振动理论课后答案及解析

合集下载

机械振动基础课后习题解答_第3章习题

机械振动基础课后习题解答_第3章习题

m
0
0 m
u1 u2
3k k
k 3k
u1 u2
2ku0
sin 0
t
K
2M
3k
2m
k
k
3k 2m
H11 ( )
3k 2m ()
H 21 ( )
k ()
u1(t) u2 (t)
H11 ( ) H21()
2ku0
sin
t
3k 为反共振频率 m
P140,3-9: 图示系统初始静止,求左端基础产生阶跃位移u0后系统的响应。
ml2 1 0 M 3 0 7 /16
K
l2k 16
9 9
9
13
| K 2M | 0
1 0.65
k m
2 2.62
k m
P139,3-3: 建立图示系统的运动微分方程,并求当ki k,i 1, 6, m1 m, m2 2m, m3 m时的固有 频率和固有振型。
m1
M
m2
u2
c
3c
2c
u2
k
3k
2k
u2
0
m u3 0 2c 2c u3 0 2k 2k u3 f0
1 0,2
k m
, 3
2k m
1 1 1
φ1
1 , φ2
0
, φ3
1
1
1/ 2
1
u1 1
u2
1
u3 1
1 0 1/ 2
1 q1
1
q2
1 q3
)d
u0 2
(1 cos1t)
q2
(t)
u0 2
(1
cos 2t )

大学 机械振动 课后习题和答案(1~4章 总汇)

大学  机械振动    课后习题和答案(1~4章 总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x ,受力分别为:1122P c x P c x =⎧⎨=⎩ 由力的平衡有:1212()P P P c c x =+=+故等效刚度为:12eq P c c c x ==+ 2)对系统施加力P ,则两个减振器的速度为:1122P x c Px c ⎧=⎪⎪⎨⎪=⎪⎩,系统的总速度为:121211()x x x P c c =+=+ 故等效刚度为:1211eq P c x c c ==+1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

振动力学课后答案

振动力学课后答案

1.8 图示为一周期性方波。

(1)将它展成傅里叶级数;(2)比较(1)的级数与例1.1中的级数,你观察到方波相位前移1/4周期时有什么效应? 解:一个周期内函数P(t)可以表示为()P P t P ⎧=⎨-⎩ 由于区间[0,T]内()P t 关于2T堆成,一周内面积为0,故0a =0。

()2cos t Tn t ta x n tdt T ω+=⎰320223022cos cos cos p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022sin sin sin p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+⎢⎥⎣⎦040Pn π⎧⎪=⎨⎪⎩ ()2sin t Tn t tb x n tdt T ω+=⎰320223022sin sin sin p n tdt n tdt n tdt πππωωωππωωωωωωπ⎡⎤=-+⎢⎥⎣⎦⎰⎰⎰322203022cos cos cos p n n n n n n πππωωωππωωωωωωπωωω⎡⎤⎢⎥=-+-⎢⎥⎣⎦= 0 ∴图示方波的傅里叶级数展开式为:()11,3,41sin()cos 2nt n n n P P a n t n t nπωωπ===+=∑∑ 0411(cos cos 3cos 5)35P t t t ωωωπ=+++ 比较例1.1,可以得到:相位前移1/4周期后,傅里叶级数的每一项函数由奇函数变为偶函数,但各分量的幅值不变。

320,22322t t t πππωωωππωω<<<<<<n n 为奇数为偶数2.8 求图所示的系统的固有频率,其中钢丝绳的刚度为k 1.滑轮质量忽略不计。

解:对于系统,钢绳等效为弹性系数为k 1的弹簧。

则每个弹簧的变形分别为:11mg k λ=224mg k λ= 334mgk λ=总变形12312344mg mg mgk k k λλλλ=++=++系统等效刚度为: 12323131244e k k k mgk k k k k k k λ==++系统的固有频率为:n ω==2.27 一个有阻尼的弹簧质量系统,质量是10Kg ,弹簧静伸长时1cm ,自由振动20个循环后,振幅从0.64cm 减至0.16cm ,求阻尼系数c 。

物理振动试题及答案解析

物理振动试题及答案解析

物理振动试题及答案解析1. 简谐运动的振动周期与哪些因素有关?答案:简谐运动的振动周期与振子的质量以及弹簧的劲度系数有关,与振幅无关。

2. 什么是阻尼振动?其振动周期与自由振动相比有何不同?答案:阻尼振动是指在振动过程中受到阻力作用的振动。

与自由振动相比,阻尼振动的振动周期会变长。

3. 简述单摆的周期公式。

答案:单摆的周期公式为 \( T = 2\pi \sqrt{\frac{L}{g}} \),其中 \( T \) 是周期,\( L \) 是摆长,\( g \) 是重力加速度。

