2.1.2离散型随机变量的分布列

合集下载

2.1.2《离散型随机变量的分布列》

2.1.2《离散型随机变量的分布列》

解:X的取值有1、2、3、4、5、6 则P(X=1)=1/6, P(X=2)=1/6,
P(X=3)=1/6, P(X=4)=1/6, P(X=5)=1/6, P(X=6)=1/6 列成表格形式为 表2 1
X
1
2
3
4
5
6
1
1
1
1
1
1
P
6
6
6
6
6
6
4、求离散型随机变量的分布列的步骤:
(1)找出随机变量ξ的所有可能的取值(明确随机变量的具体取
bability distriution),简称为X的分 布 列 (distributio
nseries).有时为了表达简单,也用等式PX xi
pi,i 1,2, ,n 表 示X的 分布 列.
P
离 散 型 随 机 变 量 分 布 列的 变 0.2
化 情 况 可 以 用 图 象 表 示.如 在
2 根 据 随 机 变 量 X的 分 布 列, 可 得 只 少 取 到 1
件次品的概率
PX 1 PX 1 PX 2 PX 3
0.138 06 0.005 88 0.000 06
0.144 00.
也可以用P(X≥1)=1-P(X=0)来做
一 般 地, 在 含 有M件 次 品 的N件 产 品 中, 任 取n件,
2.1.2离散型随机变量 的分布列
莱西市实验学校 吕淑丽
一、复习回顾,巩固旧知 1、随机变量 2、离散型随机变量 3、概率的性质
二、创设情境,引入新课 【引例】抛掷一枚质地均匀的骰子,所得的点数X有 哪些值?是否是离散型随机变量?取每个值的概率是 多少?以试验结果设计奖项,可有哪些设计方案?

选修2-3:2.1.2离散型随机变量分步列——邻水中学

选修2-3:2.1.2离散型随机变量分步列——邻水中学

P ( 5) 0.14

P10.920.1 0.93
0.12 0.9
4
0.13 0.9
5
0.14
练习6.某射手有5发子弹,射击一次命中的概率为0.9.
⑵如果命中2次就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列.
解:⑵ 的所有取值为:2、3、4、5
" 3" 表示前二次恰有一次射中,第三次射中,∴
3
1 若 P ( x ) 12
则实数 x 的取值范围是 5,6 .
5.一袋中装有6个同样大小的小球,编号为1、2、 3、4、5、6,现从中随机取出3个小球,以 表示 取出球的最大号码,求 的分布列.
随机变量
的分布列为:
3
1 20

4
3 20
5
3 10
6
1 2
P
练习6.某射手有5发子弹,射击一次命中的概率为0.9, ⑴如果命中了就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列; ⑵如果命中2次就停止射击,否则一直射击到子弹用完, 求耗用子弹数 的分布列. 解:⑴ 的所有取值为:1、2、3、4、5
2
1 3
2
0
1 3
1
1 3
4
1 4
9
1 12
P
1 i 1, 2, 3 3.设随机变量 的分布列为 P( i ) a ,
i
则 a 的值为
27 13

3
4.设随机变量 只能取5、6、7、· · · 、16这12个值,且取 每一个值的概率均相等,则P ( 8) 2 ,
6 6
2
36

离散型随机变量的分布列(一)

离散型随机变量的分布列(一)
件一件的抽取产品,设各个产品被抽到的可能性相 同,在下列两种情况下,分别求出取到合格品为止
时所需抽取次数 的分布列。
(1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后
再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标
所需的射击次数 的概率分布。
分布列的是(B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量
的分布列为
P(
i)
a
1
i
,
i
1,2,3
则 a的值
27
3
引例
抛掷一枚骰子,所得的点数 有哪些值? 取每个
值的概率是多少?
解: 的取值有1、2、3、4、5、6
则 P( 1) 1
6
P( 4) 1
6
P( 2) 1
6
P( 5) 1
6
P( 3) 1
6
P( 6) 1
6
12
34
56
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
6
O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

§2.1.2离散型随机变量的分布列预习案一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。

那么,随机变量与函数有类似的地方吗?问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。

导学案重点:离散型随机变量的分布列的意义及基本性质. 难点:分布列的求法和性质的应用.1.离散型随机变量 随着试验结果的变化而变化的变量称为随机变量,通常用字母X 、Y 表示。

