IPv6组播组网解决方案
IPv6解决方案

IPv6优势
• 2128 addresses
= 340,282,366,920,938,463,463,374,607,431,770,000,000
如果一个地址重一克的话
IPv4地址空间相当于
1 个帝国大厦 76
IPv6地址空间相当于56,713,727,820个地球
IPv4 = x 567亿 = IPv6
IPv6性能改进
1
即插即用 3 完善QoS
无状态地址配置,无需手
工配置或使用专用服务器, 即插即用自动获取IPv6 地址。
IPv6优势
流标签使基于流的QoS实 现更简捷,有助于实时数 据流的处理 IPv6报头简化设计,提高 QoS处理效率。
2
网络安全
4 良好移动
IPSec强制实现,提供数据 机密性、数据完整性、数据 源验证和防重放服务
Physical/Data Link
IPv4 Only网络
IPv4/IPv6双栈网络
IPv6 Only网络
主机和路由器上同时实现IPv4和IPv6双协议栈,各自独立实现
IPv4和IPv6的处理和转发 双栈策略是IPv4/IPv6过渡基础 网络性能降低以及无法解决地址短缺问题
6in4隧道
Phase 1
Phase 2
IPv6组网建议
Applications TCP/UDP TCP/UDP IPv6 IPv4 Physical/Data Link
IPv4/IPv6双栈骨干
三层网络 接入网 接入网 接入网
双栈
隧道
翻译
二层网络
PC STB PC STB PC STB
IP网络的核心层和汇聚层采用双栈方式进行过渡,接入层首先双栈,以 短距离隧道方式作为补充,协议转换方式仅限于拾遗补缺,局部应用
IPv6组播在校园网的部署与应用中期报告

IPv6组播在校园网的部署与应用中期报告
一、选题背景
IPv6是下一代互联网协议,解决了IPv4地址耗尽的问题,同时在网络技术的应用中具有广泛的应用前景。
IPv6组播技术则是IPv6协议中最具有优势和前瞻性的技术之一,其可以实现高效的多播数据分发和传输。
在校园网的建设和应用中,IPv6组播技术有许多优势,比如高效快速地
传播信息、降低网络延迟、减轻网络拥塞等等。
因此,本次选题旨在深
入研究IPv6组播在校园网的部署和应用,并探索其技术优势以及发展前景。
二、研究内容
1. IPv6组播技术的原理和基本概念
2. IPv6组播的部署和应用案例分析
3. IPv6组播在校园网应用中的优势和挑战
4. IPv6组播在校园网应用中的未来发展方向和前景
三、预期成果
在本次研究中,我们将全面了解IPv6组播技术的原理和应用场景,并对其在校园网中的部署和应用进行深入分析。
同时,我们将探究IPv6
组播在校园网应用中的优势和挑战,并通过前瞻性的思考,探索IPv6组
播在校园网应用中的未来发展方向和前景。
最后,我们将撰写完整的中
期报告,用于展示我们的研究成果,以及进一步的讨论和研究。
三层交换机14-IPv6组播VLAN典型配置举例

三层交换机14-IPv6组播VLAN典型配置举例H3C S5130-EI IPv6 组播VLAN 典型配置举例目录1 简介 (1)2 配置前提 (1)3 基于子VLAN的IPv6 组播VLAN (1)3.1 组网需求 (1)3.1.1 现网描述 (1)3.2 配置思路 (3)3.3 使用版本 (3)3.4 配置注意事项 (3)3.5 配置步骤 (4)3.6 验证配置 (5)3.7 配置文件 (5)4 基于端口的IPv6 组播VLAN (7)4.1 组网需求 (7)4.1.1 现网描述 (7)4.1.2 需求描述 (8)4.2 配置思路 (9)4.3 使用版本 (9)4.4 配置注意事项 (9)4.5 配置步骤 (10)4.6 验证配置 (12)4.7 配置文件 (12)5 相关资料 (14)1 简介本文档介绍了基于子VLAN 的IPv6 组播VLAN 和基于端口的IPv6 组播VLAN 的配置举例。
