7年级上册-几何图形初步提高题(最新整理)
人教版2024新版七年级数学上册第六章《几何图形初步》素养练汇编(含2套题)

《6.1 几何图形初步认识的常见题型》题型1 物体的特征在构建几何体模型中的应用1.如图的四种物体中,最接近于圆柱的是()A.B.C.D.题型2 生活中的情境在构建平面几何模型中的应用2.如图是一座房子的平面图,这幅图的组成是()A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形题型3 图形的特征在认识平面图形、认识几何体中的应用3.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体题型4 常见立体图形的特征在分类中的应用4.如图a,请帮助甲、乙、丙三名同学从图b中选出合适的立体图形.题型5 常见几何体的特征在说明面、顶点、棱的关系中的应用5.如图:由此可推测n(n为大于或等于3的正整数)棱柱有多少个面?多少个顶点?多少条棱?题型6 常见立体图形的特征的应用6.如图是一个直七棱柱,它的底面边长都是2cm,侧棱长是5cm,观察这个棱柱,回答下列问题:(1)这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状相同、面积相等?侧面的面积是多少?(2)这个七棱柱一共有多少条棱?它们的长度分别是多少?(3)这个七棱柱一共有多少个顶点?(4)通过对棱柱的观察,你能说出n棱柱的顶点数与n的关系及棱的条数与n的关系吗?题型7 图形的展开与折叠在辨识相对面中的应用7.现有4枚相同的骰子,骰子的展开图如图①所示,这4枚骰子摞在一起后,如图②,相互接触的两个面点数之和都是8,这4枚骰子每枚骰子都有一个面被遮住了(阴影部分),你能说出每个被遮住的面各是几点吗?题型8 图形的形成在计算中的应用8.如图,将一个长方形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少(结果保留m)?参考答案1.答案:A2.答案:C3.答案:C4.答案:见解析解析:甲选(2)和(4);乙选(1);丙选(1)和(3).5.答案:见解析解析:n 棱柱有(2n +)个面,2n 个顶点,3n 条棱.6.答案:见解析解析:(1)这个七棱柱共有九个面,上、下两个底面是七边形,七个侧面都是长方形.上、下两个底面的形状相同、面积相等;七个侧面的形状相同、面积相等.225770()S cm =⨯⨯=侧.(2)这个七棱柱一共有21条棱,侧棱长为5cm ,其余棱长为2cm.(3)这个七棱柱一共有14个顶点.(4)通过观察棱柱可知,n 棱柱共有2n 个顶点,3n 条棱.7.答案:见解析解析:1为1点,2为6点,3为4点,4为3点.8.答案:见解析解析:(1)得到的几何体是圆柱.(2)绕宽所在直线旋转一周得到的圆柱的底面半径为6cm ,高为4cm ,体积=2364144()cm ππ⨯⨯=;绕长所在直线旋转一周得到的圆柱的底面半径为4cm ,高为6cm ,体积=234696()cm ππ⨯⨯=.《6.2 线段的计算的四大技法》素养练技法1 和差关系法1.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使2BC AB =,取AC 中点D ;(2)在(1)的条件下,如果4AB =,求线段BD 的长度.2.如图,已知线段24AB =cm ,点P 是线段AB 上任意一点,与点,A B 都不重合,点C 是线段AP 的中点,点D 是线段PB 的中点,计算CD 的长度.3.如图,点C 为线段AB 的中点,点D 在线段CB 上.(1)图中共有_______条线段;(2)图中,AD AC CD BC AB AC =+=-,类似地,请你再写出两个有关线段的和与差的关系式;(3)若8, 1.5AB DB ==,求线段CD 的长.技法2 设元列方程法4.如图,点C 为线段AB 上一点,且:2:3AC BC =,N 是BC 的中点,若35AN =,求AB 的长.5.如图,线段AB 被点,C D 分成3:4:5的三部分,且AC 的中点M 和BD 的中点N 之间的距离是40cm ,求AB 的长.6.已知线段AB ,延长AB 到点C ,使12BC AB =,延长BA 到点D ,使2AD AB =,点,M N 分别是,BC AD 的中点,若MN =18cm ,求AB 的长.技巧3 整体求值法7.如图,点,C D 是线段AB 上的两点,,M N 分别是AC 与BD 的中点.(1)若2418AB CD ==,,求MN 的长;(2)若,AB a CD b ==,请用含,a b 的式子表示MN 的长.8.如图,点C 在AB 的延长线上,,M N 分别是AC 和BC 的中点.(1)若6cm,4cm AB BC ==,则线段MN 的长是_______;(2)若cm,cm AB a BC b ==,则线段MN 的长是_______;(3)若AB m =cm ,求线段MN 的长;(4)若点C 是线段AB 的延长线上任意一点,其他条件不变,请你用一句简洁的话描述你发现的结论.技法4 分类讨论法9.已知线段AB =60cm ,在直线AB 上画线段BC ,使BC=20cm ,点D 是AC 的中点,求CD 的长度.10.已知,点,,A B C 在同一条直线上,且AC =10,BC =6,,M N 分别是,AC BC 的中点.(1)画出符合题意的图形;(2)依据(1)中的图形,求线段MN 的长.参考答案1.答案:见解析解析:(1)图略(2)因为2BC AB =,且AB =4,所以BC =8,所以8412AC AB BC =+=+=.因为点D 为AC 的中点,所以162AD AC ==,所以642BD AD AB =-=-=. 2.答案:见解析解析:设AP 的长度是x cm ,则PB 的长度是(24-x )cm ,则12CP AP ==12x cm ,12PD PB = =12(24-x )cm ,则CD =12x +12(24-x )=111222x x +-=12(cm ).3.答案:见解析解析:(1)6(2)答案不唯一,如:① BC CD BD =+;②AD AB DB =-. (3)因为点C 为线段AB 的中点,AB =8,所以12CB AB ==4,所以CD =CB DB - 2.5=.4.答案:见解析解析:设AC =2x ,BC =3x ,则5AB AC BC x =+=,因为N 是BC 的中点, 所以12CN BC ==13322x x ⨯=. 