如果对于随机变量可能取到的值,可以按 一一列出,这样的变量就叫离散型随机变量。

2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i = 的概率()i i P X x p ==,则表称为随机变量X 的概率分布,简称X 的分布列。

离散型随机变量的概率分布还可以用条形图表示, 如图所示。

离散型随机变量的分布列具有以下两个性质:① ;②一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 。

第二章 2.1.2 离散型随机变量的分布列(一)

第二章 2.1.2 离散型随机变量的分布列(一)

2.1.2 离散型随机变量的分布列(一)学习目标 1.在对具体问题的分析中,理解取有限个值的离散型随机变量及其分布列的概念;认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少?你能用表格表示x 与p 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)1.离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的分布列. 2.离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ; (2)∑i =1np i =1.类型一 离散型随机变量的分布列的性质的应用例1 设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3}); (2)P ⎝⎛⎭⎫12<X <52.解 题中所给的分布列为由离散型随机变量分布列的性质得a +2a +3a +4a =1,解得a =110.(1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25. (2)P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =110+210=310. 反思与感悟 1.本例利用方程的思想求出常数a 的值. 2.利用分布列及其性质解题时要注意以下两个问题: (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1(1)下面是某同学求得的离散型随机变量X 的分布列.试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0).解 (1)因为P (X =-1)+P (X =0)+P (X =1)=12+14+16=1112,不满足概率之和为1的性质,因而该同学的计算结果不正确.(2)①由分布列的性质得,1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1, ∴q =1-22. ②P (ξ<0)=P (ξ=-1)=12,P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2⎝⎛⎭⎫1-22=2-12. 类型二 求离散型随机变量的分布列例2 一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.解 随机变量X 的可能取值为3,4,5,6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 11C 22,事件“X =4”包含的基本事件总数为C 11C 23,事件“X =5”包含的基本事件总数为C 11C 24,事件“X =6”包含的基本事件总数为C 11C 25, 从而有P (X =3)=C 11C 22C 36=120,P (X =4)=C 11C 23C 36=320,P (X =5)=C 11C 24C 36=310,P (X =6)=C 11C 25C 36=12,所以随机变量X 的分布列为:反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练2 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=4×15×4=15,第3次取到白球的概率为P (X =3)=4×3×15×4×3=15,第4次取到白球的概率为P (X =4)=4×3×2×15×4×3×2=15,第5次取到白球的概率为P (X =5)=4×3×2×1×15×4×3×2×1=15,所以X 的分布列为类型三 离散型随机变量的分布列的综合应用例3 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数. (2)求随机变量ξ的分布列. (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6.可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率.(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列.解 (1)选取的5只恰好组成完整“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139 D.1310 答案 C解析 P (X =10)=1-23-…-239=139.2.设随机变量ξ的分布列为P (ξ=k )=k15(k =1,2,3,4,5),则P ⎝⎛⎭⎫12<ξ<52等于( ) A.12 B.19 C.16 D.15 答案 D解析 由12<ξ<52知ξ=1,2.P (ξ=1)=115,P (ξ=2)=215,∴P ⎝⎛⎭⎫12<ξ<52=P (ξ=1)+P (ξ=2)=15. 3.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.4.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列. 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P (ξ=2)=3C 16C 16=336=112;P (ξ=3)=5C 16C 16=536;P (ξ=4)=7C 16C 16=736;P (ξ=5)=9C 16C 16=936=14;P (ξ=6)=11C 16C 16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 的值为( )A.1110B.155 C.110 D.55 答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.2.若随机变量X 的概率分布列为:P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A.x ≤1 B.1≤x ≤2 C.1<x ≤2 D.1≤x <2答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得:ξ=1, ∴P (ξ=1)=13.5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C.[-3,3] D.[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( )A.16B.13C.12D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2), 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.二、填空题7.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 答案 47解析 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为72k 个.∴分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 8.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 答案 0.6解析 由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.9.甲、乙两队在一次对抗赛的某一轮中有3道题,比赛规则:对于每道题,没有抢到题的队伍得0分,抢到题,并回答正确的得1分,抢到题目但回答错误的扣1分(即-1分),若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能值为________. 答案 -1,0,1,2,3解析 X =-1表示甲抢到1题但答错了, 若乙两题都答错,则甲获胜; 甲获胜还有以下可能:X =0,甲没抢到题,或甲抢到2题,但答时1对1错. X =1时,甲抢到1题,且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对.10.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________. 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题11.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .求这名运动员投中3分的概率.解 由题中条件知,2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16.12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列.解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以事件A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为。