2 配置前提本文档中的配置均是在实验室环境下进行的配置和验证,配置前设备的所有参数均采用出厂时的缺省配置。
如果您已经对设备进行了配置,为了保证配置效果,请确认现有配置和以下举例中的配置不冲突。
本文假设您已了解IPv6 组播VLAN 特性。
3 基于子VLAN的IPv6 组播VLAN3.1 组网需求3.1.1 现网描述如图1 所示,某楼层分布了两个不同的部门,通过在Switch B上配置不同的VLAN来区分这两个部门,其中用户VLAN 10、VLAN 20 分别标识了部门1、部门2。
交换机Switch A上配置了VLAN 10、VLAN 20 对应的VLAN虚接口,分别作为用户VLAN的网关。
由于业务需要,部门1 中有多台主机需要同时接收网络中某一发送源发送的数据。
该企业采用了IPv6 组播的传输方式:在Switch A 的Vlan-interface10 上运行MLDv1。
同时为避免组播数据在数据链路层的广播问题,该企业在交换机Switch B 的VLAN 10 内开启了版本 1 的MLD Snooping功能。
基于IPv6的校园网视频组播系统实现

基于IPv6的校园网视频组播系统实现校园网覆盖范围广、用户数量众多,视频组播系统已成为提供校内音视频服务的重要手段,对于视频教学、体育比赛等活动都有着广泛应用。
然而,IPv4地址资源短缺、组播受限等问题制约了IPv4组播的应用。
IPv6技术的发展,为校园网视频组播提供了改进的可能性。
本文将探讨基于IPv6技术的校园网视频组播系统的实现过程。
IPv6技术中,组播地址范围由FF00::/8开始,可以使用的组播地址有约93亿个,基本消除了IPv4组播中地址短缺的问题。
因此,IPv6技术可以更方便地支持广播、组播等任务。
基于IPv6的校园网视频组播系统的实现,需要分为以下步骤:第一步:构建IPv6组播地址池。
IPv6组播地址池是该系统的关键,缺少合适的地址池将严重制约系统的应用。
IPv6组播地址池的构建可以依据校园网络的拓扑结构、子网划分等进行设计。
该地址池需要显式指定组播路由器和组播管理员,校园网络的组播路由器及其地址需要预先配置。
第二步:配置组播路由器。
该步骤需要在校园网内的所有组播路由器中进行。
为了让各个路由器能够识别IPv6组播地址,需要在每个路由器上配置组播路由协议,如PIMv6(协议独立组播)或MLDv2(组播监听协议)。
同时,还需要配置组播路由器的相关参数,如组播地址池、优先级、出口端口等。
第三步:配置组播主机。
IPv6组播主机需要支持MLDv2协议,以实现组播的监听和传输。
在主机上配置IP地址、子网掩码、默认网关等相关参数之后,还需要使用MLD命令配置组播地址池、组播接口等。
同时,还需要在组播服务器端同步建立与组播客户端的连接。
第四步:测试组播系统。
测试组播系统的目的是检查系统部署是否成功,包括组播地址分配、组播流量传输、网络延迟等方面。
测试可以采用ping 命令、traceroute命令等进行。
需要注意的是,在实践中,完成基于IPv6的校园网视频组播系统还需要关注如何控制组播流量的有效性,以避免产生网络拥塞等问题。
华为AR系列路由器 01-08 组播路由管理(IPv6)配置

8组播路由管理(IPv6)配置关于本章设备可同时维护多个IPv6组播路由协议,通过控制平面与转发平面之间的信息交互,控制IPv6组播路由和转发。
8.1 组播路由管理简介(IPv6)介绍组播路由管理的定义和目的。
8.2 组播路由管理(IPv6)原理描述介绍组播路由管理中各个功能的实现原理。
8.3 配置组播路由管理(IPv6)任务概览通过IPv6组播转发表,整个IPv6网络建立了一条以组播源为根,组成员为叶子的一点到多点的转发路径。
同时设备提供了一系列IPv6组播路由管理功能,实现组播转发路径的控制与维护。
8.4 组播路由管理(IPv6)配置注意事项介绍配置组播路由管理(IPv6)的注意事项。
8.5 组播路由管理(IPv6)缺省配置介绍缺省情况下,组播路由管理(IPv6)的配置信息。
