四点共圆基本判断方法(超全)
四点共圆的9种判定方法证明

四点共圆的9种判定方法证明嘿,咱今天就来聊聊四点共圆的 9 种判定方法证明。
你可别小瞧了这四点共圆,它在数学里那可是相当重要呢!先来说说第一种方法,要是同一底边的两个同侧顶角相等,那这四个点肯定共圆。
就好像是四个小伙伴,他们有着共同的特点,自然而然就聚在一起啦。
再看看第二种,要是线段同侧的两点对线段两端点的张角相等,那它们也能共圆。
这就好比是大家有着相同的“磁场”,相互吸引着围成一个圆。
还有呢,外角等于内对角的四边形,那肯定也是四点共圆的。
你想想看,这就像是一个独特的标志,一下子就把它们联系在一起了。
若两个三角形有一条公共边,且在公共边同侧又有相等的顶角,那这四个点也能共圆。
这就好像是一个大家庭,有着亲密的关系把大家凝聚在一起。
再有就是相交弦定理的逆定理啦,如果两条线段相交,交点把每条线段分成的两条线段的积相等,那这四点不就共圆了嘛。
割线定理的逆定理也不能落下呀,如果从一点向一条线段引两条割线,这两条割线和这条线段交出的两条线段的积相等,嘿,它们也能共圆呢。
同斜边的两个直角三角形的四个顶点共圆,这不是显而易见的嘛。
四边形的一组对角互补,那它们也肯定共圆咯。
最后一种,四边形的一个外角等于它的内对角,那也能说明四点共圆呀。
你说这四点共圆的判定方法是不是很神奇?就像一把钥匙,能打开数学世界里的一扇扇奇妙之门。
在解题的时候,只要我们灵活运用这些方法,就能轻松搞定那些看似复杂的问题。
数学的世界就是这么充满魅力,四点共圆只是其中的一小部分。
我们在探索的过程中,不断发现新的规律和方法,就像是在挖掘宝藏一样。
每一个发现都让我们兴奋不已,让我们更加热爱数学这个神奇的领域。
所以呀,大家可别小看了这四点共圆的 9 种判定方法证明,它们可是我们在数学海洋中航行的重要指引呢!好好掌握它们,让我们在数学的天空中自由翱翔吧!。
初中四点共圆的6种判定方法证明

初中四点共圆的6种判定方法证明下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言初中数学中,学生经常需要证明四点共圆的问题。
四点共圆的判定与性质

四点共圆的判定与性质一、四点共圆的判定〔一〕判定方法1、假设四个点到一个定点的距离相等,那么这四个点共圆。
2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。
3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。
4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、假设AB、CD两线段相交于P点,且PA×PB=PC×PD,那么A、B、C、D四点共圆(相交弦定理的逆定理)。
7、假设AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,那么A、B、C、D四点共圆(割线定理)。
8、假设四边形两组对边乘积的和等于对角线的乘积,那么四边形的四个顶点共圆(托勒密定理的逆定理。
〔二〕证明1、假设四个点到一个定点的距离相等,那么这四个点共圆。
假设可以判断出OA=OB=OC=OD,那么A、B、C、D四点在以O为圆心OA为半径的圆上。
2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。
假设∠A+∠C=180°或∠B+∠D=180°,那么点A、B、C、D四点共圆。
3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。
假设∠B=∠CDE,那么A、B、C、D四点共圆证法同上。
4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
假设∠A=∠D或∠ABD=∠ACD,那么A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,假设∠A=∠C=90°,那么A 、B 、C 、D 四点共圆。
6、假设AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,那么A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。
四点共圆的判定方法都有哪些

