两点间距离公式PPT学习课件

合集下载

两点间的距离公式》课件

两点间的距离公式》课件

几何意义:两点间的距离是 两点之间的最短路径
应用实例:计算两点间的距 离,如直线、曲线、平面等
两点间的距离公式
04
在物理中的应用
质点运动学中的距离计算
质点运动学:研究质点在空间中的运动规律 距离公式:描述两个质点之间距离的公式 应用:计算质点在运动过程中的位移、速度和加速度 实例:计算自由落体运动中质点的位移、速度和加速度
两点间的距离公 式:d = sqrt((x2x1)^2 + (y2y1)^2)
公式中的参数: x1, y1, x2, y2 分别表示两个点 的横坐标和纵坐 标
公式的用途:计 算两点间的直线 距离
公式的推导:利 用勾股定理推导 得出
两点间的距离公式
03
在几何中的应用
两点间线段最短问题
两点间的距离公式: d=sqrt((x2-x1)^2+(y2-y1)^2)
两点间的距离公式
05
的扩展应用
任意两点间的距离计算
两点间的距离公 式: d=sqrt((x2x1)^2+(y2y1)^2)
扩展应用:适用于 任意两点间的距离 计算
应用场景:地图导 航、GPS定位、物 流配送等
计算方法:输入两 点的坐标,利用公 式进行计算
多边形边长计算
利用两点间的距离公式,可以计算出多边形的边长 例如,已知多边形的顶点坐标,可以计算出每个边的长度 利用这些边长,可以计算出多边形的面积、周长等参数 在实际应用中,如建筑设计、地图绘制等领域,多边形边长计算具有重要意义
YOUR LOGO
20XX.XX.XXBiblioteka 两点间的距离公式,
汇报人:
目 录
01 单 击 添 加 目 录 项 标 题

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册
为AC,另一条小路过点D,问:是否在BC上存在一点M,使得
两条小路AC与DM相互垂直?若存在,求出小路DM的长.
解:以B 为坐标原点,BC,BA 所在直线分别为 x 轴 、y 轴建立如图所示的 平面直角坐标系.
因为 |AD|=5 m,|AB|=3 m,所 以C(5,0),D(5,3),A(0,3). 设点M 的坐标为(x,0),
解得
5.光线从点A(-3,4)射到x轴上,经反射后经过点B(4,10),则反 射光线所在直线的方程为 2x-y+2=0 ,光线从A到B的路线长 度为7√5 解析:由题意知,反射光线过(-3,-4)和(4,10)两点,故斜率为
所以反射光线为 y+4=2(x+3),整理得2x-y+2=0,
光线从A到 B 的路线长度,即为(-3,-4)与(4,10)间的距离,所
[例2] 已知点A(3,6), 在x轴上的点P与点A的距离等于 10,则点P的坐标为(-5,0)或(11,0) 解析:设点P 的坐标为(x,0),
由 |PA|=10得
解得x=11 或x=-5. 所以点P 的坐标为(-5,0)或(11,0).
解 :法一 因 为
所以|AB|=|AC|,且 |AB|²+|AC|²=|BC|²,所以△ABC是等腰直角三角形.
法二 因 为 所以kAc ·kAB=-1.所以AC⊥AB.
所以|AC|=|AB|.所以△ABC是等腰直角三角形.
方法 总 结
利用两点间距离公式判断三角形形状的方法 已知三个顶点的坐标判断三角形的形状时,利用两点间的距离公式 求三边长,从边长间的关系入手,如果边长相等,则可能是等腰或等 边三角形;如果满足勾股定理,则是直角三角形.
C.直角三角形 D.以上都不是

2.3.2 两点间的距离公式 (共25张PPT)

2.3.2 两点间的距离公式 (共25张PPT)
求证:|AB|2=|AD|2+|BD|·|DC|.
思路分析:建立适当的直角坐标系,设出各顶点的坐标,应用两点间的距离公式证明.
证明:如图,以BC的中点为原点O,BC所在的直线为x轴,建立直角坐标系.
设A(0,a),B(-b,0),C(b,0),D(m,0)(-b<m<b).
则|AB|2=(-b-0)2+(0-a)2=a2+b2,
)
解析:|AB|=|AC|= 17,|BC|= 18,故△ABC 为等腰三角形.
答案:B
5.已知点A(3,6),在x轴上的点P与点A的距离等于10,则点P的坐标为
________.
[解析] 设点 P 的坐标为(x,0),由 d(P,A)=10 得 (x-3)2+(0-6)2=10,
解得 x=11 或 x=-5.
人教2019 A版 选择性必修 一
第二章
直线和圆的方程
2.3.2 两点间的距离公式
学习目标
1.掌握平面上两点间的距离公式
2.会运用坐标法证明简单的平面几何问题
情境导学
在一条笔直的公路同侧有
两个大型小区,现在计划在公路
上某处建一个公交站点C,以方
便居住在两个小区住户的出行.
如何选址能使站点到两个,
∴B