4. 什么是共振现象?请举例说明。

答案:共振现象是指当驱动力的频率接近或等于系统的固有频率时,系统振幅急剧增大的现象。

例如,当行人在桥上行走时,如果步频与桥的固有频率接近,可能会引起桥梁的共振,导致桥梁剧烈振动甚至断裂。

5. 请解释为什么在声波传播中,频率越高的声波传播距离越短?答案:频率越高的声波波长越短,波长越短的声波在传播过程中更容易受到空气分子的散射作用,因此传播距离较短。

6. 什么是多普勒效应?请用物理公式表达。

答案:多普勒效应是指当波源和观察者相对运动时,观察者接收到的波频率与波源发出的频率不同的现象。

多普勒效应的公式为 \( f'= \frac{f(u + v)}{u + v \cos \theta} \),其中 \( f' \) 是观察者接收到的频率,\( f \) 是波源发出的频率,\( u \) 是波源的速度,\( v \) 是观察者的速度,\( \theta \) 是波源和观察者之间的夹角。

7. 请解释为什么在弹簧振子的振动过程中,振幅会逐渐减小?答案:在弹簧振子的振动过程中,振幅逐渐减小是因为存在阻力作用,如空气阻力或摩擦阻力,这些阻力会消耗振子的机械能,导致振幅减小。

8. 什么是机械波?请列举三种常见的机械波。

答案:机械波是指需要介质传播的波,其传播过程中介质的质点并不随波迁移,而是在平衡位置附近做振动。

振动习题答案

振动习题答案

振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。

它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。

振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。

下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。

1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。

解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。

位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。

根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。

根据题目中的数据,振幅A = 2cm,周期T = 4s。

代入上述公式可得ω = 2π /4 = π / 2。

因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。

速度v = dx / dt,加速度a = dv / dt。

对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。

2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。

解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。

根据题目中的数据,周期T = 2s。

代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。

3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。

振动理论课后答案

振动理论课后答案

解:
模态函数的一般形式为:
题设边界条件为:

边界条件可化作:

导出C2= 0及频率方程:
,其中
解:

不计质量的梁上有三个集中质量,如图所示。用邓克利法计算横向振动的基频。

解:
当系统中三个集中质量分别单独存在时:
, ,
在图所示系统中,已知m和k。用瑞利法计算系统的基频。

解:
近似选取假设模态为:
系统的质量阵和刚度阵分别为:

由瑞利商公式:
在图所示系统中,已知k和J。用传递矩阵法计算系统的固有频率和模态。
解:
设该简谐振动的方程为 ; 二式平方和为
将数据代入上式:

联立求解得
A=10.69cm; 1/s;T= s
当 时, 取最大,即:
得:
答:振动周期为;振幅为10.69cm;最大速度为22.63m/s。
1-3一个机器内某零件的振动规律为 ,x的单位是cm, 1/s。这个振动是否为简谐振动试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
和 为串联(因为总变形为求和),故:
故:
由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W=N,偏心距e=15.0cm,支承弹簧总刚度系数k=N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。

机械振动课后习题答案

机械振动课后习题答案

机械振动课后习题答案机械振动是力学中的一个重要分支,研究物体在受到外力作用后的振动特性。

在学习机械振动的过程中,课后习题是巩固知识、提高能力的重要途径。

本文将为大家提供一些机械振动课后习题的答案,希望能够帮助大家更好地理解和掌握这一知识。

1. 一个质量为m的弹簧振子在无阻尼情况下振动,其振动方程为mx'' + kx = 0,其中x为振子的位移,k为弹簧的劲度系数。

试求振动的周期。

解答:根据振动方程可知,振子的振动是简谐振动,其周期T与振子的质量m和弹簧的劲度系数k有关。

根据简谐振动的周期公式T = 2π√(m/k),可得振动的周期为T = 2π√(m/k)。

2. 一个质量为m的弹簧振子在受到外力F(t)的作用下振动,其振动方程为mx''+ kx = F(t),其中F(t) = F0cos(ωt)。

试求振动的解析解。

解答:根据振动方程可知,振子的振动是受迫振动,其解析解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + kx = 0的解xh(t),得到振子在无外力作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