8.6 配置IPv6组播负载分担通过配置IPv6组播负载分担,可以改变设备RPF检查时若存在多条等价路由只选取一条RPF路由的规则。
8.7 配置IPv6组播转发边界通过配置IPv6组播转发边界,可以限制组播报文转发范围。
8.8 配置IPv6组播转发表控制参数在IPv6组播路由与转发中,IPv6组播转发表直接控制组播报文的转发。
通过配置IPv6组播转发表控制参数,间接的就控制了组播报文的转发。
8.9 维护组播路由管理(IPv6)组播路由管理(IPv6)的维护包括:清除IPv6组播转发表项和路由表项、监控IPv6组播路由和转发状况。
8.10 组播路由管理(IPv6)常见配置错误介绍常见配置错误及定位思路。
8.1 组播路由管理简介(IPv6)介绍组播路由管理的定义和目的。
定义组播路由管理(Multicast Route Management)主要介绍如何创建或更改组播路由来控制组播报文的转发,以及组播转发路径的检测和维护。
目的组播路由和转发与单播路由和转发类似,首先每个组播路由协议都各自建立并维护了一张协议路由表。
各组播路由协议的组播路由信息经过综合形成一个总的组播路由表(Multicast Routing-Table)。
H3C IPv6全网解决方案

IPv6的产生从根本上解决了地址短缺的问题
IPv6提供了更快捷的部署方法(即插即用)
IPv6支持流标签能力,便于QoS的实施
IPv6集成了安全特性
IPv6具备更有效的报头结构,提高处理性能
IPv6与IPv4网络之间可以平滑过渡以及相互访问
作为一种灵活的接入方式,无线全系列产品全面支持IPv6,既包括支持IPV4报文流量穿越IPv6隧道,同时也支持AP设备直接传输IPv6数据;无线用户可以通过IPv6正常访问IPv6网络及IPv6业务。Fit AP可以通过IPv6网络注册到AC,并建立CAPWAP(无线控制器与AP设备通讯协议)隧道。这种全面的支持保障了有线无线一体化对IPv6的无缝支持,提供了有线无线一体化的IPv6组网方案。
H3C IPv6全网解决方案
H3C IPv6全网解决方案
应用背景
IPv4协议是目前广泛部署的因特网协议,然而,随着Internet的发展,该协议在历经了20多年的实践与考验后,已逐渐暴露出设计的先天不足以及诸多局限,成为IP技术应用和未来发展的瓶颈制约。
而IPv6作为下一代网络的基础以其鲜明的技术优势得到广泛的认可,为业务发展创造了机会:
● 产品全面。H3C IPv6交换机、路由器系列全、规格丰富,可高效、低成本的解决IPv6组网需求,满足二层/三层接入,支持百兆到桌面、千兆到桌面及万兆上行等多种组网模式;
● 无线支持。H3C无线产品支持IPv6组网能力,提供IPv6有线-无线一体化解决方案;
● 高速传输。H3C IPv6产品支持10GE、GE、FE的整机全线速转发;
解决方案
作为全球领先的网络设备和解决方案供应商,H3C将IPv6作为一个战略性的发展目标,依托自身领先的技术实力,紧跟IPv6技术的前沿发展方向。目前,H3C已推出从核心到接入、从高端到低端、从有线到无线全系列IPv6路由器、交换机产品,可以组建满足用户任意需求的解决方案。
IPV6组播技术和应用

IPv6组播技术和应用东北大学王兴伟2010.09.13提纲组播技术可控组播项目实施情况 系统试部署组播技术组播技术优点 提高效率降低网络流量减轻处理负载优化性能减少冗余流量节约网络带宽分布式应用高效支持多点应用存在问题组播控制组播源组播用户组播在二层交换机中的控制组播应用任意源组播(ASM)/特定源组播(SSM)/单播无法互通组播QoS得不到保障存在问题SSM和ASM都没有对组播源发送速率进行控制 恶意攻击用户可能利用这个弱点攻击整个网络,影响正常组播应用虽然有些运营商在主干网上部署了基于SSM的系统,但是目前大部分组播应用程序仍然是基于统但是目前大部分组播应用程序仍然是基于ASM的需要研究能够让ASM/SSM之间相互转换的机制 