-2,0
,C

,0
2
|PA|2+|PB|2+|PC|2
,A 0, 3a .设 P(x,y),由两点间的距离公式,得
2
2 2
2 2
=x +
x+2 +y + x-2 +y
52
2
2
=3x +3y - 3ay+ 4

两点间的距离公式》课件(北师大版必修

两点间的距离公式》课件(北师大版必修
y1)^2+(z2z1)^2)
椭圆面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
双曲面面上的两 点间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
抛物面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
两点间的距离公 式
,
汇报人:
添加目录标题
两点间的距离 公式
两点间的距离 公式在几何中 的应用
两点间的距离 公式在解析几 何中的应用
两点间的距离 公式的扩展应 用
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,并设AB的长度为d c. 根据勾股定理, AB的平方等于x2-x1的平方加上y2-y1的平方 d. 因此,两点间的距离公式为d=sqrt((x2x1)^2+(y2-y1)^2)
应用:在几何中,垂直平分线常用于证明线段相等、三角形全等等
公式:两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)为两点 的坐标。
两点间线段的斜率
斜率定义:斜率是描述直线或曲线在某一点的倾斜程度的量
斜率公式:斜率等于两点间的纵坐标差除以横坐标差
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,并设AB的长度为d ● c. 根据勾股定理,AB的平方等于x2-x1的平方加上y2-y1的平方 ● d. 因此,两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2)

两点间的距离公式》课件3

两点间的距离公式》课件3
在平面几何中,两点间的距离公式可以用来计算线段的长度,以及三角形、四边形等图形的周 长和面积。
在立体几何中,两点间的距离公式可以用来计算线段的长度,以及圆柱、圆锥、球等立体图形 的体积和表面积。
在解析几何中,两点间的距离公式可以用来计算直线、曲线、曲面等图形的长度、面积和体积。
两点间的距离公式在现 实生活中的应用
圆上两点间距离问题
两点间的距离公 式: d=sqrt((x2x1)^2+(y2y1)^2)
圆上两点间距离: d=sqrt((x2x1)^2+(y2y1)^2)-r
应用:计算圆上 任意两点间的距 离
注意事项:计算时 需考虑圆心和半径, 避免出现负数
两点间距离公式的几何意义
两点间的距离公式是几何中的一个基本概念,用于计算两点之间的直线距离。
公式应用
计算两点间的直线距离 计算两点间的曲线距离 计算两点间的最短距离 计算两点间的最长距离
公式理解
两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2) 公式含义:计算两点之间的直线距离 公式应用:测量、导航、定位等领域 公式推导:基于欧几里得几何学和勾股定理
公式记忆
两点间的距离公
● 应用:计算两点间的距离,如A(1,2)和B(3,4),d=sqrt((3-1)^2+(4-2)^2)=sqrt(10)
● 注意事项: a. 公式中的x1、y1、x2、y2是坐标值,不是变量 b. 公式中的sqrt是开方运算,不是平方根 c. 公式中的d是两点间的距离, 不是变量 ● a. 公式中的x1、y1、x2、y2是坐标值,不是变量 ● b. 公式中的sqrt是开方运算,不是平方根 ● c. 公式中的d是两点间的距离,不是变量

两点间的距离公式(上课课件)

两点间的距离公式(上课课件)

