气体放电管内的放电现象;4. 记录放电的形态、颜色、亮度等特征;5. 测量放电管两端的电压和电流,并记录数据;6. 调节电压和电流,观察放电现象的变化;7. 使用摄像机或数据采集器记录实验过程;8. 分析实验数据,得出结论。
实验结果与分析:经过实验观察和数据分析,我们发现不同气体在不同电压和电流条件下,产生了不同的放电形态和颜色。
例如,在低压条件下,氢气放电呈现出红色的辐射,而在高压条件下,氢气放电呈现出紫色的辐射。
这是因为不同气体的原子结构和能级分布不同,导致其放电现象也不同。
通过实验数据的分析,我们还可以计算出等离子体的密度和温度。
根据普朗克公式和玻尔兹曼关系,我们可以利用放电管两端的电压和电流数据,推导出等离子体的密度和温度。
这对于等离子体物理学的研究具有重要意义。
实验应用:气体放电等离子体在许多领域都有广泛的应用。
例如,在光谱分析中,气体放电等离子体可以用于分析物质的成分和结构。
通过观察等离子体在不同波长下的辐射光谱,可以确定样品中的元素和化合物。
此外,气体放电等离子体还可以应用于材料处理。
第2章等离子体基本概念

几种平均碰撞时间的数量级:
ee :ii :ie 1: mi / me : mi / me
平均碰撞频率
ee :ii :ie mi / me : mi / me :1
库仑相互作用短程部分所造成的碰撞过程的时间 尺度与库仑相互作用长程部分所造成集体运动的 等离子体振荡周期相比较:
2.2 等离子体的基本性质与定义
1. 电荷屏蔽现象与等离子体准电中性 电荷屏蔽现象: 等离子体是由大量带电粒子组成的多粒子体
系。 与中性气体根本区别:两个带电粒子之间是 长程的库仑作用,由于周围大量带电粒子 的存在,会出现电荷屏蔽现象,这是等离 子体的重要特征之一。
在等离子体中考察任一个带 电粒子,由于它的静电场作 用,在其附近会吸引异号电 荷的粒子、同时排斥同号电 荷的粒子,从而在其周围会 出现净的异号“电荷云”, 这样就削弱了这个带电粒子 对远处其他带电粒子的作用, 这就是电荷屏蔽现象。因此 在等离子体中,一个带电粒 子对较远处的另一个带电粒 子的作用,就不再是库仑势,
ee / pe 1
pe 1/ pe
等离子体中的碰撞过程比等离子体集体振荡过程 慢得多。说明等离子体的特性是以集体效应为主。 实际上,在短程碰撞引起等离子体性质改变的时 间尺度内,就能出现各种等离子体集体现象(如等 离子体波、不稳定性等),因而在多数场合,这种 短程碰撞影响都可忽略。
等离子体定义(统一的 )
电子等离子体振荡 因为这种振荡是1920 年朗缪尔(Langmuir) 发现的,所以又称朗 缪尔振荡.