因为AN AC CN =+, 所以32352x x +=,解得x =10,所以AB=5x =5×10=50.5.答案:见解析解析:设AB 的长为xcm.因为线段AB 被点C ,D 分成3:4:5的三部分, 所以3141,124123AC x x CD x x ====,512DB =x ,因为AC 的中点M 和DB 的中点N 之间的距离是40cm ,又18MC x =,524DN x =, 所以115408324x x x ++=,解得x =60,所以AB 的长为60cm. 6.答案:见解析解析:设AB x =cm ,则122x BC AB ==cm ,124x BM BC ==cm ,2AD x =cm ,12AN AD x ==cm ,由18MN =cm ,得184x x x ++=,解得x =8,则8AB =cm . 7.答案:见解析解析:(1)因为24AB AC CD BD =++=,CD =18,所以24186AC BD +=-=.因为M 是AC 的中点,N 是BD 的中点,所以11,22CM AC DN BD ==,所以11163222CM DN AC BD +=+=⨯=,所以31821MN MC DC DN =++=+=. (2)由(1)知AC BD a b +=-,111()222CM DN AC BD a b +=+=-. 所以111()222MN CM DN DC a b b a b =++=-+=+. 8.答案:见解析解析:(1)3cm(2)12a cm (3)因为,M N 分别是AC 和BC 的中点, 所以12CM AC =,12CN BC =,又因为AC AB BC =+,所以111()222MN CM CN AC BC AB BC =-=-=+111222BC AB m -== cm. (4)若点C 是线段AB 延长线上的任意一点,点,M N 分别是AC 和BC 的中点,则线段MN 的长等于12AB . 9.答案:见解析解析:当点C 在线段AB 上时,如图①,111()(6020)222CD AC AB BC ==-=-=140202⨯=(cm ); 当点C 在线段AB 的延长线上时,如图②,111()(6020)222CD AC AB BC ==+=+180402=⨯=(cm ). 所以CD 的长度为20cm 或40cm .10.答案:见解析解析:(1)画图如下:(2)如图①:因为,M N 分别是,AC BC 的中点, 所以152MC AC ==,132NC BC ==, 所以8MN MC NC =+=;如图②:同理可求5MC =,3NC =,所以2MN MC NC =-=,答:MN 的长是8或2.。
整理七年级数学上册第四章几何图形初步带答案常考点

(名师选题)整理七年级数学上册第四章几何图形初步带答案常考点单选题1、己知点M 是线段AB 上一点,若AM =14AB ,点N 是直线AB 上的一动点,且AN −BN =MN ,则MN AB的( )A .34B .12C .1或12D .34或22、如图,小明从A 处沿南偏西65∘30′方向行走至点B 处,又从点B 处沿北偏西72∘30′方向行走至点E 处,则∠ABE =( )A .114∘30′B .108∘C .137∘D .138∘3、下列几何体都是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是( )A .B .C .D .4、桌面上有一个正方体,每个面均有一个不同的编号(1,2,3,…,6),且每组相对面上的编号和为7.将其按顺时针方向滚动(如图),每滚动90°算一次,则滚动第2022次后,正方体朝下一面的数字是( )A .5B .4C .3D .25、若∠A =23°,则∠A 的补角是( ) A .57°B .67°C .157°D .167°6、正方体的截面形状不可能是( )A.三角形B.五边形C.六边形D.七边形7、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年8、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.9、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.3510、如图,从∠AOB的顶点引出两条射线OC,OD,图中的角共有()A.3个B.4个C.6个D.7个解答题11、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型得__________________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是__________.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.12、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.13、【感受新知】如图1,射线OC在∠AOB在内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“和谐线”.[注:本题研究的角都是小于平角的角.](1)一个角的角平分线_______这个角的“和谐线”.(填是或不是)(2)如图1,∠AOB=60°,射线OC是∠AOB的“和谐线”,求∠AOC的度数.【运用新知】(3)如图2,若∠AOB=90°,射线OM从射线OA的位置开始,绕点O按逆时针方向以每秒15°的速度旋转,同时射线ON从射线OB的位置开始,绕点O按顺时针方向以每秒7.5°的速度旋转,当一条射线回到出发位置的时候,整个运动随之停止,旋转的时间为t(s),问:当射线OM、ON旋转到一条直线上时,求t的值.【解决问题】(4)在(3)的条件下,请直接写出当射线ON是∠BOM的“和谐线”时t的值.整理七年级数学上册第四章几何图形初步带答案(四十三)参考答案1、答案:C分析:根据N在线段AB上和线段AB外分情况讨论,再结合线段关系即可解题.当N在射线BA上时,AN<BN,不合题意当N在射线AB上时,AN−BN=AB=MN,此时MNAB=1当N在线段AB上时,由图可知AN=MN+AM,BN=BM−MN∴AN−BN=MN+AM−BM+MN=2MN+AM−BM=MN,∴MN=BM−AM∵AM=14AB∴BM=34AB∴MN=BM−AM=12AB∴MNAB =12故选:C.