四点共圆的断定方法都有哪些假如同一平面内的四个点在同一个圆上,那么称这四个点共圆,一般简称为“四点共圆〞。
共圆的四个点所连成同侧共底的两个三角形的顶角相等。
假如同一平面内的四个点在同一个圆上,那么称这四个点共圆,一般简称为“四点共圆〞。
共圆的四个点所连成同侧共底的两个三角形的顶角相等。
四点共圆怎么断定断定1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,假设能证明这一点,即可肯定这四点共圆.推论:证被证共圆的点到某一定点的间隔都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆.断定2 1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,假设能证明其顶角相等(同弧所对的圆周角相等〕,从而即可肯定这四点共圆.2:把被证共圆的四点连成四边形,假设能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
断定3把被证共圆的四点两两连成相交的两条线段,假设能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆〔相交弦定理的逆定理〕;或把被证共圆的四点两两连结并延长相交的两线段,假设能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.〔割线定理的逆定理〕断定4四边形ABCD中,假设有AB*CD+AD*BC二AC*BD即两对边乘积之和等于对角线乘积,那么ABCD四点共圆。
该方法可以由托勒密定理逆定理得到。
托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BOAC*BD等号成立的条件是ABCD四点共圆。
断定5西姆松定理逆定理:假设一点在一三角形三边上的射影共线,那么该点在三角形外接圆上。
四点共圆性质假设A、B、C D四点共圆,圆心为0,延长AB至E, AC BD交于P性质一:/ A+Z C=180°,Z B+Z D=180°性质二:/ ABCN ADC〔同弧所对的圆周角相等〕性质三:/CBE2 D〔外角等于内对角〕性质四:△AB3A DCP〔三个内角对应相等〕性质五:A P X CP=BP< DP〔相交弦定理〕性质六:A B X CD+ADX CB=A« BD〔托勒密定理〕。
四点共圆的判定与性质

四点共圆的判定与性质一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB CD两线段相交于P点,且PA X PB=PO< PD,则A、B C D四点共圆(相交弦定理的逆定理)。
7、若AB CD两线段延长后相交于P。
且PA X PB=P X PD,则A、B、C D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OI则A B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若/ A+Z C=180°或/ B+Z D=180°,则点A、B、C D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若Z B=ZCDE则A、B、C D四点共圆证法同上。
4 、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若Z A=Z D或Z ABD=Z ACD贝U A、B C D四点共圆。
D2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
5、同斜边的直角三角形的顶点共圆。
P点,且PAX PB=PC< PD,则A、B C、D四点共圆(相交弦6、若AB CD两线段相交于定理的逆定理)。
如图2,若/ A=Z C=90° 贝U A B、C、D四点共圆。
四点共圆基本判断方法(超全)

THANKS
感谢观看
假设四点不共圆,然后根据圆的性质 和几何定理进行推理,得出矛盾。通 过排除法,证明四点必须共圆。
利用角平分线性质证明四点共圆
总结词
利用角平分线的性质,结合三角形内外角关 系,证明四点共圆。
详细描述
根据角平分线的性质,角平分线上的点到角 的两边距离相等。结合三角形内外角关系, 可以推导出四点共圆的条件。具体来说,如 果一个角的角平分线将另外两个角分为两个 相等的部分,则这四个点共圆。
详细描述
欧拉定理指出,对于任意一个凸多边形,其所有边的长度之和等于其所有顶点的内角之和。此外,对 于任意一个凹多边形,其所有边的长度之和小于其所有顶点的内角之和。通过比较四个点的坐标和对 应的角度,可以利用欧拉定理来判断四点是否共圆。
塞瓦定理
总结词
塞瓦定理是判断四点共圆的另一种重要 定理,它基于三角形和线的性质,通过 比较三角形的高和对应的距离来判断四 点是否共圆。
四点共圆基本判断方法( 超全)
• 判断四点共圆的定理 • 判断四点共圆的条件 • 判断四点共圆的证明方法 • 判断四点共圆的实际应用
01
判断四点共圆的定理
托勒密定理
总结词
托勒密定理是判断四点共圆的重要定理之一,它基于三角形和圆的性质,通过比较三角形的边长和对应的半弦长 来判断四点是否共圆。
详细描述
托勒密定理指出,对于任意一个四边形,其对角线互相平分,则该四边形的四个顶点共圆。反之,如果四个点共 圆,则其对角线必互相平分。托勒密定理的应用非常广泛,可以通过它来判断四点是否共圆,也可以用来证明一 些与圆和三角形相关的性质和定理。
欧拉定理
总结词
欧拉定理是几何学中的重要定理之一,它涉及到多边形的边长、内角和及对应顶点的坐标。通过比较 多边形的边长和内角和,可以判断四点是否共圆。
四点共圆的判定方法