需要有效地管理和分配组播地址需要控制组播QoS需要进行组播认证和计费只有在可控环境下组播服务才能良性发展只有在可控环境下,组播服务才能良性发展可控组播国内外现状2004年12月CNGI-CERNET2正式开通在CNGI-CERNET2主干网上开通了基于IPv6 SSM的组播服务2008年底建成连接CNGI-CERNET2的100个驻地网CNGI大规模路由和组播技术的研究与试验获得成功国内外现状CERNET2基本建成主干网组播服务,但尚未做到可控日本IPv6网络提供组播服务,但尚未做到可控TEIN2主干网络支持ASM/SSM组播协议 GEANT2试验性开通组播服务,尚未实现全网组播服务尚无可控组播商业应用国内外现状组播应用需求越来越强,对组播稳定性、可扩展性和安全性的要求越来越高真正实现组播技术对应用支持,需要在全网部署组播服务,建大规模可控组播服务系统组播服务,建立大规模可控组播服务系统组播源控制组播组控制组播用户控制二层交换机中的组播控制实现ASM/SSM/单播转换控制组播带宽……技术基础国内网络工作者近年来已经积累了比较丰富的组播服务系统规划设计建设运行维护和管理经服务系统规划、设计、建设、运行、维护和管理经验,组播关键技术研究与开发取得重要研究成果CNGI-CERNET2为我国开展下一代互联网关键技术研究、开发与应用提供了一个大规模开放性试验环境 CNGI-CERNET2的25个核心节点之间开通了基在个核点开于IPv6 SSM 组播服务平台,试验性地实施了可控组播服务,支持应用的组播源、组和带宽控制项目由来国家发改委2008年下一代互联网业务试商用及设备产业化专项教育科研基础设施IPv6技术升级和应用示范项目IP6IPv6网络支撑技术试商用专题可控大规模组播服务系统承担单位:东北大学、清华大学、锐捷、华为项目建设期2010项目建设期:2008年12月-2010年12月项目建设目标在CNGI-CERNET2已建立的IPv6 SSM组播主干网基础上,实现主干网对组播源、组播组和组播网基础上实现主干网对组播源组播组和组播带宽的控制利用ASM/SSM/单播协议之间转换把可控组播服务延伸到本次升级的100所校园网,安装组播网管系统对组播服务进行监控和管理为CNGI-CERNET2用户提供组播发送和接收控制 开展基于上述系统的视频直播和视频会议等应用示范项目建设规模为全国100所高校提供IPv6可控组播服务 全网组播源可控,数量达100个以上 可控组播用户每学校达到200个以上,全网共可控播用户每学校到个以共计2万以上项目建设内容主干网可控组播服务组播控制控制发送者对主干网组播组的访问控制某类应用带宽在允许范围内组播网关主干网SSM组播协议与开通组播服务的校园网内SSM或ASM组播协议之间互通主干网SSM组播协议与未开通组播服务的校园网单播协议之间的互通建设内容主干网可控组播服务 组播网管组播地址管理组播源管理组管理Q S组播QoS管理跨域结算管理运营计费管理建设内容校园网可控组播服务组播控制控制发送者对校园网组播组的访问控制某类应用带宽在允许范围内组播网关主干网SSM组播协议与开通组播服务的校园网内SSM或ASM组播协议之间的互通主干网SSM组播协议与未开通组播服务的校园网单播协议之间的互通校园网组播协议与终端设备之间无缝衔接建设内容校园网可控组播服务 组播网管组播交换机监控组播网关监控组播地址管组播地址管理组播源管理组管理组播QoS管理跨域结算管理运营计费管理建设内容应用示范提供大规模组播应用示范项目主要技术指标主干网可控组播服务组播源可控IPv6源地址验证组播组可控组播组地址控制组播带宽可控0.1M/1M/10M/100M组播网关支持ASM/SSM/单播协议之间转换不少于端2GE端口支持SNMP协议项目主要技术指标 主干网可控组播服务网管系统组播源地址分配和控制组播组地址分配和控制组播服务运行状况和日志网关管理和控制可网管网关数目不低于50台项目主要技术指标校务校园网可控组播服务 