小提示:本题考查线段和差计算,解题的关键是画出图形根据图像找到线段直接的和差关系.2、答案:D分析:先根据方位角以及平行线的性质可得∠2=∠3=65∘30′、∠1=72∘30′,则∠ABE=∠1+∠2,最后计算即可.解:如图:∵小明从A处沿南偏西65∘30′方向行走至点B处,又从点B处沿北偏西72∘30′方向行走至点E处∴∠2=∠3=65∘30′,∠1=72∘30′∴∠ABE=∠1+∠2=138°.故答案为D.小提示:本题主要考查了方位角和角的运用,正确认识方位角成为解答本题的关键.3、答案:A分析:分别画出四个选项从正面看和从左面看的形状,即可得到答案.解:A、从正面看的形状,从左面看的形状,故A符合题意;B、从正面看的形状,从左面看的形状,故B不符合题意;C、从正面看的形状,从左面看的形状,故C 不符合题意;D、从正面看的形状,从左面看的形状,故D 不符合题意;故选A.小提示:本题主要考查了小正方块组成的几何体的三视图,熟知三视图的定义是解题的关键.4、答案:B分析:先找出正方体相对的面,然后从数字找规律即可解答.解:由图可知:3和4相对,2和5相对,1和6相对,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,骰子朝下一面的点数依次为5,4,2,3,且依次循环,∵2022÷4=505......2,∴滚动第2022次后,骰子朝下一面的点数是:4,故选:B.小提示:本题考查了正方体相对两个面上的文字,先找出正方体相对的面,然后从数字找规律是解题的关键.5、答案:C分析:根据补角的定义,即若两个角的和等于180°,就称这两个角互补,即可解答.解:∵∠A=23°,∴∠A的补角等于180°−∠A=180°−23°=157°,故选:C小提示:本题主要考查了补角的定义,解题的关键是熟练掌握若两个角的和等于180°,就称这两个角互补.6、答案:D分析:正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.小提示:本题考查正方体的截面.熟记正方体的截面的四种情况是解题的关键.7、答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.8、答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.9、答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2当n=6时,6×5=15=15.2即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.10、答案:C分析:按一定的规律数角的个数即可.解:以OA为一边的角有:∠AOD,∠AOC,∠AOB,以OD为一边的角有:∠DOC,∠DOB,以OC为一边的角有:∠COB,所以,图中共有6个角,故选:C.小提示:本题通过数角的个数,巩固角的概念,难度适中.11、答案:(1)V+F−E=2;(2)20;(3)14分析:(1)根据表格中的数据分析即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系;(2)根据(1)的结论求解即可;(3)先求得棱数,再代入(1)的关系式求解即可.(1)∵4+4−6=2,8+6−12=2,6+8−12=2,20+12−30=2,∴V+F−E=2,所以答案是:V+F−E=2;(2)由题意得:F−8+F−30=2,解得F=20,所以答案是:20;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线,∴共有24×3÷2=36条棱,∴24+F−36=2,解得F=14;设该多面体外表三角形的个数为x个,八边形的个数为y个,则x+y即为多面体的面数,∴x+y=14.小提示:本题考查了多面体的顶点数,面数,棱数之间的关系,理解题意,找到规律是解题的关键.12、答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.13、答案:(1)不是;(2)15°,45°,20°,40°;(3)4,12,20;(4)7.2,6,10.8,727分析:(1)结合“和谐线”和角平分线的定义,即可得到答案;(2)分四种情况讨论,由“和谐线”的定义,列出方程可求∠AOC的度数;(3)根据题意,分三种情况讨论,列出方程可求t的值;(4)根据题意,分四种情况进行讨论,列出方程,分别解方程,即可求出t的值.解:∵一个角的平分线平分这个角,且这个角是所分两个角的2倍,∴一个角的角平分线不是这个角的“和谐线”;所以答案是:不是;(2)根据题意,∵∠AOB=60°,射线OC是∠AOB的“和谐线”,可分为四种情况进行分析:①当∠AOB=3∠AOC=60°时,∴∠AOC=20°;②当∠AOB=3∠BOC=60°时,∴∠BOC=20°,∴∠AOC=40°;③当∠AOC=3∠BOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=45°;④当∠BOC=3∠AOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=15°;(3)由题意得,∵360°÷15°=24(秒),∴运动时间范围为:0<t≤24,则有①当OM与ON第一次成一个平角时,90+15t+7.5t=180,解得:t=4(秒);②当OM与ON成一个周角时,90+15t+7.5t=360,解得:t=12(秒);③当OM与ON第二次成一个平角时,90+15t+7.5t=180+360,解得:t=20(秒)综上,t的值为4或12或20秒;(4)当OM与OB在同一条直线上时,有t=(180°−90°)÷15°=6(秒),当OM与ON成一个周角时,有t=12,∴6≤t≤12;根据“和谐线”的定义,可分为四种情况进行分析:①当∠MON=3∠BON时,如图:∵∠MON=360°−90°−15t−7.5t,∠BON=7.5t,∴360°−90°−15t−7.5t=3×7.5t,解得:t=6;②当∠BOM=3∠BON时,如图:∵∠BOM=360°−90°−15t,∠BON=7.5t,∴360°−90°−15t=3×7.5t,解得:t=7.2;③当∠BOM=3∠MON时,如图:∵∠BOM=360°−90°−15t,∠MON=(360°−90°)−(15t+7.5t)=270°−22.5t,∴360°−90°−15t=3×(270−22.5t),;解得:t=727④当∠BON=3∠MON时,如图:∵∠BON=7.5t,∠MON=270°−22.5t,∴7.5t=3×(270−22.5t),解得:t=10.8;小提示:本题考查一元一次方程的应用,和谐线的性质,角之间的和差关系,找等量关系列出方程是解决问题的关键,属于中考常考题型。