人A数学选择性必修第一册
返回导航 上页 下页
2.已知点A(-3,4)和B(0,b),且|AB|=5,则b=( A )
A.0或8
B.0或-8
C.0或6
D.0或-6
3 . 已 知 点 A(1 , - 5) , B( - 3 , - 1) , 线 段 AB 的 中 点 M , 则 |OM| = _____1_0____.
D(-b,h).由两点间的距离公式,得 |AC|= -a-b2+0-h2= a+b2+h2, |BD|= [a--b]2+0-h2= a+b2+h2, 所以|AC|=|BD|.
人A数学选择性必修第一册
对称问题(2) 1.直线关于点的对称问题 直线l关于点P对称的直线l′满足:
返回导航 上页 下页
(1)直线l′与直线l平行;
由距离公式,得
|AE|=
2c+a2+ 23c-02= a2+ac+c2,
|CD|=
c+2a2+0- 23a2= a2+ac+c2,
所以|AE|=|CD|.
人A数学选择性必修第一册
返回导航 上页 下页
2.已知等腰梯形ABCD,建立适当的坐标系,证明:对角线|AC|=|BD|. 证明:如图,以等腰梯形ABCD的下底AB所在直线为x轴,以AB的中点 O为坐标原点建立平面直角坐标系,设梯形下底|AB|=2a,上底|CD|= 2b,高为h,则A(-a,0),B(a,0),C(b,h),
人A数学选择性必修第一册
返回导航 上页 下页
[例3] 已知点A(2,-3),直线l:x-y+1=0.求: (1)直线l关于点A的对称直线l1的方程; (2)直线2x-y-3=0关于直线l的对称直线l2的方程.
人A数学选择性必修第一册

人教版数学 空间两点间的距离公式 (共16张PPT)教育课件

人教版数学 空间两点间的距离公式 (共16张PPT)教育课件

学习目标
1.了解空间两点间的距离公式的推导过程,初步建 立将空间问题向平面问题转化的意识。 2.掌握空间两点间距离公式及其简单的应用.
新知自学:公式形成与推导:
借助课本P137图4.3-6
探究(一) 空间中的点与坐标原点的距离公式 问题 1:在空间直角坐标系中,坐标轴上的点 A(x,0,0),B(0,y,0), C(0,0,z),与坐标原点 O 的距离分别是什么? 问题 2: 在空间直角坐标系中,坐标平面上的点 A(x,y,0),B(0,y,z), C(x,0,z),与坐标原点 O 的距离分别是什么? 问题 3:在空间直角坐标系中,设点 P(x,y,z)在 xOy 平面上的射影为 B, 则点 B 的坐标是什么?|PB|,|OB|的值分别是什么? 问题 4:基于上述分析,你能得到空间任意点 P(x,y,z)与坐标原点 O 的 距离公式吗?
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。

2.3.2两点间的距离公式课件(人教版)

2.3.2两点间的距离公式课件(人教版)

1.求下列两点间的距离 :
(1) A(6, 0), B( 2, 0);
(2)C (0, 4), D(0, 1);
(3) P (6, 0), Q(0, 2);
(4) M (2,1), N (5, 1).
(1) AB ( 2 6) (0 0) 8;
2
2
(2) CD (0 0)2 ( 1 4) 2 3;
段的长度?
追问2 如何求向量1 2 的模长?
1 2 =
2 − 1
2
+ 2 − 1
2
, , , 两点间的距离公式
1 2 =
2 − 1
2
+ 2 − 1
2
特别地,原点O(0,0)与任一点 , 间的距离
=
2 + 2.
上式利用向量法证明!
(3) PQ (0 6) ( 2 0) 2 10;
2
ቤተ መጻሕፍቲ ባይዱ
2
(4) MN (5 2) ( 1 1) 13.
2
2
2.已知点A(a, 5)与B(0,10)间的距离是17, 求a的值.
解: AB (0 a ) (10 5) 17,
2
解得a 8.
=
=
+



