系统牛顿第二定律(质点系牛顿第二定律)
牛顿第二定律与动量定理的专题详解

牛顿第二定律与动量定理刍议广东省佛冈中学周长春在高中《物理》教材中,动量定理F·t=mv2-mv1,是由牛顿第二定律F=ma推导出来的,那么应如何准确地理解动量定理与牛顿第二定律呢?本文做一初浅的探讨。
一、动量定理是牛顿第二定律原来采用的形式在牛顿提出运动第二定律之前,伽利略在批判亚里士多德的力与速度的依赖关系的基础上,提出了力与加速度的依赖关系,但是他没有也不可能在当时的条件下发现作用力与加速度之间的定量关系。
在1684年8月之后,牛顿用几何法和极限概念论证了引力平方反比律,在为解决万有引力是否跟质量成正比的问题时,他发现了运动第二定律,具体的记载有两处,一处是在“论物体的运动”一文手稿中写道:“…动力与加速度的力之比等于运动与速度之比。
因为运动的量是由速度乘以物质的量导出的…”。
另一处是在《自然哲学的数学原理》的定义Ⅷ中给出的:“因为运动的量是由速度乘以物质的量求出来的,并且动力是由加速度的力乘以同一物质之量求出来的,物体的几个粒子上的加速的力的作用总和就是整个物体的动力”。
上面两段话中,“加速的力”指的是加速度,“运动”“运动的量”指的是动量,“动力”指的是与加速度对应的作用力,“物体”“物质的量”就是质量。
由此可知,牛顿在《自然哲学的数学原理》一书中已明确提出动量的定义:“运动量是用它的速度和质量一起来量度的”,“并把动量的变化率称之为力”,“他又用动量来表述运动第二定律”。
综上所述,牛顿其实已经提出了运动第二定律的文字表述:作用力与加速度成正比。
但当时牛顿并没有明确地用公式(F=ma)表述出来,牛顿第二定律原来采用的形式是力F、质量m、速度v和时间t这四个物理量,选择适当的单位,可使比例系数k=1,这时,牛顿第二定律可表示为①因此,牛顿第二运动定律的真实表述应该是物体所受外力等于其动量对时间的变化率。
①式也叫做牛顿第二定律的微分形式。
《自然哲学的数学原理》已经提出了作用力与加速度成正比,但当时牛顿并没有将公式①直接用F=ma表述出来,这是为什么呢?我国研究牛顿的资深学者阎康年先生在他的专著《牛顿的科学发现与科学思想》中专门研究了牛顿的质量观:“牛顿对质量概念的认识分静质量和动质量两个方面。
系统牛顿第二定律

系统牛顿第二定律(质点系牛顿第二定律)主讲:黄冈中学教师郑成1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=,在木楔的倾角α=30°的斜面上,有一质量m=的物块,由静止开始沿斜面下滑,当滑行至s=时,速度v=s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)解法一:(隔离法)先隔离物块m,根据运动学公式得:v2=2as=s2<gsinθ=5m/s2可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象对斜面M:假设地面对M静摩擦力向右:f地+N′sin30°-f′cos30°=0而N′=N=,f′=f=地=-Nsin30°+fcos30°=-说明地面对斜面M的静摩擦力f地=,负号表示方向水平向左.可求出地面对斜面M的支持力N地N地-f′sin30°-N′cos30°-Mg=0N地= fsin30°+Ncos30°+Mg=<(M+m)g=110N因m有沿斜面向下的加速度分量,故整体可看作失重状态方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx =m1a1y+m2a2y+…+m n a ny解法二:系统牛顿第二定律:把物块m和斜面M当作一个系统,则:x:f地=M×0 +macos30°=水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°=例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力解法一:隔离法N a=mgcosαN b=mgcosβN地=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mgf地=N b′cosα-N a′cosβ=mgcosβcosα-mgcosαcosβ=0N解法二:系统牛顿第二定律列方程:(M+2m)g-N地=M×0+mgsin2α+mgsin2βN地=(M+m)g向右为正方向:f地= M×0+mgsinαcosα-mgsinβcosβ=0。
大学物理——第2章-质点和质点系动力学

a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1
质点系中多质点非相同加速度下牛顿第二定律的应用

龙源期刊网
质点系中多质点非相同加速度下牛顿第二定律的应用
作者:李福奇
来源:《中学物理·高中》2014年第02期
在解决多个物体运动,具有相同加速度问题时,我们常常用到整体法和隔离法,只要我们分清物体的运动过程,灵活地选择研究对象,交叉使用整体法与隔离法就会让问题简化.在这
里关键在于,题目中多个运动物体问题有共同的速度,共同的加速度.
1问题的提出
如果在多个物体的研究对象中,系统中物体各自速度不一样,加速度也不同,整体法又怎么利用呢?对于这个问题,我进行了进一步的讨论.
2质点系动力学方程的推导。
质心与质心运动定律