新人教版选修2-3第2章第3节离散型随机变量的分布列

新人教版选修2-3第2章第3节离散型随机变量的分布列

那么上表称为离散型随机变量X的 概率分布列 ,简称为 X的分布列 .
( 2 )离散型随机变量分布列的表示方法: ①表格法. ②解析法:P(ξ=xi)=pi,ቤተ መጻሕፍቲ ባይዱ=1、2、„、n. 特别注意下标i的取值范围. ③图象法.
(3)性质:离散型随机变量的分布列具有如 下性质: ①pi ≥ 0,i=1,2,„,n; ② =1. (4)求离散型随机变量的分布列的步骤: ①找出随机变量ξ的所有可能取值xi(i=1、 2、3、„、n); pi ② 求出取各值的概率P(X=xi)= ; ③列成表格.
3.某同学计算得一离散型随机变量 ξ 的分布列如下表: ξ P -1 1 2 0 1 4 1 1 6
试说明该同学的计算结果是 ________ 的 ( 填“正确”或 “错误”).
2.一个特殊分布列 (1)两点分布列 如果随机变量X的分布列是
X 0 1 P 1-p p 这样的分布列叫做 两点分布列 . 如 果 随 机 变量X的分布列为两点分布列,就称X服从 两点分布 .而称p=P(X=1)为 成功概率 .
1 η= 0
掷出点数小于4 掷出点数不小于4
显然 η 只取 0,1 两个值. 3 1 且 P(η=1)=P(掷出点数小于 4)=6=2,故 η 的分布列为 η P 0 1 2 1 1 2
三、解答题 6.设随机变量 ξ 的分布列为: i P(ξ=i)=10(i=1,2,3,4),求: (1)P(ξ=1 或 ξ=2);
ξ 1 2 3 4 5 6 1 1 5 7 1 11 P 36 12 36 36 4 36
一批产品分一,二,三级品,每个外观都 一样,但一经使用便知道其是在哪个品级 上.已知其中一级品的数量是二级品的数 量的二倍;三级品的数量又是二级品的数 量的一半.从中随机抽取一个检查其品级 为ξ,试写出它的分布列.