四点共圆的判定方法四点共圆是指四个点在同一圆周上,这种情况在几何学中经常会遇到。
那么如何判断四个点是否共圆呢?本文将介绍四种方法,包括解析几何法、向量法、余弦定理法和三角形面积法。
以下是详细的方法:一、解析几何法1. 假设已知四个点的坐标分别为A(x1, y1)、B(x2, y2)、C(x3,y3)和D(x4, y4)。
2. 计算出AB、AC和AD三条线段的长度,分别记作a、b和c。
3. 根据勾股定理可以求出三角形ABC、ABD和ACD的面积S1、S2和S3。
4. 如果S1+S2+S3等于ABC三角形的面积,则说明四个点共圆。
二、向量法1. 假设已知四个点A、B、C和D。
2. 分别计算出向量AB、AC和AD的叉积,得到三个向量的模长,分别记作a、b和c。
3. 计算出向量AB与AC之间的夹角α,向量AB与AD之间的夹角β,以及向量AC与AD之间的夹角γ。
4. 如果α+β+γ等于180度,则说明四个点共圆。
三、余弦定理法1. 假设已知四个点A、B、C和D。
2. 计算出AB、AC、AD、BC、BD和CD三对线段之间的夹角,分别记作α、β和γ。
3. 根据余弦定理可以求出三个角的余弦值cosα、cosβ和cosγ。
4. 如果cosα+cosβ+cosγ等于0,则说明四个点共圆。
四、三角形面积法1. 假设已知四个点A、B、C和D。
2. 构造三角形ABC和ABD,分别计算出它们的面积S1和S2。
3. 构造三角形ACD和BCD,分别计算出它们的面积S3和S4。
4. 如果S1+S2等于S3+S4,则说明四个点共圆。
总结:以上就是判断四点共圆的四种方法,其中解析几何法比较简单易懂,适用于初学者;向量法需要一些向量知识,但计算较为简便;余弦定理法需要一些三角函数知识,但也比较容易掌握;三角形面积法则需要计算多个三角形的面积,稍微有些繁琐。
根据实际情况选择合适的方法进行判断即可。
四点共圆基本判断方法(超全)-课件