+ −

+ −
+ + ,
=

=
− + .
由 = ,得
+ + = − + .
解得 =1.
所以,所求点为P(1,0),且
=
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o A(0,0) B(a,0) x
16
y
D(b,c) C(a+b,c)
o A(0,0) B(a,0) x
| AB |2 a2 , | CD |2 a2
| AD |2 b2 c2 , | BC |2 b2 c2
| AC |2 (a b) 2 c2 , | BD |2 (b - a) 2 c2
|AM|=
0-b22+0-2c2=12 b2+c2,
所以 |AM|=12|BC|.
21
练习1:x轴上任一点到定点(0,2)、(1,1)距离之和 的最小值是( ). A. 2 B.2+ 2 C. 10 D. 5 +1
解:设所求点为P(x,0),于是有
|PA| (x1)2 (0 2)2 x2 2x 5 |PB| (x 2)2 (0 7)2 x2 4x11
由|P A||P B|得 x2 2x 5 x2 4x11
解得x=1,所以所求点P(1,0)
|PA| (11)2 (0 2)2 2 2 15
6
当变化时, 方程 3x 4 y 2 (2x y 2) 0
表示什么图形?图形有何特点?
练习:求经过原点及两条直线l1:3x+4y-2=0, l2:2x+y+2=0的交点的直线的方程.
7
已知平面上两点P1(x1,y1)和P2(x2,y2), 如何点P1和P2的距离|P1P2|?
| AB |2 | CD |2 | AD |2 | BC |2 | AC |2 | BD |2
因此,平行四边形四条边的平方和等于两条对
角线的平方和。
17
第一步:建立坐标系,用坐标表示有关的量; 第二步:进行有关的代数运算; 第三步:把代数运算结果“翻译”所几何关系.
18
题型二 两点间距离公式的应用 【例 5】 已知△ABC 是直角三角形,斜边 BC 的中点为 M,建 立适当的平面直角坐标系,证明:|AM|=12|BC|.
y
P2(x2,y2)
P1(x1,y1)
O
x
8
思考:求两点A(0,2),B(0,-2)间
的距离
y 3 2
1
-2
-1
-1
-2
A
1
2
3x
B
x1 = x2, y1 ≠ y2
| P1P2 || y2 y1 |
9
思考:求两点A(—2,0),B(3,0)
间的距离
y
3
2
x1≠x2, y1=y2
1
A
-2
-1
| P1P2 | (x2 x1)2 ( y2 y 1)2
特别地,点P(x,y)到原点(0,0)的距离为
| OP | x2 y2
13
1、求下列两点间的距离:
(1)、A(6,0),B(-2,0) (2)、C(0,-4),D(0,-1)
(3)、P(6,0),Q(0,-2) (4)、M(2,1),N(5,-1)
-1
-2
B
1
2
3x
| P1P2 || x2 x1 |
10
两点间距离公式推导
y y2
y1 P1(x1,y1)
P2(x2, y2)
| P2Q || y2 y1 |
Q(x2,y1)
O x1
ห้องสมุดไป่ตู้
x2
x
| P1Q || x2 x1 |
11
已知:P1x1,y1 和 P2 x2,y2 ,
直线的交点坐标与两 点间的距离
1
问题1:如何根据两直线的方程系数之间的关 系来判定两直线的位置关系?
l1 : A1x B1y C1 0
l2 : A2x B2 y C2 0
A1 B1 C1 A2 B2 C2
A1 B1 A2 B2
l1与l2平行 l1与l2相交
2
已知两条直线 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
解:
(1) AB = -2-62 + 0-02 =8
(2) CD = 0-02 + -1+42 =3
(3) PQ = 0-62 + -2-02 =2 10
(4) MN 5 22 112 13
14
例3:已知点A(1,2), B(2, 7),在x轴上求一点P,使 得 | PA|| PB |,并求| PA|的值.
相交, 如何求这两条直线交点的坐标?
3
问题2:方程组解的情况与方程组所表示的两条 直线的位置关系有何对应关系?
直线l1,
唯一解 l2解方程组

l1,
l2相交

无解
l1, l2平行
4
例题分析
例、判定下列各对直线的位置关系,若相交,
则求交点的坐标
(1)
ll12::
x y 3x 3y
试求:两点间的距离
y
P1 x1,•y1
P1P 2 (x2 x1)2 ( y2 y1)2
o
x

当y1=y2时, P1P2 | x2 x1 | P2x2,y2
Qx1,y2
当x1=x2时, P1P2 | y2 y1 |
12
两点间距离公式
一般地,已知平面上两点P1(x1,y1 )和P2(x2,y2), 利用上述方法求点P1和P2的距离为
0
10

0
(2)
ll12
:3x :6x
y 2
y
4
0
0
( 3)
ll12
:3x 4y :6x 8y

50 10 0
5
练习
已知两直线 l1:x+my+6=0,l2:(m-2)x+3y+2m=0, 问当m为何值时,直线l1与l2: (1)相交,(2) 平行,(3) 垂直
19
解 以Rt△ABC的直角边AB,AC所在直线为坐标 轴,建立如图所示的平面直角坐标系. 设B,C两点的坐标分别为(b,0),(0,c). 因为斜边BC的中点为M,
所以点M的坐标为 (0 b , 0 c) 22
,即 (b , c ) 22
.
20
由两点间距离公式得,
|BC|= 0-b2+c-02= b2+c2,
例4:证明平行四边形四条边的平方和等于 两条对角线的平方和。
解:如图,以顶点A为坐标原点,AB所在直 线为x轴,建立直角坐标系,则有A(0,0)。
设B(a,0),D(b,c),由平行四边形的性质可得C(a+b,c)
点C的纵坐标等于 点D的纵坐标
y
D(b ,c)
C(a+b ,c)C、D两点横
坐标之差为a
相关文档
最新文档