高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.问题导航(1)离散型随机变量的分布列的定义是什么?两点分布和超几何分布的定义是什么? (2)离散型随机变量分布列的性质有什么作用?两点分布与超几何分布的联系和区别是什么?2.例题导读(1)例1是求两点分布列,请试做教材P 49练习1题.(2)例2、例3是求超几何分布,请试做教材P 49练习3、4题.1.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ,以表格的形式表示如下:这个表格称为离散型随机变量X 的________概率分布列,简称为X 的________分布列. (2)离散型随机变量的分布列的性质: ①________p i ≥0,i =1,2,…,n ; ② i =1np i =1.2.两个特殊分布 (1)两点分布若随机变量X p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N .如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.1.判断(对的打“√”,错的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.()(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.()(3)在离散型随机变量分布列中,所有概率之和为1.()答案:(1)×(2)×(3)√2.下列表中能成为随机变量ξ的分布列的是()A.B.C.D.答案:C3A.0.28 B.0.88C.0.79 D.0.51答案:C4.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y =-2)=________.答案:0.8离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能看出取每一个值的概率的大小,从而反映出随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.离散型随机变量的分布列 [学生用书P 32]从装有6个白球、4个黑球和2个黄球的箱中随机取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X 可以取哪些值呢?求X 的分布列.[解] 从箱中取两个球的情形有以下6种:{2白球},{1白球1黄球},{1白球1黑球},{2黄球},{1黑球1黄球},{2黑球}. 当取到2白球时,随机变量X =-2;当取到1白球1黄球时,随机变量X =-1; 当取到1白球1黑球时,随机变量X =1; 当取到2黄球时,随机变量X =0;当取到1黑球1黄球时,随机变量X =2; 当取到2黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4.P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:[解:P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.∴赢钱的概率为1933.求分布列的一般步骤为:(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n );(2)P (X =x i )的确定;(3)列出X 的分布列或概率分布表;(4)检验X 的分布列或概率分布表(用随机变量的分布列的两条性质验算).1求随机变量η=12ξ的分布列.解:由η=12ξ,对于ξ取不同的值-2,-1,0,1,2,3时,η的值分别为-1,-12,0,12,1,32.所以η的分布列为:离散型随机变量的分布列的性质 [学生用书P 32]设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).[解] (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1, 解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),∴P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.(3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量的分布列的两个性质主要解决以下两类问题:①通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.②求对立事件的概率或判断某概率是否成立.2.已知离散型随机变量则q 的值为________. 解析:∵14+1-q +q 2=1,∴q 2-q +14=0.∴q =12.答案:12两点分布与超几何分布在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.[解] (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为1.两点分布的几个特点:(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).2.解决超几何分布问题的两个关键点:(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n ,就可以利用公式求出X 取不同k 的概率P (X =k ),从而求出X 的分布列.3.(1)篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的分布列为________.解析:用随机变量X 表示“每次罚球所得分值”,根据题意,X 可能的取值为0,1,且取这两个值的概率分别为0.3,0.7,因此所求的分布列为答案:(2)某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.(本题满分12分)(2014·高考天津卷节选)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960.6分 (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).9分 所以,随机变量X12分[规范与警示] (1)解答本例的3个关键步骤:①首先确定随机变量X 的取值,是正确作答的关键.②要明确X 取不同值的意义,才能正确求X 所对应值的概率.③解答本题时易文字叙述严重缺失,如第(1)问只写出P (A )=C 13C 27+C 03C 37C 310=4960. (2)解答本类问题一是要正确理解题意,将实际问题转化为数学问题,二是在明确随机变量取每一个值所对应的随机事件外,还必须准确求出每个随机事件的概率.1.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.设随机变量XA.P (X =1.5)=0 B .P (X >-1)=1 C .P (X <3)=0.5 D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.随机变量η则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.一个口袋里有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个球,以X 表示取出的球的最小编号,求随机变量X 的概率分布.解:X 所有可能的取值为1,2,3.当X =1时,其余两球可在余下的4个球中任意选取.∴P (X =1)=C 24C 35=35.当X =2时,其余两球在编号为3,4,5的球中任意选取, ∴P (X =1)=C 23C 35=310.当X =3时,取出的球只能是编号为3,4,5的球. ∴P (X =3)=1C 35=110.∴随机变量X 的概率分布为:[A.基础达标]1.(2015·东营高二检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( )A.316B.14C.116D.15解析:选A.2<ξ≤4时,ξ=3,4, ∴P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球的个数X 是一个随机变量,则P (X =4)的值为( )A.27220B.27110C.111D.211解析:选A.由题意取出的3个球必为2个旧球,1个新球.故P (X =4)=C 23C 19C 312=27220.3.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23解析:选A.根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.4.某一随机变量X则mn 的最大值为( A .0.8 B .0.2 C .0.08 D .0.6解析:选C.由分布列的性质知m ∈(0,1),2n ∈(0,1),且0.1+m +2n +0.1=1, 即m +2n =0.8.mn =(0.8-2n )×n =0.8n -2n 2=-2(n -0.2)2+0.08, ∴当n =0.2时,mn 有最大值为0.08.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:选D.P (都不是一等品)=C 22C 25=110,P (恰有一件一等品)=C 13·C 12C 25=610, P (至少有一件一等品)=1-110=910, P (至多有一件一等品)=1-C 23C 25=710.6.则ξ为奇数的概率为________.解析:P (ξ=1)+P (ξ=3)+P (ξ=5)=215+845+29=815.答案:8157则(1)x =(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.558.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量ξ表示所选3人中男生的人数,则P (ξ≤2)=________.解析:由题意可知ξ的可能取值为1,2,3,且ξ服从超几何分布,即P (ξ=k )=C 3-k 2C k 4C 36,k =1,2,3,故P (ξ≤2)=P (ξ=1)+P (ξ=2)=C 14C 22C 36+C 24C 12C 36=15+35=45. 答案:459试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, ∴m =0.3.列表为:(1)2X +1(2)|X -1|10.,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.解:分别用x 1,x 2,x 3表示“小于5”的情况,“等于5”的情况,“大于5”的情况. 设ξ是随机变量,其可能取值分别为x 1、x 2、x 3,则P (ξ=x 1)=510=12,P (ξ=x 2)=110,P (ξ=x 3)=410=25.故ξ的分布列为1.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为ξ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<ξ≤2)B .P (ξ≤1)C .P (ξ=2)D .P (ξ=1)解析:选B.由已知得ξ的可能取值为0,1,2.P (ξ=0)=C 222C 226,P (ξ=1)=C 122C 14C 226,P (ξ=2)=C 24C 226,故P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 122C 14+C 222C 226.2.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎤-13,13 C .[-3,3] D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.3.设随机变量ξ的分布列为P (ξ=k )=c k (k +1),k =1,2,3,c 为常数,则P (0.5<ξ<2.5)=________.解析:由概率和为1,得1=c (11×2+12×3+13×4)=34c ,∴c =43,∴P (ξ=1)=23,P (ξ=2)=29,∴P (0.5<ξ<2.5)=P (ξ=1)+P (ξ=2)=89.答案:894.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机取一个检验,其级别为随机变量ξ,则P (13≤ξ≤53)=________.解析:设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k2个.∴分布列为P (13≤ξ≤53)=P (ξ=1)=47. 答案:475.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2. 所以,ξ的分布列为(2)由(1)知“所选3P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.6.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求X 的分布列.解:(1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实根”为事件C ,则Ω={(b ,c )|b ,c =1,2,…,6},A ={(b ,c )|b 2-4c <0,b ,c =1,2,…,6},B ={(b ,c )|b 2-4c =0,b ,c =1,2,…,6},C ={(b ,c )|b 2-4c >0,b ,c =1,2,…,6},∴Ω中的基本事件总数为36,A 中的基本事件总数为17,B 中的基本事件总数为2,C 中的基本事件总数为17.又∵B ,C 是互斥事件,故所求概率P =P (B )+P (C )=236+1736=1936.(2)由题意,X 可能的取值为0,1,2,则 P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为。