数学《几何图形初步》综合提高题 2021-2022学年人教版数学七年级上册

数学《几何图形初步》综合提高题2021-2022学年人教版数学七年级上册一、细心选一选1. 下图中所示的几何体的正视图是()A.B.C.D.2. 如图所示的物体从上面看到的形状是()3. 一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、244. 如图,有一个正方体纸巾盒,它的平面展开图是()5. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=1800-∠3C.∠1=900+∠3D.以上都不对6. 两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm7. 下列说法中错误的有().(1)线段有两个端点,直线有一个端点;(2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角.A.1个 B.2个 C.3个 D.4个8. 两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9. 如图,点A 位于点O 的( )方向上.A .南偏东35° B.北偏西65° C.南偏东65° D.南偏西65°10. 将如图所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图中( ) B A C A B C D二、耐心填一填11. 如图,已知OB 是∠AOC 的角平分线,OC 是∠AOD 的角平分线,∠AOB =35°,那么∠BOD 的度数为________.12. 如图,将一副三角尺叠放在一起,使直角顶点重合于O ,则∠AOC +∠DOB=________.13. 若时针由2点30分走到2点55分,则时针转过_______度,分针转过______度.14. 已知∠α=13°,则∠α的余角的大小是__________.15. 如图所示,点C 在线段AB 的延长线上,且BC =2AB ,D 是AC 的中点,若AB =2cm ,求BD 的长.解:∵AB =2cm ,BC =2AB ,∴BC =4cm .∴AC=AB +____________=____________cm .∵D 是AC 的中点,∴AD=____________=____________cm.∴BD=AD-____________=____________cm.16. 用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°方向上,小红家在小明家的正东方向上,小红家在学校的北偏东35°方向上,则∠ACB=________.17. 由若干个小立方块搭成的几何体的三视图如图所示,则该几何体中小立方块的个数是_____________个。
数学《几何图形初步》综合提高题 2021-2022学年人教版数学七年级上册

数学《几何图形初步》综合提高题 2021-2022学年人教版数学七年级上册一、精心选一选1. 若一个角的补角的余角是28°,则这个角的度数为( )A.62°B.72°C.118°D.128°2. 下列语句错误的是( )A .延长线段AB B .延长射线ABC .直线m 和直线n 相交于点PD .在射线AB 上截取线段AC ,使AC =3cm3. 如图,已知C 是线段AB 的中点,D 是线段BC 的中点,下列各式不正确的是( )A .CD =AC -DB B .CD =AD -BC C .CD =12AB -BD D .CD =13AB4. 如左图所示的正方体沿某些棱展开后,能得到的图形是( ). 9.如果∠α=26°,那么∠α余角的补角等于 ( ).A.20°B.70°C.110°D.116°5. 如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A.1B.2C.3D.46. 物体的形状如图所示,则从上面看此物体形状是( ).7. 将两块直角三角板的直角顶点重合,如图所示,若128AOD ∠,则∠BOC 的度数是( ).A.45°B.52°C.60°D.50°8. 如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠1=15°30′,则下列结论中不正确...的是( )A .∠2=45°B .∠1=∠3C .∠AOD 与∠1互为补角 D .∠1的余角等于75°30′9. 如果A 、B 、C 三点在同一直线上,且线段AB =6cm ,BC =4cm ,若M ,N 分别为AB ,BC 的中点,那么M ,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定10. 已知∠AOB=30°,自∠AOB 的顶点O 引射线OC ,若∠AOC:∠AOB=4:3,则∠BOC=( )A.10°B.40°C.40°或70°D.10°或70°二、细心填一填11. 已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是___________cm .12. 已知α∠与β∠互余,且40α=∠,则β∠为________.13. 上午6点45分时,时针与分针的夹角是__________度.14. 乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在AB ,两站之间最多共有________种不同的票价;15. 若时针由2点30分走到2点55分,则时针转过_______度,分针转过______度.16. 如图,点O 是直线l 上一点,作射线OA ,过O 点作OB⊥OA 于点O ,则图中∠1,∠2的数量关系为________.17. 已知线段AB =8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC =_______cm .18. 