质心与质心运动定律一、质心1. 定义我们先来回顾一下牛顿第二定律:是对单个质点而言的,由于质点系内各质点的运动情况各不相同,加速度也各不相同,并不能简单的等效于 (M是体系的总质量),但对质点系而言,确实存在一个特殊点C,而使成立,这个ac是该特殊点C的加速度.这个特殊点称为质心.2. 质心的位置如果将质点系各质点参量记为mi 、ri、vi、xi、yi、zi……,质点系质心记为C则对于由两个质点构成的简单质点系,质心在它们连线上,将这两个质点的质量分别记为m1和m2,间距记为l,那么质心与两者的间距依次为:二、质心运动定律1.质心动量定理:外力对体系的冲量等于质心动量的增量。
2.质心运动定律:体系总质量与质心加速度的乘积等于外力的矢量和,或者说,在诸外力作用下,体系质心的加速度等于质量为体系总质量的质点在这些外力共同作用下的加速度。
对一个质点系而言,同样可以应用牛顿第二定律。
三、习题1.试求匀质三角形板的质心位置。
答案:三条中线的焦点:即几何中的重心2. 试求匀质三角形框架的质心位置。
答案:三边中点构成的小三角形的内心。
3. 一轻弹簧两端各系有质量分别为m和2m的物块,用系于质量为m的物块上的细线悬挂在支点O上,如图。
今将细线突然剪断,求该瞬时体系质心的加速度。
答案:g。
4. 用质心运动定理解:长为l、总质量为m的柔软绳索盘放在水平台面上。
用手将绳索的一端以恒定速率vo向上提起,求当提起高度为x时手的提力F。
5. 如图所示,用劲度系数为k的轻弹簧连接质量分别为m1、m2的木块,放在光滑的水平面上。
让第一个木块紧靠竖直墙,在第二个木块的侧面上施加水平压力,将弹簧压缩l长度。
撤去这一压力后,试求系统质心可获得的最大加速度值和最大速度值。
多说两句:体系的总动量为:质心的动能为:质点系相对质心的动能为:质点系的总动能为:(克尼希定理)☆在使用质心参照系时要特别主要克尼希定理的使用!。
质点系动量矩守恒定律

质点系动量矩守恒定律一、引言质点系动量矩守恒定律是物理学中一个非常重要的定律,它描述了质点系在运动过程中动量和角动量的守恒规律。
本文将从定义、推导、应用等方面详细介绍这一定律。
二、定义质点系是指由多个质点组成的系统,其中每个质点都有自己的质量和速度。
在运动学中,我们可以用一个坐标系来描述整个质点系的运动状态。
而在动力学中,我们需要考虑到各个质点之间的相互作用力,以及整个系统所受到的外力。
根据牛顿第二定律,一个质点所受到的合力等于其加速度乘以其质量。
同样地,对于一个质点系,在外力作用下,其总动量和总角动量也会发生变化。
当然,在某些情况下,如果系统受到的外力为零,则总动量和总角动量将保持不变。
三、推导1. 总动量守恒我们先来推导总动量守恒定律。
假设一个质点系由n个质点组成,分别为m1, m2, ..., mn,并且每个质点分别具有速度v1, v2, ..., vn。
那么这个质点系的总动量可以表示为:p = m1v1 + m2v2 + ... + mnvn现在假设这个质点系受到一个外力F作用,从而发生了加速度a。
根据牛顿第二定律,每个质点所受到的合力都等于其加速度乘以其质量:F1 = m1a, F2 = m2a, ..., Fn = mna将上述式子代入总动量公式中,可以得到:p' = (m1v1 + F1t) + (m2v2 + F2t) + ... + (mnvn + Fnt)= (m1v1 + m1at) + (m2v2 + m2at) + ... + (mnvn + mnat)= p + at(m1+m2+...+mn)由此可见,在外力作用下,质点系的总动量会发生变化,并且变化的大小与系统的加速度以及系统的总质量有关。
但是,在某些情况下,如果系统受到的外力为零,则系统将不会发生加速度变化。
此时,根据以上公式可知,系统的总动量将保持不变。
因此,我们可以得出结论:当一个质点系受到外力作用时,它的总动量会发生变化,但如果外力为零,则它的总动量将保持不变。
1.2大学物理(上)——质点动力学