2.1.2离散型随机变量的分布列(一)


X P
x1 p1
x2 p2
… …
xn pn
为随机变量X的概率分布列,简称X的分布列. 也可用 P(X=xi)= pi ,i=1,2,3 …n 表示X的分布列. 思考:根据随机变量的意义与概率的性质,你能得出分 布列有什么性质? 注:1.离散型随机变量的分布列具有下述两个性质:
(1) pi 0, i 1,2, , n
【典型例题】
例1. 某一射手射击所得环数ξ 的分布列如下: ξ P 4
0.02
5
0.04
6
0.06
7
0.09
8
0.28
9
0.29
10
0.22
求此射手“射击一次命中环数≥7”的概率. 分析: “射击一次命中环数≥7”是指互斥事件 “ξ=7”, “ξ=8”, “ξ=9”, “ξ=10” 的和. 解: 根据射手射击所得环数ξ 的分布列,有 P(ξ=7)=0.09,P(ξ=8)=0.28, P(ξ=9)=0.29, P(ξ=10)=0.22, 所求的概率为 P(ξ≥7)=0.09+ 0.28+ 0.29+ 0.22= 0.88
例2、随机变量X的分布列为
X
P
-1
0.16
0
a/10
1
a2
2
a/5
3
0.3
(1)求常数a;(2)求P(1<X<4) 解:(1)由离散型随机变量的分布列的性质有
a a 2 0.16 a 0.3 1 10 5
9 3 a 解得: (舍)或 a 10 5
(2)P(1<X<4)=P(X=2)+P(X=3)=0.12+0.3=0.42

2.1.2离散型随机变量的分布列课件人教新课标B版(1)

1、设随机变量 的散布列如下:
X1 2 3 4
P 11 36
1
则 p的值为 3 .
1p
6
2、设随机变量 的散布列为 P( i) a 1 i ,
3
i 1,2,3
a 则 的值为 27/13 .
3、X的散布列为
X
-1
0
1
2
3
P 0.16 a/10 a2 a/5 0.3
求常数a。
解:由离散型随机变量的散布列的性质有
x2,…,xi,… xn
2.求X的每个概率p1,p2,…,pi,… pn. 3、列成表格。
• 某射击选手在一段时间内的成绩
命中 0 1 环数 X
概率 0 0 P
2 3 4 5 6 7 8 9 10
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 11226 9 8 9 2
ቤተ መጻሕፍቲ ባይዱ
概念深化
应用举例
• 例2.抛掷一枚骰子,所得的点数为X: (1) 求X的散布列;
(2)求点数大于四的概率; (3)求点数不超过5的概率。
对应练习:教材第44页A4
• 4.抛掷两枚骰子,所得的点数之和为X: (1) 求X的散布列;
(2)求点数之和大于9的概率; (3)求点数之和不超过7的概率。
课堂练习:
2.1.2离散型随机变量的散布列
人教B版《数学选修2-3 》
复习回顾:
随机变量:如果随机实验的结果可以用一个变 量来表示,那么这样的变量叫做随机变量。 随机变量常用大写字母X,Y等表示。
离散型随机变量:如果随机变量X的所有可能 取值都能一一列出,则X叫做离散型随机变 量。
• 某射击选手在一段时间内的成绩