组播源可控IPv6源地址验证组播组可控组播组地址控制组播带宽可控0.1M/1M/10M/100M项目主要技术指标校务校园网可控组播服务组播网关支持ASM/SSM/单播协议之间转换不少于2GE端口支持SNMP协议校园网组播协议与终端设备之间无缝衔接项目主要技术指标校园网可控组播服务组播控制交换机不少于2GE端口24FE端口IP6支持IPv6线速转发支持校园网组播接收端访问控制项目主要技术指标校园网可控组播服务网管系统支持不少于15台可控组播交换机网管能力组播源地址分配和控制组播组地址分配和控制网关管理和控制组播服务运行状况和日志项目主要技术指标应用示范系统家络中CNGI-CERNET2国家网络中心1路高清视频流服务流媒体率低流媒体码率不低于20MbpsCERNET2 100个校园网内的用户接收组播应用服务 校园网1路普通视频/音频流服务1Mb流媒体码率约为1MbpsCERNET2 100个校园网内的用户接收组播应用服务项目主要技术指标 运营系统提供3个月的运行数据项目建设地点CNGI-CERNET2国家网络中心 1台组播网管服务器1台高清组播流媒体服务器CNGI-CERNET2核心节点 每节点部署1台组播网关高校1台组播网关1台组播网管服务器15台组播接入交换机项目实施情况可控大规模组播服务系统实施方案 组播转发网关系统主干网组播网管系统校园网组播网管系统组播交换机基于XML的组播交换机管理接口可控大规模组播服务系统实施方案 系统组成组播转发网关主干网组播网管校园网组播网管组播交换机组播源组播用户可控大规模组播服务系统结构可控大规模组播服务系统总体方案设计校园网组播网管组播源组播转发网关组播用户组播用户CNGI-CERNET2SSMRegion CampusS 播用户PopCampusSRegion Pop 组播用户组播用户S SopCampusS…组播用户组播用户可控大规模组播服务系统数据流通路S播用户组播转发网关系统组播转发系统模块图组播转发网关系统主控模块完成系统初始化、服务端口启动和其他模块启动等 网管服务器通信模块完与播关播管系统交等协的解析 完成与组播网关、组播网管系统交互等协议的解析 线程调度模块完成线程的创建关闭和更新等操作完成线程的创建、关闭和更新等操作线程池模块完成开关线程、传递接收者信息等操作日志模块记录系统相关模块及事件日志线程模块完成组播数据转发,负责ASM/SSM/单播之间的转换 线程信息模块完成更新接收者信息等操作组播转发网关系统 性能评估dvping/dvmcast性能评估测试拓扑图组播转发网关系统测试发送速率总发送包总接收包接收速率平均值/Mbps总丢包率RTT平均值/msU经过G dvping 1Mbps547854640.9990.256% 1.444 2Mbps1094310923 1.9970.183% 1.166 4Mbps2185821847 3.9970.050%0.560到S7.99Mbps43699435257.9600.398%0.716 16Mbps873748687015.8830.577%0.35432Mbps17471517388731.8000.474%0.220U直接Dvping 1Mbps547754620.9990.274% 1.371 2Mbps1094110925 1.9980.146%0.806 4Mbps2185821813 3.9920.206%0.399 b到S7.99Mbps43698435137.9600.423%0.579 16Mbps873738685615.8830.592%0.72032Mbps17471517361831.7670.628%0.199组播转发网关系统性能评估结果组播转发网关系统有/无组播转发网关RTT对比组播转发网关系统有/无组播转发网关接收带宽对比组播转发网关系统有/无组播转发网关丢包率对比主干网组播网管系统 