如果一个角是64°,那么这个角的余角为___°.三、用心做一做19. 如图已知:线段AB 上有一点D ,且C 为线段DB 的中点,点D 分线段AC 为1:3,若CD=9cm,则AB等于多少厘米?20. 已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.21. 如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.D C BA22. 计算:(1)48°39'+67°31';(2)180°-21°17'×5;(3)72°35'÷2+18°33'×4.23. 如图所示.长方形ABCD的周长是32cm,且5AD=3AB,把长方形ABCD绕直线AB旋转一周,然后用平面沿线段AB的方向截所得的几何体,求截面的最大面积.24. 如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.。
七年级上册数学 几何图形初步单元检测(基础+提高,Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.2.如图1, .如图2,点分别是上的点,且, .(1)求证: F;(2)若的角平分线与的角平分线交于点,请补全图形并直接写出与之间的关系为________.【答案】(1)证明:如图,延长EH,交CD的延长线与M,(2)∠BFE=2∠P.【解析】【解答】解:(2)结论:∠BFE=2∠P,理由如下:如图,设∠B=∠HEF=y.∠BFE=x=,故答案为:∠BFE=2∠P.【分析】(1)延长EH,交CD的延长线与M,根据平行线的性质及等量代换即可证明;(2)设∠B=∠HEF=y,∠BFE=x,根据平行的性质结合三角形的内角和定理得出∠BFE=2∠P.3.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.4.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)解:∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF= ∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°(2)解:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F= (105º +125º -180°)=25°(3)解:结论:∠F= (∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF= ∠ABE=,∠ECF= ∠BCD,∵∠ABE=180°-∠ABC,∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F= [180°-(360°-∠A-∠D)],∴∠F= (∠A+∠D-180°)【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。
人教版七年级数学上册 几何图形初步(提升篇)(Word版 含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.4.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.5.综合题(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.【答案】(1)解:∵AC=6cm,且M是AC的中点,∴MC= AC= 6=3cm,同理:CN=2cm,∴MN=MC+CN=3cm+2cm=5cm,∴线段MN的长度是5m(2)解:分两种情况:当点C在线段AB上,由(1)得MN=5cm,当C在线段AB的延长线上时,∵AC=6cm,且M是AC的中点∴MC= AC= ×6=3cm,同理:CN=2cm,∴MN=MC﹣CN=3cm﹣2cm=1cm,∴当C在直线AB上时,线段MN的长度是5cm或1cm.【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.6.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .(1)求证:∠EFC=∠FEC;(2)①若∠B=30°,∠CAD=50°,则=________,=________;②试探究与的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,∴∠EFC=∠FEC.(2)35°;70°;解:② , 理由如下: 由(1)可知:, 又∵ , ∴ . ∴ .(3)解:图形如下:∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,∴ .又∵,∴在△CEF中有:∠ECF+2∠CEF=180°,即 ..∵2∠EAC=∠DAC, ,∴ .∴即 .∴ .【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.故答案为:35°,70°.【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.7.探究与发现:(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.(3)探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(4)探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:▲ .