电子等离子体振荡频率
离子当成均匀分布的正电荷背景,振荡是电子受
气体辉光放电与等离子体物理

气体辉光放电与等离子体物理气体辉光放电是一种发光的现象,在低压下,通过在气体中施加电场而产生的等离子体导电现象。
这种现象在我们日常生活中随处可见,例如荧光灯、氖灯等。
气体辉光放电的研究不仅仅是对这种现象的深入理解,也是研究等离子体物理的重要一环。
辉光放电的基本原理是:当在两个电极之间施加高电压时,电场足够强以致将气体分子电离,形成正负离子对。
这些离子在电场的作用下加速运动,在与气体分子碰撞或与其他离子碰撞时,发生能量交换,导致离子再次发射能量。
这一能量会以光的形式辐射出来,形成气体辉光放电现象。
气体辉光放电的研究对于等离子体物理的发展至关重要。
等离子体是第四态物质,由正、负离子和电子组成,具有导电性和态密度较高的特点。
由于气体辉光放电是一种产生等离子体的方法,在研究等离子体的性质和应用方面有着广泛的应用。
首先,气体辉光放电可以用于研究等离子体的基本性质。
通过在气体中加入适量的斯塔克效应试剂,可以调整电子及离子能级。
通过测量气体中的辉光发射光谱,可以得到气体中的能级分布、相互作用以及辉光强度等信息。
这些数据可以帮助我们进一步理解等离子体的行为规律。
其次,气体辉光放电还是等离子体制备中的一种常用方法。
利用气体辉光放电可以产生强度较高的等离子体,进而用于材料表面处理、等离子体光谱研究以及等离子体化学反应等方面。
例如,利用气体辉光放电可以有效地去除材料表面的有机物污染,并增加其表面能,从而提高材料的附着力和光学性能。
此外,气体辉光放电还在环境污染治理、能源利用等方面发挥着重要的作用。
在环境污染治理方面,气体辉光放电技术可以用于废气处理、废水处理以及固体废弃物处理等。
这是因为气体辉光放电在等离子体化学反应中产生了一系列活性物种,可以高效地降解有机物、净化废气和废水。
在能源利用方面,将气体辉光放电与等离子体催化相结合,可以提高气体转化效率,实现能源的高效利用。
总之,气体辉光放电是一种发光现象,通过在气体中施加电场产生等离子体物理现象。
气体放电等离子体实验报告

气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的实验,通过在气体中施加电场,使气体分子电离并形成等离子体。
这一实验具有广泛的应用领域,如等离子体物理、光谱学、材料科学等。
本报告将详细介绍气体放电等离子体实验的过程、实验装置和实验结果。
实验过程:1. 实验准备首先,我们准备了实验所需的材料和设备,包括气体放电管、电源、电压表、电流表等。
然后,我们对实验装置进行了检查和调试,确保其正常工作。
2. 实验操作将气体放电管连接到电源上,并设置合适的电压和电流。
然后,通过调节电压和电流的大小,控制气体放电管中的等离子体形成和维持。
3. 数据记录在实验过程中,我们记录了气体放电管中的电压和电流变化情况,并观察了等离子体的形态和颜色变化。
同时,我们还测量了等离子体的温度、密度等参数。
实验装置:实验装置主要包括气体放电管、电源、电压表、电流表和数据记录设备。
1. 气体放电管气体放电管是实验中最关键的部分,它由玻璃管和两个电极组成。
玻璃管内充满了待研究的气体,如氢气、氮气等。
电极通过电源提供电场,使气体分子电离并形成等离子体。
2. 电源电源是为气体放电管提供电场的设备,它可以提供不同电压和电流的输出。
通过调节电源的输出参数,可以控制等离子体的形成和维持。
3. 电压表和电流表电压表和电流表用于测量气体放电管中的电压和电流。
通过监测电压和电流的变化,可以了解等离子体的形成和消失过程。
4. 数据记录设备数据记录设备用于记录实验过程中的各种参数,如电压、电流、等离子体的形态和颜色等。
通过对这些数据的分析,可以得出实验结果并进行进一步的研究。
实验结果:在实验过程中,我们观察到了气体放电管中的等离子体形态和颜色的变化。
随着电压和电流的增加,等离子体的亮度和密度逐渐增加。
同时,等离子体的颜色也发生了变化,从无色逐渐变为蓝色、紫色等。
我们还测量了等离子体的温度和密度,发现随着电压和电流的增加,等离子体的温度和密度也随之增加。
低温等离子体介绍PPT课件

SH + O2 → SO + OH
13
以苯乙烯为例说明:
苯乙烯在高能电子的攻击下,可发生如下反应:
C6H5CH C2 H •
C 6H 5 C H C• H H •
C 6H 5C H C2H e C6H5••CH C2 H
0.01秒
53
54
6-3 第三代等离子体应用于 山东新华制药股份有限公司酯类废气处理
①新华制药异味气 体等离子体处理装 置
55
56
6-4 正在应用和即将应用的工程案例
一. 烟台恒邦化工助剂有限公司黄药生产--异丙(丁、 戊)醇和CS2废气处理
Q=6000M3/h,废气浓度15000mg/L 二. 吉林石化化肥厂污水站—醇、醛、胺类废气处理
42
第二代介质阻挡放电工业废气处理装置:
43
第三代低温等离子体 工业废气处理装置
44
等离子体放电管工作状况图:
45
第三代 产品试 验装置
试验现 场
46
中石化齐鲁分公司腈纶厂试验装置
47
组合式实验平台
48
移动式一体化试验平台
设计试验车1辆,组合式试验设备2台,建设实验 室200m2,试验车间1000m2。
移动试验车
49
六.工程应用及样板工程
50
6-1 第二代等离子体应用于 上海化纤(集团)有限公司H2S、CS2废气处理
等离子体 废气处理 装置图
51
52
6-2 第三代等离子体应用于 齐鲁石化腈纶厂有机胺废气处理
②齐鲁石化腈纶厂 恶臭气体等离子体 处理装置
气体放电物理知识要点总结201466

自旋磁量子数ms=±2.