组播网管系统组播源地址分配和控制组播组地址分配和控制网关管理和控制组播服务运行状况和日志状态持久化机制可网管网关数目不低于50台主干网组播网管系统组校主干网组播网管系统组播管播转发园网组用户监控系统日理网关管理播网管管管理志理主干网组播网管系统模块图主干网组播网管系统组播管理模块完成组播源、组播组地址的分配与控制组播转发网关管理模块完成组播转发网关的注册、注销、打开数据通路、关闭数据通路及组播转发网管状态监控等功能校园网组播网管系统管理模块完成校园网组播网管系统注册、注销、订阅节目及发送节目等功能主干网组播网管系统用户管理模块管理主干网网管系统中的用户相关信息,包括添加、删除、修改及权限管理监控模块监控网管系统各模块工作状态系统日志模块记录主干网网管系统运行日志系统模块日志 记录主干网网管系统运行日志、系统模块日志及相关错误日志校园网组播网管系统校园网组播网管系统组成 后台管理系统管系信计等网管系统配置、信息统计等 前台系统加入、退出组播组等用户相关操作校园网组播网管系统后台功能模块图校园网组播网管系统校园网组播网管系统后台登录界面。
ipv6,ipv6特点,ipv6技术标准化,从ipv4到ipv6组播过渡技术,ipv6与流

IPv6,IPv6特点,IPv6技术标准化,从IPv4到IPv6组播过渡技术,IPv6与流...IPv6[浏览次数:约452次] IPv6 是“Internet Protocol Version 6”的缩写,也被称作下一代互联网协议,它是由IETF(The Internet Engineering Task Force)设计的用来替代现行的IPv4 协议的一种新的IP 协议。
目录IPv6特点IPv6技术标准化从IPv4到IPv6组播过渡技术IPv6与流媒体传输在互联网的应用IPv6在下一代互联网中的应用IPv6特点(1)支持更多的服务类型;(2)允许协议继续演变,增加新的功能,使之适应未来技术的发展;(3)IPV6简化了报文头部格式,字段只有7个,加快报文转发,提高了吞吐量;(4)提高安全性。
身份认证和隐私权是IPV6的关键特性;(5)IPV6地址长度为128比特,地址空间增大了2的96次方倍;(6)灵活的IP报文头部格式。
使用一系列固定格式的扩展头部取代了IPV4中可变长度的选项字段。
IPV6中选项部分的出现方式也有所变化,使路由器可以简单路过选项而不做任何处理,加快了报文处理速度;IPv6技术标准化1 泛在网络基本概念Ubiquitous(无所不在)源自拉丁语,意为存在于任何地方。
1991年Xerox实验室的计算机科学家Mark Weiser 首次提出“泛在计算”(Ubiquitous Computing)的概念,描述了任何人无论何时、何地都可以通过合适的终端设备与网络进行连接,获取个性化信息服务。
随着IT技术和通信技术的发展,通信网络将不仅仅要满足人与人之间的通信需求,而且要进一步发展到人与机器(或物体)以及机器到机器之间的通信,并朝着无所不在的网络方向演进。
在未来异构的网络环境中,广域网、局域网、车域网、家域网、个域网等不同层次、多种网络技术会彼此互补、融合发展,并在微电子技术、嵌入式技术、短距离通信技术、传感器技术、智能标签技术的支撑下,最终促成“泛在信息社会的实现”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神州数码网络公司作为国内第一家通过IPv6 READY PHASE 2增强版认证的公司,一直处于IPv6研发的最前端,具有世界最领先的IPv6技术。
同时IPv6组播技术也是国内国际一流,能够提供全方位的满足各种需求的IPv6组播解决方案技术。
现将神州数码网络公司提供的全方位的IPv6组播组网解决方案作下简介。
Ipv6 PIM解决方案
IPv6 PIM (IPv6协议无关组播)是指跟IPv6单播协议无关的IPv6组播技术,也就是指不管哪种单播路由(IPv6静态单播路由、RIPng、OSPFv3、BGP4)学习到的单播路由,IPv6 PIM都可以利用单播路由进行转发,即IPv6 PIM的转发是需要利用IPv6单播路由的,但是IPv6 PIM它不依赖于某个单播路由,所以它被称为IPv6协议无关组播。