【答案】(1)解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;(2)探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC= ∠ADC,∠PCD= ∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠ACD,=180°- (∠ADC+∠ACD),=180°- (180°-∠A),=90°+ ∠A;(3)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC= ∠ADC,∠PCD= ∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°- ∠ADC- ∠BCD,=180°- (∠ADC+∠BCD),=180°- (360°-∠A-∠B),= (∠A+∠B);(4)探究四:六边形ABCDEF的内角和为:(6-2)•180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC= ∠EDC,∠PCD= ∠BCD,∴∠P=180°-∠PDC-∠PCD=180°- ∠EDC- ∠BCD=180°- (∠EDC+∠BCD)=180°- (720°-∠A-∠B-∠E-∠F)= (∠A+∠B+∠E+∠F)-180°,即∠P= (∠A+∠B+∠E+∠F)-180°.【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC= ∠ADC,∠PCD= ∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究二解答即可.8.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。
初中数学七年级几何图形初步能力提高练习题(含答案)

初中数学七年级几何图形图形初步练习题一、单选题(共20题;共40分)1. 如图,已知,将一个含45°角的三角尺按图中方式放置,度数为()A .21°B .24°C .30°D .66°2. 如图,数轴上点A、B分别表示1、√3,若点B关于点A的对称点为点C,则点C所表示的数为( )A .√3-1B .1-√3C .√3-2D .2-√33. 如图所示,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E.若∠BAC = 60°,∠C = 80°,则∠EOD的度数为 ( )A .20°B .30°C .10°D .15°4. 如图,CD、BD分别平分∠ACE、∠ABC ,∠A=70°,则∠BDC=()A .35°B .25°C .70°D .60°5. 下面几何体中,是长方体的为()A .B .C .D .6. 下列说法不正确的是()A .四棱柱是长方体B .八棱柱有10个面C .六棱柱有12个顶点D .经过棱柱的每个顶点有3条棱7.()8. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S△BDE:S△ACD=BD:AC,其中正确的个数()A .5个B .4个C .3个D .2个9.()10. 下列命题中,是真命题的是()A .两直线平行,内错角相等B .两个锐角的和是钝角C .直角三角形都相似D .正六边形的内角和为360°11. 如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列说法不正确的是()A .与∠1互余的角只有∠2B .∠A与∠B互余C .∠1=∠BD .若∠A=2∠1,则∠B=30°12. 如图,点O为直线AB上一点,OC⊥OD.如果∠1=35°,那么∠2的度数是()A .35°B .45°C .55°D .65°13. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .138°B .136°C .134°D .132°14. 如图,∠AOD﹣∠AOC=()A .∠ADCB .∠BOCC .∠BODD .∠COD15.①两点之间线段最短;②同旁内角互补;③若 AC=BC,则点 C 是线段AB 的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( )A .1 个B .2 个C .3 个D .4 个16. 如图,()A .102°B .110°C .142°D .148°17. 若AB∥CD,∠CDE=∠CDF,∠ABE=∠ABF,则∠E:∠F=()A .1:2B .1:3C .3:4D .2:318.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A .①②③④B .①②C .①③④D .①②④19. 如图,在等边△ABC中,AB=6,点D是BC的中点,将△ABC绕点A逆时针旋转后得到△ACE ,那么线段DE的长为()A .B .6C .D .20. 一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A .140°B .130°C .50°D .40°二、解答题21.如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于F交AC于E,若∠A =48°,∠D=56°,求∠B和∠ACD的度数.22.如图,在△ABC中,已知∠B=40°,∠C=60°,AE⊥BC于E ,AD平分∠BAC ,求∠DAE的度数.23. 如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.24. 作图:如图,平面内有A,B,C,D四点.按下列语句画图:(1)画射线AB,直线BC,线段AC;(2)连接AD与BC相交于点E.参考答案1、【答案】A2、【答案】D3、【答案】A4、【答案】A5、【答案】B6、【答案】A7、【答案】B8、【答案】C9、【答案】A10、【答案】A11、【答案】A12、【答案】C13、【答案】C14、【答案】D15、【答案】C16、【答案】C17、【答案】C18、【答案】B19、【答案】B20、【答案】C21、∠B=34°∠ACD=82°22、∠DAE=10°23、∠BOD=22°。
(人教版)长春七年级数学上册第四单元《几何图形初步》提高卷(答案解析)