7.在光谱中,将电子组态用规定的符号来标志,轨道角量子数用字 母s,p,d,f等表示,相应的/值分别为0, 1, 2, 3等。
电子组态所形成的原子态符号可以表示为
第二章.气体放电的基本物理过程
1.带电离子的产生方式:碰撞电离,光电离,热电离,金属表而电离
2.电子与原子碰撞时,若碰撞不引起原子内部的变化,这种碰撞称为弹性碰撞,若电子能量足够大,电子与原子碰撞后,可引起原子内 部发生变化,即引起原子的激发或电离,这种碰撞称为非弹性碰撞。碰撞激发:若电子动能比原子的电离能小,但比原子激发能大,则电 子与原子碰撞时,可使得原子激发。
6•反常辉光放电:当放电电流大于某一值时,放电覆盖整个阴极表面, 随后电流密度和阴极位降都增加,这种放电的阴极位降为反常阴极位 降。
7.辉光放电止柱区本质上就是等离子体区,空间宏观电荷密度为零, 带电粒子以朵乱为主,不存在雪崩式的电离过程。正柱中电子的损失 可认为主要是由在管壁的复合造成的。
&辉光放电中阳极仅仅起到搜集电子的作用。
5.碰撞时的能量转移。当弹性碰撞发生在电子与重粒子(原子或者离 子)之间时,电子只给粒子很少一部分能量,而在非弹性碰撞中,电 子与重粒子碰撞时可能交出全部能量,变为重粒子的势能,使重粒子 激发或电离,而在重粒子之间碰撞时,重粒子只交出动能的一半来激 发或者电离其它重粒子,其效率比电子低得多。
6•带电粒子在气体中的运动形式:(1)热运动(在无场空间里,与中 性粒子的热运动相同),自由程反映粒子间的碰撞概率。自由程分布 函数n=noexp(-x/X),(2)扩散运动:由于气体分子空间浓度的不均匀 而在浓度梯度作用下靠杂乱无章的热运动而导致的结果。扩散系数表 征粒子的流量速率与其浓度梯度之间的比例系数。D=
低温等离子体的产生方法

低温等离子体的产生方法低温等离子体是指温度低于室温、高于绝对零度的气体中的正离子和自由电子共存并局部电中性的状态。
低温等离子体在物理、化学和工程学等领域具有广泛的应用,如等离子体显示器、等离子体刻蚀、等离子体辅助化学反应等。
在以下的回答中,我将介绍几种产生低温等离子体的方法:1.放电法产生低温等离子体:这是最常见的一种方法。
通过在气体中传递电流产生放电,使气体中的分子碰撞、电离、激发从而形成等离子体。
例如,高压电晕放电等离子体是利用电极间的放电空间产生的。
2.激光等离子体产生法:激光可以提供高强度、短脉冲的能量,通过作用于气体或固体材料,产生高温和高电子密度的等离子体。
这种方法常用于激光等离子体刻蚀、激光等离子体化学反应等领域。
3.等离子体电化学法:在液体中使用电流产生等离子体现象。
例如,在含有电解质的溶液中通电,产生电解质的阳离子和自由电子,形成等离子体。
这种方法常用于等离子体修复和合成化学反应等领域。
4.电子束法:通过电子束轰击气体或固体材料,使其电离、激发从而形成等离子体。
这种方法常用于电子束等离子体刻蚀技术、电子束等离子体源等领域。
5.射频等离子体法:通过高频电场(射频场)在气体中激发电离和激发过程,形成等离子体。
在射频等离子体法中,通常使用带有射频电源的电极(如平行板电极、螺旋电极),将气体放置在电极之间形成射频等离子体。
这种方法常用于等离子体刻蚀、等离子体辅助化学反应等领域。
