材料力学压杆稳定第5节 提高压杆稳定性的措施

合集下载

压杆稳定—提高压杆稳定性的措施(建筑力学)

压杆稳定—提高压杆稳定性的措施(建筑力学)
2.采用合理的截面形状: (1)各方向约束相同时: 1)各方向惯性矩I相等—采用正方形、圆形截面; 2)增大惯性矩I—采用空心截面。 (2)压杆两方向约束不同时: 使两方向柔度接近相等 可采用两个主惯性矩不同的截面,如矩形、工字形等。 3.减少压杆支承长度: (1)直接减少压杆长度; (2)增加中间支承; (3)整体稳定性与局部稳定性相近。 4.加固杆端约束:尽可能做到使压杆两端部接近刚性固接。
提高压杆稳定性的措施
1.合理选择材料 细长压杆:
ห้องสมุดไป่ตู้ cr
2E 2
采用E值较大的材料可提高压杆的稳定性 由于各种钢材的E值大致相同,所以对大柔度钢压杆不宜选用优质钢材,以避 免造成浪费。
中粗压杆
cr a b
短粗压杆
cr u
采用强度较高的材料能够提高其临界应力,即能提高其稳定性。
提高压杆稳定性的措施

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

提高压杆稳定性的措施

提高压杆稳定性的措施

松木
28.7
0.19
通过对压杆稳定性及其校核的理解,我们可以知道,压杆的稳 E a b 定性与临界应力 cr有关。由欧拉公式 和经验公式 cr 我们不难发现临界应力 cr 始终与柔度 有关。临界应力与柔度的 关系,即应力总图,如下图所示。
2 cr 2
cr
表1
Q235钢 优质碳钢 硅钢 铬钼钢 铸铁 强铝
直线公式的系数a和b
a( MPa )
304 461 578 9807 332.2 373
材料强度指标(MPa)
b( MPa )
1.12 2.568 3.744 5.296 1.454 2.15
b ≥372; s =235 b ≥471; s =306 b ≥510; s =353
当受拉杆的应力达到屈服极限或 强度极限时,将引起塑性变形或断裂。 长度较小的受压短柱也有类似现象, 例如:低碳钢短柱被压扁,铸铁短柱 被压碎(因强度不足而失效)。然而 细长杆件受压时,却表现出与强度失 效全然不同的性质。例如,细长的竹 片受压时,开始轴线为直线,接着必 然是被压弯,最后折断。这便是杆件 因失稳而失效。此时并非其强度不够, 而是稳定性不够。 所以,在工程设计中提高压杆的稳定性就 显得尤为重要。
cr s
cr a b
B C
cr
s A p
2E 2
D
小柔度杆 中柔度杆 大柔度杆
O
2
1

我们知道临界应力越大,压杆也就越稳定,由上图可知:当 其它条件一定,柔度越小的压杆,其临界应力越大,因而越稳定。 所以,对于小柔度杆一般只考虑其压缩强度。 对于中柔度杆一般考虑材料的影响,因而一般通过选材提高 压杆的稳定性。 大柔度杆则着重从欧拉公式进行考虑(也是我们的重点考察 对象,一般,需要提高稳定性的都是大柔度杆)。 下面我们将从欧拉公式入手着重讨论如何提高大柔度杆的 稳定性。

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(压杆稳定)【圣才出品】

所示。
表 9-1-2
3 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)关于欧拉公式的讨论 ①相当长度 μl 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当长度 μl,它是各种支承条件下, 细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度。 ②横截面对某一形心主惯性轴的惯性矩 I 杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩;杆端 在各个方向的约束情况不同(如柱形铰),应分别计算杆在不同方向失稳时的临界压力,I 为其相应中性轴的惯性矩。 三、欧拉公式的适用范围及临界应力总图 1.相关概念
图 9-1-1
选取坐标系如图 9-1-1 所示,距原点为 x 的任意截面的挠度为 w,则弯矩 M=-Fw。
根据压杆变形后的平衡状态,得到杆的挠曲线近似微分方程
d2w dx2
M EI
2 / 63
圣才电子书 十万种考研考证电子书、题库视频学习平台