将特解xp(t)代入非齐次方程,求解得到A和φ的值。

最后,振动的解析解为x(t) = xh(t) + xp(t)。

3. 一个质量为m的弹簧振子在受到阻尼力和外力的作用下振动,其振动方程为mx'' + bx' + kx = F(t),其中b为阻尼系数。

试求振动的稳定解。

解答:根据振动方程可知,振子的振动是受到阻尼力和外力的作用,其稳定解可以通过求解齐次方程和非齐次方程得到。

首先求解齐次方程mx'' + bx' + kx = 0的解xh(t),得到振子在无外力和阻尼作用下的自由振动解。

然后根据外力F(t)的形式,假设其特解为xp(t) = Acos(ωt + φ),其中A为振幅,φ为相位差。

振动理论作业答案y-作业

振动理论作业答案y-作业

小质量m的绝对速度为: 2 & & & & & & && va = x12 + y12 = 4R2θ 2 + x2 + 4x2θ 2 + 4Rxθ cos3θ −8Rxθ 2 sin3θ
3
第5章分析力学基础
习题
第5章分析力学基础
习题
r sinα = Rcos3θ 方法2: ΔOBA中 2 2 2 有:r = R + x − 2 Rx cos(90° − 3θ ) = R 2 + x 2 − 2 Rx sin 3θ 小质量m的绝对速度
ω
2 2
2+ 2 k = J 2
ω
2 R
k = 3J
3k ω′ = 10 J
2 R
ω
2 1
2 1
k ≈ 4J
⎫ 2 θ2 )⎪ ⎪ 2 ⎬ 2 θ2 )⎪ ⎪ 2 ⎭
方法1:广义坐标、频率和主振型都与题3-3相同。待定常数由 初始角速度为零,初始转角为[0, 0.01]T,代入下式得到。( ω 不等于 ω1和 ω2)
1 ⎤ ⎧ A1 cos (ω1t − ϕ1 ) ⎫ ⎧θ1 ⎫ ⎡ 1 ⎨ ⎬=⎢ ⎬ ⎥⎨ ⎩θ 2 ⎭ ⎣ 2 − 2 ⎦ ⎩ A2 cos (ω 2t − ϕ 2 )⎭
+
kT sin ω t ⎧ ⎫ 1 ⎬ 2 2 2 ⎨ 2 J ω − 4 Jk ω + k ⎩ ( 2 k − 2 J ω )T sin ω t ⎭
习题
⎧1 ⎪ (θ1 + θ ⎪2 1 ⎤ ⎧ y1 ⎫ −1 ⎧ 1 ⎫ 1 ⎤ 1 ⎡ 1 ⎡1 ⎨ ⎬ = [u ] ⎨ ⎬ = ⎨ [u ] = [u] = ⎢ ⎢ ⎥ ⎩θ 2 ⎭ ⎪ 1 2 J ⎣ 2 − 2 ⎦ ⎩ y2 ⎭ 2 − 2⎥ ⎣ ⎦ ⎪ 2 (θ1 − ⎩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图E2.7
解:

s=1时共振,振幅为:
(1)
远离共振点时,振幅为:
(2)
由(2)
由(1)
, ,
故:
2.9如图T 2-9所示,一质量m连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅锤平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
1-2有一作简谐振动的物体,它通过距离平衡位置为 cm及 cm时的速度分别为 20 cm/s及 cm/s,求其振动周期、振幅和最大速度。
解:
设该简谐振动的方程为 ; 二式平方和为
将数据代入上式:

联立求解得
A=10.69cm; 1/s;T= s
当 时, 取最大,即:
得:
答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。
虚部: sin(5 t+arctan )
1-6将题1-6图的三角波展为傅里叶级数。
解∶三角波一个周期内函数x(t)可表示为

由式得
n=1,2,3……
于是,得x(t)的傅氏级数
1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。
解∶锯齿波一个周期内函数P(t)可表示为

由式得
n=1,2,3……
于是,得x(t)的傅氏级数
图T 2-24答案图T 2-24
解:
利用动量矩方程,有:


2.25图T 2-25所示的系统中,刚杆质量不计,写出运动微分方程,并求临界阻尼系数及阻尼固有频率。
图T 2-25答案图T 2-25
解:


2.26图T 2-26所示的系统中,m=1 kg,k=144 N / m,c= 48 N•s/m,l1=l=0.49 m,l2=0.5l,l3=0.25l,不计刚杆质量,求无阻尼固有频率 及阻尼 。
重复n次。
5.1质量m、长l、抗弯刚度EI的均匀悬臂梁基频为3.515(EI/ml3)1/2,在梁自由端放置集中质量m1。用邓克利法计算横向振动的基频。
解:

5.2不计质量的梁上有三个集中质量,如图E5.2所示。用邓克利法计算横向振动的基频。
图E5.2
解:
当系统中三个集中质量分别单独存在时:
, ,
5.3在图E5.3所示系统中,已知m和k。用瑞利法计算系统的基频。
图T 2-1答案图T 2-1
解:
, cm
rad/s
cm
2.1图E2.2所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
图E2.1答案图E2.1(a)答案图E2.1(b)
解:
等价于分别为 和 的响应之和。先考虑 ,此时右端固结,系统等价为图(a),受力为图(b),故:
(1)
, ,
(1)的解可参照释义(2.56),为:
(2)
其中:

故(2)为:
考虑到 的影响,则叠加后的 为:
2.2如图T 2-2所示,重物 悬挂在刚度为k的弹簧上并处于静平衡位置,另一重物 从高度为h处自由下落到 上而无弹跳。求 下降的最大距离和两物体碰撞后的运动规律。
图T 2-2答案图T 2-2
解:

动量守恒:

平衡位置:


故:
故:
2.4在图E2.4所示系统中,已知m, , , 和 ,初始时物块静止且两弹簧均为原长。求物块运动规律。
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
图T 2-1答案图T 2-11(1)答案图T 2-11(2)
解:(1)
利用 ,
----------------------------------------------------------------------------------------------------------------------

令 , ,得:

则质量矩阵为:
故频率方程为:
4.11多自由度振动系统质量矩阵M和刚度矩阵K均为正定。对于模态 和 及自然数n证明:

解:
,等号两边左乘
,等号两边左乘
,当 时
重复两次:
,等号两边再左乘
,等号两边左乘
,当 时
重复,等号两边左乘
,当 时
即 ,当 时
重复运算:
,当 时
,
1-8将题1-8图的三角波展为复数傅氏级数,并画出频谱图。

P(t)平均值为0
+
+
将 代入整理得
1-9求题1-9图的矩形脉冲的频谱函数及画频谱图形。
解:
可表示为
由于
得:
即:
1-10求题1-10图的半正弦波的频谱函数并画频谱图形。
解:
频谱函数:
2.1一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。已知, ,m=1 kg,k= 49 N/cm,开始运动时弹簧无伸长,速度为零,求系统的运动规律。
图T 2-9答案图T 2-9
解:
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图T 2-10答案图T 2-10
解:
m的位置:
, ,


2.11图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
图T 2-19
解:
系统动能为:
系统动能为:
根据: ,
2.20如图T 2-20所示,刚性曲臂绕支点的转动惯量为I0,求系统的固有频率。
图T 2-20
解:
系统动能为:
系统动能为:
根据: ,
2.24一长度为l、质量为m的均匀刚性杆铰接于O点并以弹簧和粘性阻尼器支承,如图T 2-24所示。写出运动微分方程,并求临界阻尼系数和无阻尼固有频率的表达式。
(2)
若取下面为平衡位置,求解如下:

2.17图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
2.19如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
图E5.3
解:
近似选取假设模态为:
系统的质量阵和刚度阵分别为:

由瑞利商公式:
5.9在图E5.9所示系统中,已知k和J。用传递矩阵法计算系统的固有频率和模态。
图E5.9
解:
两端边界条件为:
固定端: ,自由端: 。
由自由端边界条件得频率方程:

代入各单元状态变量的第一元素,即:
得到模态:

5.10在图E5.10所示系统中,已知GIpi(i= 1 , 2),li(i= 1 , 2)和Ji(i= 1 , 2)。用传递矩阵法计算系统的固有频率和模态。
图E6.5
解:
模态函数的一般形式为:
题设边界条件为:

边界条件可化作:

导出C2= 0及频率方程:
,其中
图E2.4答案图E2.4
解:
取坐标轴 和 ,对连接点A列平衡方程:
即:
(1)
对m列运动微分方程:
即:
(2)
由(1),(2)消去 得:
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
定义无量纲的状态变量:
边界条件:
左端铰支: ,右端自由:
根据传递矩阵法,有:
在支承弹簧处:
注意到上式中 为杆左端的转角,故在支承弹簧处的位移为:
因此有:
6.3图E6.3所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图E6.3
解:
模态函数的一般形式为:
题设边界条件为:

边界条件可化作:
1-5已知以复数表示的两个简谐振动分别为 和 ,试求它们的合成的复数表示式,并写出其实部与虚部。
解:两简谐振动分别为 , ,
则: =3cos5 t+3isin5 t
=5cos(5 t+ )+3isin(5 t+ )
或 ;
其合成振幅为: =
其合成振动频率为5 t,初相位为: =arctan
则他们的合成振动为: 实部: cos(5 t+arctan )
解:

求出C,D后,代入上面第一个方程即可得。
2.7求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
和 为串联(因为总变形为求和),故:
故:
2.7由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
相关文档
最新文档