一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .3 2.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm3.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处4.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 5.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .186.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-17.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱 8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .410.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°11.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 13.如图,图中射线、线段、直线的条数分别为( )A .5,5,1B .3,3,2C .1,3,2D .8,4,114.用一个平面去截一个圆锥,截面的形状不可能是( )A .B .C .D . 15.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题16.若∠A=4817︒',则它的余角是__________;它的补角是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O B《几何图形初步》提高复习题基础强化训练1. 把两块三角板按如图所示那样拼在一起, 则∠ABC 等于( )A第 1 题图BA .70°B .90°C .105°D .120°2. 在灯塔 O 处观测到轮船 A 位于北偏西 54°的方向,同时轮船北AB 在南偏东 15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°3. 一个角的余角比这个角的 1少 30°,请你计算出这个角的大小.2第 2 题图4. 如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .求:∠COE 的度数.5. 如图,已知线段 AB 和 CD 的公共部分1BD = AB = 3 1CD ,线段 4间距离是 10cm ,求 AB 、CD 的长AE DBFCAB 、CD 的中点 E 、F CCB E D之1.一个角的余角是它的补角的 2,这个角的补角是5()A.30°B.60°C.120°D.150°6.若一个角的余角比这个角大 31°20′,则这个角大小为 ,其补角大小。
7. 一副三角板如图摆放,若∠AGB=90°,则∠AFE=度。
8. 在一条直线上顺次取 A ,B ,C 三点,使得 AB=5cm ,BC=3cm 。
如果点D 是线段AC 的中点,那么线段DB 的长度是cm 。
9. 如图,点 A ,O ,E 在同一条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE。
求∠DOB的度数。
10. 一个角的补角与 20°角的和的一半等于这个角的余角的 3 倍,求这个角.2.一份数学试卷有 20 道选择题,规定答对一道得 5 分,不做或做错一题扣 1 分,结果某学生得分为 76 分,则他做对题数为 ( )道A.16B.17C.18D.193.∠1 和∠2 互余,∠2 和∠3 互补,∠1=63°,∠3=.4. 已知轮船在逆水中前进的速度为 m 千米/时,水流的速度为 2 千米/时,则这轮船在顺水中航行的速度是千米/时5. 金佰客超市举办迎新春送大礼的促销活动,全场商品一律打 8 折,宋老师花了992 元买了热水器,那么该商品的原售价为_元.6.假设有足够多的黑白围棋子,按照一定的规律排列成一行……请问第2007 个棋子是黑的还是白的?答:_ .17.若∠AOB=∠COD=∠AOD,已知∠COB=80°,求∠AOB、∠AOD的度数.63.已知关于 x 的方程(m+3)x|m|-2+6m=0…①与 nx-5=x(3-n) …②的解相同,其中方程①是一元一次方程,求代数式(m+x)2000·(-m2n+xn2)+1 的值.4.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产 20 套,就比订货任务少生产 100 套,如果每天平均生产 23 套,就可超过订货任务 20 套,问这批服装订货任务是多少套?原计划多少天完成?线段与角习题精选BCDAO E1、如图,,,点B、O、D 在同一直线上,则的度数为()(A)(B)(C)(D)2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF⊥AB.则(1)∠AOC 的补角是;(2)是∠AOC 的余角;(3)∠DOC 的余角是;(4)∠COF 的补角是.3、如图,点A、O、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE,求∠COB 的度数(7 分)4、如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF 34 ,求∠BOD 的度数.5、如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD=14°,求∠DOE、∠BOE 的度数.少?AMCNB6、如图 10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE, A 求∠ACF的度数.B7、把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =CE图 10.8、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.9、如图 14,将一副三角尺的直角顶点重合在一起.第15 题图(1) 若∠DOB 与∠DOA 的比是 2∶11,求∠BOC 的度数.(2) 若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多10、如图,点 C 在线段 AB 上,AC = 8 厘米,CB = 6 厘米,点 M 、N 分别是 AC 、BC 的中点。
B 'F(1)求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC +CB =a 厘米,其它条件不变,你能猜想MN 的长度吗?并说明理由。