人教A版必修第三册课件2.1.2离散型随机变量的分布列

的概率.
(2)从盒子中随机取出4个球,其中红球个数记为X,求随 机变量X的分布列.
【解题指南】(1)计算取出2个球的基本事件总数,计算 取出2个相同颜色的球的基本事件数,结合古典概型计
算公式,计算概率,即可. (2)分别计算出X=0,1,2,3,4对应的概率,列出分布列即 可.
【解析】(1)一个盒子里装有9个球,其中有4个红球,3
答案:①②③
2.甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个 不同的岗位服务,每个岗位至少有一名志愿者.设随机 变量ξ为这五名志愿者中参加A岗位服务的人数,则ξ 的分布列为________.
【解析】随机变量ξ可能取的值为1,2.
事件“ξ=1”是指有1人参加A岗位服务,则P(ξ=1)
=
C15C42A33
的可能取值为0,1,2,3,4,P(X=0)= C54 P5 (,X=1)=
PC(C14XC94 =35 4P)26=03(X,CC9444=21)21=6所,以随CC24机C94P52(变X1量2=013,X)的= 分C布94 列12为C6C34C:94 15
10 , 63
【方法总结】求离散型随机变量的分布列的步骤
A.(-∞,2]
B.[1,2]
C.(1,2]
D.(1,2)
【解析】选C.由随机变量X的分布列知:P(X<-1)= 0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当 P(X<a)=0.8时,实数a的取值范围是(1,2].
2.下列表格中,不是某个随机变量的分布列的是( )
张,每张可获价值10元的奖品;其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的 分布列.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此时,随机变量 X 服从超几何分布
超几何分布
如果一个随机变量 X 的分布列为 k nk CM CN M k 0, 1, , min M, n P( X k ) n CN
则称随机变量 X 服从超几何分布. 记为:X~H(n,M,N),
N M P(X=k)= C M C , 记为 : H (k;n, M , N ) n k nk
(6,6 ) (6,5 ) (6,4 ) (6,3 ) (6,2 ) (6,1 ) (5,6 ) (4,6) (3,6 ) (2,6 ) (1,6 )
11
课堂练习:
的分布列如下: 1、设随机变量
1
1 6
2
1 3
3
1 6
4 m
) a , 2、设随机变量 的分布列为 3
x1 , x2 , x3 , , xn , ,
xi ) pi ,则称表格
xi
pi

x1
p1
x2
p2
· · · · · ·
· · · · · ·
P
为随机变量 的概率分布,简称 的分布列.
注: 1、分布列的构成
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率. 2、分布列的性质 ⑴ pi 0, i 1,2, ⑵

-2
1 12
-1
1 4
1 2
0
1 3
1
1 12
2
1 6
3
1 12
P
分别求出随机变量⑴ 1 ;⑵ 2 2 的分布列.
解:⑴由 1 1 可得 1 的取值为-1、
2
1 1 3 、0、 、1、 2 2 2
且相应取值的概率没有变化 ∴ 1 的分布列为:
1
-1
1 12
1 1 1 1 P(2 1) P( 1) P( 1) 4 12 3 3 1 1 1 P(2 4) P( 2) P( 2) 12 6 4 P(2 9) P( 3) 1
12
∴ 2 的分布列为:
2
0
1 3
以后简记为P( X=0).
两点分布列;X~0-1分布;X~ 两点分布
引例 2
抛掷一枚骰子,所得的点数 有哪些值? 取每个 值的概率是多少?
的取值有1、2、3、4、5、6 解:

1 6 1 P( 4) 6
P( 1)
P( 2)
1 6 1 P( 5) 6

1 4
1 2
0
1 3
1 2
1 12
1
1 6
3 2
1 12
P
思考:已知随机变量

的分布列如下:
-2
1 12
-1
1 4
1 2
0
1 3
1
1 12
2
1 6
3
1 12
P
分别求出随机变量⑴ 1 ;⑵ 2 2 的分布列.
解:⑵由 2 2 可得2 的取值为0、1、4、9
P(2 0) P( 0)
1 6 1 P( 6) 6
P( 3)