尽管我们称呼IPv6 PIM为IPv6组播路由协议,但是实际在利用IPv6单播路由协议。
Ipv6 PIM-DM解决方案
IPv6 PIM-DM(IPv6协议无关组播-密集模式)是一种密集模式的IPv6协议无关组播,采用的是扩散与剪枝技术,即使用“推”(Push)模型,组播信息整网络的扩散(Flood),下游不想接收的话则剪枝(Prune),是周期性地扩散、剪枝。
主要被用于小范围IPv6组播网络中。
如下图所示:在汇聚层的DCRS-5950和核心层的DCRS-7600上均起IPv6 PIM-DM,第一跳DR(即跟IPv6组播服务器直接相连的DCRS-5950)收到IPv6组播流量后即向下按周期性扩散,依次类推。
IPv6 PIM-DM区域均支持MLDv1/v2。
IPv6 PIM-DM一般推荐在组播服务器少,网络拓扑简单的小范围内使用。
IPv6 PIM-DM组网方案示意图
Ipv6 PIM-SM解决方案
IPv6 PIM-SM(IPv6协议无关组播-稀疏模式)不同于IPv6 PIM-DM,稀疏模式利用共享树(RPT),SM利用pull的方式,而不是利用Push的方式,即组播信息被拉入网络中的接收站点。
因此,pull的方式假定组播不被需要,除非用一个显示的加入机制来专门申请,否则组播信息不会被传送到接收站点。
而DM仅仅在使用Push原理时利用SPT来发送(S,G)组播信息。
SM是组播数据只发送到有需要的地方,并且都是显示加入。
如下图所示,在汇聚层的DCRS-6800和DCRS-5950上以及核心层的DCRS-7600上均配置IPv6 PIM-SM,假定配置多个C-BSR,最终选出左侧的DCRS-7600为BSR,也假定配置多个C-RP,最终选出两个RP,针对组(2011::1,ff1e::1)的RP为RP1,针对组(2012::1,ff2e::1)的RP为RP2。
组播服务器分别把自己的组信息通过注册报文注册到各自的RP。
下游的有加入的话,会把加入信息加入到对应组的RP,然后转发成SPT树。
IPv6 PIM-SM组网方案示意图
Ipv6 PIM-SSM解决方案
IPv6 PIM-SSM(IPv6源指定组播)是针对源单一并且优先级别较高的组播,和MLDv2配合使用,可以针对源进行过滤。
只要在第一跳DR和最后一跳DR上起SSM,中间区域起PIM即可。
IPv6 PIM-SSM解决方案示意图
Ipv6 PIM+IPv6组播边界解决方案
BSR-BORDER的典型组网方案如下:
PIM区域内各个组播路由器之间运行PIM协议,代理交换机网络运行MLD proxy协议,在PIM 交换机与MLD PROXY代理交换机相连的接口上配置BSR-BORDER,BSR-BORDER就相当于直连,能将PIM区域的数据转发到MLD PROXY区域,同时在不同的PIM-SM区域之间配置BSR-BORDER,阻止BSM信息在不同区域之间不能互传,保证组播网络的稳定和安全。
SCOPE-BORDER的典型组网方案如下:
在PIM的A区域和B区域的边界配置SCOPE-BORDER,以保证指定的组的数据不向其他区域扩散。
IPv6静态组播解决方案
IPv6 PIM主要分为两种协议,SM-即稀疏模式,通过数据源向RP的注册来发现源,接收者在不知道源信息时向RP发送注册来找到源;DM-即密集模式,通过泛洪或状态刷新机制来通告源信息。
无论SM还是DM,都必须要由数据源来触发,如果数据源长时间没有数据,都会老化该表项,在新的数据到来时重新生成,在转发正式生成前,数据将不能很好的被传输。
IPv6静态组播就是为此建立的,对于IPv6静态组播,只要配置正确,组播表项就可以立即生成,而不必等待真实数据的到来,即使很长时间没有数据,也不会因此被老化,这就保证了高端客户保证IPv6组播长时间正常运行的要求。
如下图所示,为了保证点播者C1的流量的稳定,在交换机上配置了IPv6静态组播。
IPv6静态组播解决方案示意图。