(3)若C 在线段AB 的延长线上,且满足AC BC =b 厘米,M、N 分别为AC、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
11、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB=10cm,求AD 的长度。
12、如图9,AD=1BD,E是BC的中点,BE=2cm,AC=10cm,求线段D2E的长.A CD B E图913、有一张地图(如图),有 A、B、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道 C 地在A地的北偏东30°,在 B 地的南偏东45°,你能确定 C 地的位置吗?14、如图8,东西方向的海岸线上有A、B 两个观测站,在A 地发现它的北偏东30°方向上有一条渔船,同一时刻,在B 地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.15、如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°。
(1)若∠AOC=∠AOB,则OC 的方向是;(2)OD 是OB 的反向延长线,OD 的方向是;(3)∠BOD可看作是 OB 绕点O 逆时针方向至 OD,作∠BOD的平分线OE,并用方位角表示OE 的方向是。
(4)在(1)、(2)、(3)的条件下,求∠COE。
18、(1)棱长为a 的正方体,摆成如图所示的上下三层.请求出该物体的表面积.(2)若依图中摆放方法类推,如果该物体摆放了上下10 层,你能求出该物体的表面积吗?19、如下图,在已知角内画射线,画1 条射线,图中共有个角;画2 条射线,图中共有个角;画3 条射线,图中共有个角,求画n 条射线所得的角的个数。
(一)数线段——数角——数三角形问题1、直线上有n 个点,可以得到多少条线段?分析:点线段2 13 3 =1+2(A) 3(B) 4 (C) 5 (D) 64 6=1+2+3510=1+2+3+4615=1+2+3+4+5……n1+2+3+ … +(n-1)=n (n - 1) 2问题 2.如图,在∠AOB 内部从 O 点引出两条射线 OC 、OD ,则图中小于平角的角共有( D )个拓展:1、 在∠AOB 内部从 O 点引出 n 条射线图中小于平角的角共有多少个?射线 角 13 =1+226=1+2+3310=1+2+3+4……n1+2+3+ … +(n+1)=(n + 1)(n + 2)2类比:从 O 点引出 n 条射线图中小于平角的角共有多少个?射线 角 2133 =1+246=1+2+3510=1+2+3+4……n 1+2+3+ … +(n-1)=n (n - 1)2AB类比联想:如图,可以得到多少三角形?(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点A图形语言:几何语言: ∵ M 是线段 AB 的中点∴ AM = BM = 1AB ,2 AM = 2BM = AB 2典型例题:1. 由下列条件一定能得到“P 是线段的中点”的是( D )其 )个示 C 是 AB 中点的有( C )个4.已知线段 M N ,P 是 M N 的中点,Q 是 P N 的中点,R 是 M Q MN .分析:据题意画出图形A.1 中能表示B 是线段 AC 的中点的有( A A .1 个B .2 个C .3 个D .4 个 B.2 个 C.3 个 D.4AD 设 QN=x ,则 PQ=x ,MP=2x ,MQ=3x ,5.如图所示,B 、C 是线段 AD 上任意两点,M 是 AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段 的长是( )AMBCNA 2(a-b )B 2a-bC a+bD a-b分析:不妨设 CN=ND=x ,AM=MB=y因为 MN=MB+BC+CN所以 a=x+y+b因为 AD=AM+MN+ND所以 AD=y+a+x=a-b+a=2a-b(三)与角有关的问题1. 已知:一条射线 O A ,若从点 O 再引两条射线 O B 、OC ,使∠AOB=600,∠B OC =200,分类讨论)2. A 、O 、B共线,OM 、ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠ MON 的度数, 试证明你的结论.猜想:_90°M证明:因为 OM 、ON 分别为∠ AOC 、∠ BOC 的平分线1 1所以∠MOC= ∠AOC ,∠CON= ∠COB22因为∠MON=∠MOC+∠CON1 1 1所以∠MON= ∠AOC + ∠COB= ∠AOB=90°2 2 23.如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF=34 ,求∠BOD 的度数.分析:因为∠COE 是直角,∠COF=34 ,所以∠EOF=56°因为OF 平分∠AOE所以∠AOF=56°因为∠AOF=∠AOC+∠COF所以∠AOC=22°因为直线AB 和CD 相交于O 点所以∠BOD =∠AOC=22°4.如图,BO、CO 分别平分∠ABC 和∠ACB,(1)若∠A = 60°,求∠O;(2)若∠A =100°,∠O 是多少?若∠A =120°,∠O 又是多少?(3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°)1答案:(1)120°;(2)140°、150°(3)∠O=90°+ ∠A25.如图,O是直线A B上一点,OC、OD、OE是三条射线,则图中互补的角共有( B )对(A) 2 (B) 3 (C) 4 (D) 56.互为余角的两个角( B )(A)只和位置有关(B)只和数量有关(C)和位置、数量都有关(D)和位置、数量都无关7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( C )A.1 (∠1+∠2) B. 1 ∠1 C. 1 (∠1-∠2) D. 1 ∠22 2 2 2分析:因为∠1+∠2=180°,所以1 (∠1+∠2)=90°290°-∠2=1 (∠1+∠2)-∠2=21 (∠1-∠2)221、已知:如图(6)∠ABC=30°,∠CBD=70°BE 是∠ABD 的平分线,求∠DBE 的度数。