1
1 6
2
1 6
3
1 6
4
1 6
5
1 6
6
1 6
P
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
随机变量的概率分布列
设随机变量 的所有可能的取值为
的每一个取值 x i (i 1,2, ) 的概率为P(
C1 C3 3 “ 4” 表示其中一个球号码等于“4”, P ( 4 ) ∴ 3 另两个都比“4”小 20 C6 C1 C4 3 “ 5” 表示其中一个球号码等于“5”, P( 5) ∴ 3 另两个都比“5”小 10 C6
1 2 C C5 1 表示其中一个球号码等于“ 3” , 1 “ 6” P ( 6 ) ∴ 3 另两个都比“3”小 2 C6 1 2
则 a 的值 为
i 1,2,3
27 . 13
小结:随机变量的概率分布列
1、分布列的构成 ⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率. 2、分布列的性质 ⑴ pi 0, i 1,2,

p1 p2 1
已知随机变量 思考:
的分布列如下:
一般地,如果随机试验的结果,可以用一个变 量来表示,那么这样的变量称为随机变量。
通常用大写拉丁字母X,Y,Z(或小写希腊 字母ξ , η,ζ);用小写拉丁字x,y,z(加上适当 下标)等表示随机变量取的可能值。
ξ xi ksi 克西 η eta eit 艾塔 ζ zeta zat 截塔
随机试验中的事件就可以通过随机变量的取值 表达出来.
引例 1
掷一枚质地均匀的硬币一次,用X表示掷得 正面的次数,则随机变量X的可能取值有哪些? X取值为0,1且 { X=0 }表示 “正面向上的 次数为0”, { X=1}表示 “正面向上的次数 为1”, 那么我们要表示每个事件的概率就可以这样表示:
P{ 正面向上的次数为0 }= P({ X=0 }),
X 的 值
1 2 3
出 现 的 点
(1,1)
情 况 数
1 3 5
(2,2) (2,1) (1,2)
(3,3 ) (3,2 ) (3,1 ) (2,3 ) (1,3 ) (4,4 ) (4,3 ) (4,2 ) (4,1 ) (3,4 ) (2,4 ) (1,4 )
4
5 6
7
(5,5 ) (5,4 ) (5,3 ) (5,2 ) (5,1 ) (4,5 ) (3,5 )(2,5 ) (1,5 ) 9
p1 p2 1
例、判断下列是否是概率分布
X -2 0
2
4
ξ P
0
1
2
P
0.5 0.2 0.3 0
0.7 0.15 0.15
η P
1 -1 3
2 2 3
3
2 3
Y
0
lg1
1 lg2
2
P
lg5
数学运用
例 1 同时掷一颗质地均匀的骰子,观察 出现的点数,求出现的点数Y的概率分布 并求Y大于2小于5的概率P(2<Y<5)。 例 2 同时掷两颗质地均匀的骰子, 观察 朝上一面出现的点数,求两颗骰子中出现 的最大点数X的概率分布,并求X大于2小 于5的概率P(2<X<5)。
1
2
∴ 随机变量 的分布列为:

3
1 20
4
3 20
5
3 10
6
1 2
P
超几何分布的概率背景
一批产品有N件,其中有M 件次品.现从中取出 n 件. 令 X:取出 n 件产品中的次品数.则 X 的分布列 为
k nk CM CN M P( X k ) n CN
k 0, 1, , min M, n
1
1 3
4
1 4
9
1 12
P
:一袋中装有6个同样大小的小球,编号为1、 2、3、4、5、6,现从中随机取出3个小球,以 表示取出球的最大号码,求 的分布列.
引例
解:
的所有取值为:3、4、5、6.
1 2 C1 C2 表示其中一个球号码等于“3”, 1 P ( 3 ) “ 3” ∴ 3 另两个都比“3”小 20 C6
C
N
例如从全班任选n个人,选到女生的人数;从扑 克牌中取n张,取到黑桃的张数;买n张彩票,中 奖的张数,等等都可以用超几何分布描述。
3 一个口袋中装有10个红球,20个白球, 例1:
这些球除颜色外完全相同,一次从中摸出 5个球,摸到4个红球1个白球的就中一等奖 求中一等奖的概率.
变题:至少摸出4个红球就中一等奖?
相关文档
最新文档