需要注意的是,这些方法产生的低温等离子体都有一定的特性和优缺点。
例如,放电等离子体和射频等离子体相对易于产生,但温度较高,常用于需要高温等离子体的应用;而激光等离子体和电子束等离子体产生的温度较低,但设备复杂、成本较高。
因此,在具体应用时需要根据实际需求选择合适的方法来产生低温等离子体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
mE eB 2
eB
m
u E
B
漂移速度只与E和B有关,与q、m均无关。不管是正粒子还
是负粒子,漂移方向是一样的;离子和电子的漂移速度相同。
但是正离子的旋轮半径比电子大得多,角速度小得多。
2、带电粒子在径向电场和轴向磁场中的运动
带电粒子在径向电场中运动, 还要受到轴向磁场的影响。径 向力包括径向电场产生的电场 力,轴向磁场产生的洛伦兹力, 还有离心力。 横向力只有轴向磁场产生的洛 伦兹力。电子和粒子的运动轨 迹如图所示。
运动的能量辐射等,电子获得的动能并不是无限的。 利用ECR得到的高能电子,可以获得更充分的气体 放电。
2.2气体原子的电离和激发
本节主要内容:带电质点(粒子)的产生与消失
一、碰撞- 能量传递过程
1、弹性碰撞和非弹性碰撞
弹性碰撞:若电子 或离子的动能较小, 当其与他原子或分 子碰撞时,达不到 使后者激发或电离 的程度,碰撞双方 仅发生动能交换。
转移比率:
Et
1 2
mt
ut2
Ei
1 2
mi
vi2
4mi mt mi mt
2 cos2
二体弹性碰撞能量传 递系数:
4 射粒子与目标粒子质量相同时,能量转移比率最大,说明
同种气体原子间碰撞的能量转移十分有效。
非常重的粒子碰撞非常轻的粒子(θ=0时),轻粒子被 碰撞后的速度为入射重粒子速度的两倍。
当离子与气体原子发生第一类非弹性碰撞时,由于其质量大小 差不多,因此内能传递系数为0.5。即离子最多也是将其能量 的一半传递给中性原子,转换为内能。
当电子与气体原子发生第一类非弹性碰撞时,由于质量 相差悬殊,内能传递系数为1。即电子几乎是将其所有 的动能传递给中性原子,转换为内能
在利用气体放电的气相沉积和干法刻蚀中,离子每发生一次弹 性碰撞,最多可以损失其全部能量。而发生一次非弹性碰撞, 最多可以损失其全部能量的一半;电子在弹性碰撞中几乎不损 失能量,而在非弹性碰撞时几乎把所有能量全部传递给中性粒 子。
受到的径向电场力与惯性离心
力大小相等,方向相反,则径
向加速度为零,于是电子沿圆
周运动,这时电场强度为
(Er )rr0
mv02 er0
若电子以横向速度v1<v0或者v1>v0,则电子的运 动轨迹不为圆周,如图所示。
二、带电粒子在磁场中的运动
1、带电粒子在均匀磁场中的运动
v0
当带电粒子沿磁场方向运动时: 粒子作匀速直线运动。
当带电粒子的运动方向与磁场方向
垂直时:
粒子在磁场中做匀速圆周运动。
v0
R mv0 qB
T 2R 2 m 2 qB
v0
qB
Tm
F
周期和角频率只与B有关。 正离子回转方向与电子方向相反, 且回转半径大、角速度小、周期长
(3)如果v0 与 B斜交成角
粒子作螺旋运动,
B
T 2m
v v0
qB
v//
Fr qEr mar
电子经过电势差为U所得到的能量变成动能。
1 mv2 eU 2 故电子与电势差的关系 v 2eU