通过对该方程的求解可得到使压杆保持微小弯曲平衡的最小压力,即两端铰支细长压杆 临界力为
π 2 EI Fcr l 2
上述计算公式称为两端铰支压杆的欧拉公式。
2.欧拉公式的普遍形式
Fcr
π 2 EI
l 2
式中,μl 为相当长度;μ 为长度因数,与压杆的约束情况有关;I 为横截面对某一形心
主惯性轴的惯性矩。
(1)各种支承情况下等截面细长压杆的长度因数及临界压力的欧拉公式,如表 9-1-2
对比项目 平衡状态
应力 平衡方程 极限承载能力
强度问题 直线平衡状态不变
达到限值 变形前的形状、尺寸
实验确定
稳定问题 平衡形式发生变化
可能小于限值 变形后的形状、尺寸

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。

内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。

2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。

应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。

3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。

二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。

通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。

2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。

3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。

不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。

4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。

5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。

三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。

2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。

四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。

扭矩图用于表示扭矩沿杆件轴线的变化。

2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。

扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。

五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。

材料力学

材料力学

压杆的稳定条件(安全系数法)
F
F cr
n st
[Fst ]
n st ——稳定安全因数
F ——工作压力
[ Fst ] ——稳定许用压力
— [ st ]
材料力学
cr
n st
[st ]
——稳定许用应力
F A
工作应力
压杆稳定问题/压杆的稳定计算
压杆的稳定条件
n nst
— n Fcr cr
工作安全因数
F
2、由杆AC的强度条件确定 Fmax 。
1
FN1 A1
s ns
FN 2
A
F s A1 26.7KN
2ns
3、由杆AB的稳定条件确定 Fmax 。
材料力学
n
Fcr FN 2
nst
柔度: l2 1 0.6 80 i2 d2 / 4
0 < p 可用直线公式.
因此
FcrcrA2 (ab)A2 (30 1.4 1 2 8)0 160 4d22
(中柔度杆)
(p s)
粗短杆—不发生屈曲,而发生屈服(< 0)
(小柔度杆,按强度问题处理cr= s (b))
材料力学
压杆稳定问题/中、小柔度杆的临界应力
中长杆临界应力的经验公式
1) 直线公式
crab
a、b是与材料有关的常数。
直线公式的适用范围: 0 < p
ps
0
as
b
临界应力总图——临界应力随柔度变化的曲线
材料力学
压杆稳定问题/中、小柔度杆的临界应力
三、中、小柔度杆的临界应力
材料力学
压杆稳定问题/中、小柔度杆的临界应力
1、问题的提出

第八章:压杆稳定

第八章:压杆稳定

材料
(强度极限 b/ MPa ) (屈服点 S /MPa )
a
b
(MPa) (MPa)
P
S
Q235 钢( b 372 , S 235 ) 304 1.12 100
62
优质碳钢( b 471 ,S 306 ) 461 2.568 100
60
硅钢 ( b 510 , S 353 ) 578 3.744 100
二、其他支座条件下细长压杆的临界应力 表8-1 压杆的长度系数
Fcr
2EI ( l)2
杆端约束 情况
一端固定 一端自由
两端铰支
一端固定 一端铰支
两端固定
挠 曲 线 形 状
长度系数
2.0
1.0
0.7
0.5
第二节:细长压杆的临界荷载
例8-3 图示细长压杆,已知材料的弹性模量 E 210GPa,压杆
第二节:细长压杆的临界荷载
例8-1 细长压杆为钢制空心圆管,外径和内径分别为 20mm 和 16mm,杆长 0.8m,钢材的弹性模量为 210GPa,
压杆两端铰支,试求压杆的临界载荷 Fcr。
解:压杆横截面的惯性矩为
I (D4 d 4 ) (0.024 0.0164 ) m4
64
64
4.63109 m4
(2)如果 F k l ,即 F k l ,则杆将继续偏斜,不能回复到原来的竖直平衡位
置,表明其原来的竖直平衡状态是不稳定的;
(3)如果 F k l ,即 F k l ,则杆不仅在竖直位置保持平衡,而且在偏斜状
态也能够保持平衡。
第一节:压杆稳定的概念
临界压力或临界力:当压力逐渐增加到某一极限值时,如果再作用 一个微小的侧向干扰力,使其产生微小的侧向变形,在除去干扰力 后,压杆将不再能够恢复其原来的直线平衡状态,这说明压杆原来 直线形状的平衡是不稳定的,上述压力的极限值称为临界压力或临 界力。一般用Fcr表示,它是判断压杆是否失稳的一个指标。