3.若一个四边形的外角等于它的内对角,则这个 四边形的四个点共圆。
若∠B=∠CDE,则A、B、 C、D四点共圆证法同上
例 如图 所示,已知四边形 ABCD 是平行四边形,
过 点 A 和点 B 的圆与 AD、BC 分别交于 E、F 点。
求证: C、D、E、 F 四点共圆。 A E
D
B
• 分析: 欲证 C、D、E、F 四点共圆,可证以 该四点构成的四 边形中,一组对角互补或外 角等于内对角即可。
• 因二角共用AB弧,则〈A≠<D, 与实际不符, 所以只有D点在△ABC外接圆上, 故A、B、C、D四点共圆。
5.同斜边的直角三角形的顶点共圆
如图1,四边形ABCD中,∠A=∠C=90°,求证:A、B、C、D 四点共圆.
如图2,∠A=∠C=90°,求证:A、B、C、D四点共圆.
• 分析指导:可以直接根据圆的定义证明A、B、C、D四点到 某一定点的距离相等.取斜边的中点O.,再连接A.C,利用斜边
FC
4.若两个点在一条线段的同旁,并且和这条 线段的两端连线所夹的角相等,那么这两个 点和这条线段的两个端点共圆。
• 若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四 点共圆
用反证法: 已知:同侧△ABC和△CBD,共有底边CB, 〈A=〈D, 求证:A、B、C、D四点共圆 证明:
• 假设四点不在同一圆上, 作△ABC外接圆,则D点不在圆上,
中点等于斜边一半证OA=OB=OC=OD。
A
A
D
C
D
B
C
B
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ∴ ∠BFE = ∠D。 ∴ C、D、E、F 四点共圆
FC
4.若两个点在一条线段的同旁,并且和这条 线段的两端连线所夹的角相等,那么这两个 点和这条线段的两个端点共圆。
• 若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四 点共圆
用反证法: 已知:同侧△ABC和△CBD,共有底边CB, 〈A=〈D, 求证:A、B、C、D四点共圆 证明:
• 假设四点不在同一圆上, 作△ABC外接圆,则D点不在圆上,
• 5. 同斜边的直角三角形的顶点共圆。
1.若四个点到一个定点的距离相 等,则这四个点共圆 。
• 如图,菱形ABCD的对角线AC和BD相交于O点,E,F, G,H分别是AB,BC,CD,DA的中点,求证:E,F, G,H四个点在以O为圆心的同一个圆上
• 分析指导:利用直 角三角形斜边的中 点等于斜边的一半, 再利用菱形的四边 相等即可证出。
Key. 四点共圆的证明 五个基本判断方法:
• 1. 若四个点到一个定点的距离相等,则这四个点共 圆。
• 2. 若一个四边形的一组对角互补(和为180°), 则这个四边形的四个点共圆。
• 3. 若一个四边形的外角等于它的内对角,则这个四 边形的四个点共圆。
• 4. 若两个点在一条线段的同旁,并且和这条线段的 两端连线所夹的角相等,那么这两个点和这条线的 两个端点共圆。
2.若一个四边形的一组对角互补(和为 180°),则这个四边形的四个点共圆
• 若∠A+∠C=180° 或∠B+∠D=180°, 则点A、B、C、D 四点共圆
已知:四边形ABCD中,∠A+∠C=180° 求证:四边形ABCD内接于一个圆(A,B, C,D四点共圆
• 证明:用反证法 过A,B,D作圆O,假设C不在圆O 上,则C在圆外或圆内,若C在圆外, 设BC交圆O于C’,连结DC’,根据圆 内接四边形的性质得 ∠A+∠DC’B=180°, ∵∠A+∠C=180°∴∠DC’B=∠C 这与三角形外角定理矛盾,故C不可 能在圆外。类似地可证C不可能在圆 内。 ∴C在圆O上,也即A,B,C,D四点 共圆。
3.若一个四边形的外角等于它的内对角,则这个 四边形的四个点共圆。
若∠B=∠CDE,则A、B、 C、D四点共圆证法同上
例 如图 所示,已知四边形 ABCD 是平行四边形,
过 点 A 和点 B 的圆与 AD、BC 分别交于 E、F 点。
求证: C、D、E、 F 四点共圆。 A E
D
B
• 分析: 欲证 C、D、E、F 四点共圆,可证以 该四点构成的四 边形中,一组对角互补或外 角等于内对角即可。
• 因二角共用AB弧,则〈A≠<D, 与实际不符, 所以只有D点在△ABC外接圆上, 故A、B、C、D四点共圆。
5.同斜边的直角三角形的顶点共圆
如图1,四边形ABCD中,∠A=∠C=90°,求证:A、B、C、D 四点共圆.
如图2,∠A=∠C=90°,求证:A、B、C、D四点共圆.
• 分析指导:可以直接根据圆的定义证明A、B、C、D四点到 某一定点的距离相等.取斜边的中点O.,再连接A.C,利用斜边
中点等于斜边一半证OA=OB=OC=O
C
B
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