m
2、带电粒子在径向电场中的运动
两个同轴圆柱电极,两极
之间的电场是径向的。则
其强度为
E
r
U
1U ln r2
2
1 r
r1
设电子以横向速度v0在r=r0处
进入此电场,若电子在r=r0处
非常轻的粒子碰撞非常重的粒子(θ=0时),能量转移 比率非常低。但是电子在由阴极向阳极运动的过程中, 由于碰撞频繁,每秒内传递给气体分子、原子的能量不 可忽视。
3、非弹性碰撞的能量转移
目标粒子内能与入射粒 子动能之比的最大值:
U mt cos2
1 2
mi
vi2
mi mt
二体非弹性碰撞 m t 内能传递系数: m i m t
2、电子回旋共振(ECR)
当磁场强度一定时, 带电粒子回旋运动的 频率与速度无关
,因此若施加于此频 率相同的变化电场, 则带电粒子将被接力 加速,称为电子回旋 共振。
电子回旋频率与磁场B的关系为
f 2.81010B
电子在满足上述条件的区域运动,电子将会获得很 大的能量, 但由于电子与其他粒子碰撞及电子回旋
二、电离-正离子的形成(带电质点的产生)
产生带电质点的物理过程称为电离(游离),是气 体放电的首要前提。
R
R mv0 sin
qB
h
螺距
h
v//T
v//
2R
v
2mv0 cos
qB
2、带电粒子在非均匀磁场中的运动
三、带电粒子在电磁场中的运动
1、在正交均匀电磁场中的运动
当电子初速度v0=0时,电子 在正交均匀电磁场中的运动是
回旋运动加上一个垂直于电场 和磁场方向的漂移运动。运动 轨迹为旋轮线。
旋轮半径和旋转角频率 Y方向前进的漂移速度:
1、弹性碰撞和非弹性碰撞
非弹性碰撞:若电子或离子的动能达到数电 子伏以上,碰撞造成原子或分子的内部状态 发生变化,例如造成原子激发、电离、分子 解离、原子复合及电子附着等。这样的碰撞 称为非弹性碰撞。
非弹性碰撞对于气体放电和等离子体状 态的维持至关重要。
2、二体弹性碰撞的能量转移
入射粒子向目标粒子的能量
电子的回转半径小,回转频率大,最后漂移到阳 极上去。离子的的回转半径大,回转频率小,最 后漂移到阴极上去。实现等离子体分离。
2、带电粒子在径向电场和轴向磁场中的运动
在真空电弧中,带电粒子的轨迹很复杂。在电场作用下 做直线漂移运动,在磁场作用下做回转运动,在不断地 碰撞中做扩散运动。
带电粒子运动轨迹的曲率取决于粒子在两次碰撞间平均 完成旋转的圈数,称为霍耳系数,是重要的等离子体参 数。
第二章 气体放电和低温 等离子体
第二章 气体放电和低温等离子体
带电粒子在电磁场中的运动 气体原子的电离和激发 气体放电发展过程 低温等离子体概述 低温等离子体的产生辉光放电 弧光放电 高频放电 低压力高密度等离子体放电
2.1带电粒子在电磁场中的运动
一、带电粒子在电场中的运动 1、带电粒子在平行电场中的运动
其 中 , 为 霍 耳 系 数 ; 为 回 转 频 率 ; 为 碰 撞 频 率
四、磁控管和电子回旋共振
1、磁控管
圆筒形阳极和中心轴阴极构成 电极结构,两电极间加电场。 在轴向有与电场垂直的外加磁 场。
电子在上述电磁场作用下,会在阴极表面周围做回旋漂移 运动,称为电子的磁控管运动。发生这一运动的电子,在一 定条件下因回旋辐射,会发射频率为GHz的强电磁波(微波)。 称这种微波发振管为磁控管