t2
t1
n n t 2 n n 1 n Fi外 dt f ij dt mi vi 2 mi vi1 t1 i 1 i 1 i 1 i 1 j 1
因为内力总成对出现即:
i 1 j 1
x n
2mv cos fn fx 20 N t
[例2.6]: 如图(见书),一辆装矿砂的车厢以v=4ms-1的 速率从漏斗下通过,每秒落入车厢的砂为k=200kg/s, 如欲使车厢的速率下变,须施与车厢多大的牵引力(忽 略车厢与地面的摩擦)。
[分析]:系统的质量m在变化。设t时该已落入车厢 的砂为m,经dt后又有dm=kdt的砂落入车厢。以m 和dm为研究对象。在水平方向的动量定理为:
ra
可见万有引力是保守力。
③ 、弹力的功
F kx
1 1 2 2 AS kxdx ( kxb kxa ) xa 2 2 1 1 2 2 kxa kxb 2 2
xb
初态量
末态量
弹簧振子
可见,弹性力是保守力。
[例2.8]:在离水平面高为H岸上,有人用大小不变的 力F拉绳使船靠岸,求船从离岸x1处移到x2处的过 程中,力F对船所作的功。
经典力学中不区分引力质量和惯性质量
三、第三定律(Newton third law)
两个物体之间对各自对方的相互作用总是相等
的,而且指向相反的方向。
F1 F2
作用力与反作用力:
1、它们总是成对出现,它们之间一一对应。
2、它们分别作用在两个物体上,绝不是平衡力。 3、它们一定是属于同一性质的力。
2、功率 指力在单位时间内所作的功
W 平均功率: P t
大学物理质点和质点系的动量定理

I
O
F t2 t
O
I
t1 t2 t
t1
动量定理常应用于碰撞问题
F
t1 mv2 mv1 t2 t1 t2 t1
在△p一定时, △t 越小,则F越大
t2
Fdt
mv
mv1
F
mv2
注意
第三章 动量守恒和能量守恒
9/14
物理学
第五版
3-1 质点和质点系的动量定理 例 1 一质量为0.05kg、速率为10m/s的刚球,以与钢 板法线呈45º 角的方向撞击在钢板上,并以相同的速率和 角度弹回来.设碰撞时间为0.05s.求在此时间内钢板所受 到的平均冲力 F 解:由动量定理得 F t mv mv mv1 2 1 建立如图坐标系 x
t2
物体由于运动具有的机械效果 Objects with the mechanical effect because of moving 冲量(Impluse) (矢量Vector)
I
t1
Fdt
力对时间的累积效应
The time accumulation effects of forces
作用于质点系的合外力等于质点系动量随 时间的变化率. The combined external force acting on the mass point system is equal to the momentum variation rate of the mass point system with respect to time.
则
y
两边同乘以ydy, 则
2
y
1 3 1 d yv 2 y gdy ydy yv d yv gy yv 3 2 dt y yv 1 2 2 g y d y yv d yv v ( gy ) 2 0 0 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统牛顿第二定律(质点系牛顿第二定律)
主讲:黄冈中学教师郑成
1、质量M=10kg的木楔ABC静止于粗糙水平地面上,如图,动摩擦因数μ=0.02,在木楔的倾角α=30°的斜面上,有一质量m=1.0kg的物块,由静止开始沿斜面下滑,当滑行至s=1.4m时,速度v=1.4m/s,在这过程木楔没有动.求地面对木楔的摩擦力的大小、方向和地面对木楔的支持力.(g=10m/s2)
解法一:(隔离法)先隔离物块m,根据运动学公式得:
v2=2as=0.7m/s2<gsinθ=5m/s2
可见物块m受到沿斜面向上的滑动摩擦力,对物体m为对象
对斜面M:假设地面对M静摩擦力向右:
f地+N′sin30°-f′cos30°=0
而N′=N=,f′=f=4.3N f地=-Nsin30°+fcos30°=-0.61N
说明地面对斜面M的静摩擦力f地=0.61N,负号表示方向水平向左.
可求出地面对斜面M的支持力N地
N地-f′sin30°-N′cos30°-Mg=0
N地= fsin30°+Ncos30°+Mg=109.65N<(M+m)g=110N
因m有沿斜面向下的加速度分量,故整体可看作失重状态
方法二:当连接体各物体加速度不同时,常规方法可采用隔离法,也可采用对系统到牛顿第二定律方程.=m1a1x+m2a2x+…+m n a nx=m1a1y+m2a2y+…+m n a ny
解法二:系统牛顿第二定律:
把物块m和斜面M当作一个系统,则:
x:f地=M×0 +macos30°=0.61N水平向左y:(M+m)g-N地=M×0+masin30°N地=(M+m)g-ma sin30°=109.56N
例2:如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的,现发现a、b沿斜面下滑,而楔形木块静止不动,求楔形木块对水平桌面的压力和静摩擦力
解法一:隔离法
N a=mgcosαN b=mgcosβ
N地=mg+mgcosβsinα+mgcosαsinβ=Mg+mg(sin2α+cos2α)=Mg+mg
f地=N b′cosα-N a′cosβ=mgcosβcosα-mgcosαcosβ=0N
解法二:系统牛顿第二定律列方程:
(M+2m)g-N地=M×0+mgsin2α+mgsin2β
N地=(M+m)g
向右为正方向:f地= M×0+mgsinαcosα-mgsinβcosβ=0。