压杆稳定

压杆稳定
11500 173 p 100 30 i 2 3
设 杆CD的抗弯刚度为EI2 ,则
P B
当 EI2∞ μ 0.7
当 EI20 μ 1.0
杆AB: μ=0.7~1.0
C
EI
EI2
A
D
例:已知 圆截面直钢杆,长度l=2m,直径d=20mm,
弹性模量E=200GPa, 屈服极限s =230MPa
求 按强度理论计算的最大许用载荷PS 按稳定理论计算的最大许用载荷Pcr 解:1) 按强度理论
当P<Pcr ,稳定平衡
Mr
当 P>Pcr ,失稳
当 P=Pcr ,临界平衡
P Pcr
干扰力F
稳定平衡
加干扰力,产生变形 撤去干扰力,变形恢 复。
P Pcr
干扰力F
临界平衡
加干扰力,产生变形 撤去干扰力,变形不 能恢复。
P Pcr
不能平衡
加干扰力,变形将持续 增加。
压杆失稳的内在原因 对于可变形压杆,干扰力 F 起到使压杆脱离 原直线平衡位置的作用,而杆的弯曲变形起 到使压杆恢复原直线平衡位置的作用。压杆 随纵向力P的改变,平衡的稳定性会发生改变 ,由稳定平衡转为不稳定平衡的纵向力临界 值称压杆的临界压力或临界载荷Pcr(critical load);它是压杆保持稳定平衡状态压力的最 大值。
工程上用“经验公式”代替“欧拉公式”。
如:可用直线经验公式: σ cr= a - b λ
a、b为材料常数,见表9-2。
A3钢:a=304MPa,b=1.12MPa
小柔度杆
当直线经验公式σ cr= a - b λ σ s(或σ b)时,
压杆的失效由强度控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、改变杆端约束形式
根据两端铰支细长压杆的临界载荷公式,由表 7-1 可知,加固杆端支承,长度因数值降低,可以提高 临界载荷,即提高了压杆的稳定性。一般来说,增 加压杆的约束,使其不容易发生弯曲变形,可以提 高压杆承载能力。
Fcr

2EI (l)2
四、合理选用材料
对于大柔度杆( P ),其 cr 与材料的 E 成正
(a)工字型
(b)槽型
(c)组合型

二、减小压杆长度
Fcr 2EI (l)2
对于大柔度杆,其临界力与杆长 l 的平方成反比。
因此使压杆长度减小可以明显提高压杆的临界力。
若压杆长度不能减小,则可以通过增加压杆的约束
点,以减小压杆的计算长度,从而达到提高压杆承 载能力的目的。
注意
对于小柔度杆,则不能通过减小压杆 长度的办法来提高临界力。
l l A
i
I
在截面面积不变的情况下,增大惯性矩的办法是尽 可能地把材料放在离形心较远的地方。
在截面面积不变的情况下,增大惯性矩的办法是尽 可能地把材料放在离形心较远的地方。
对于轴类零件,只要结构和工艺允许,可以采用圆 环形截面,如图所示。
对于矩形截面,可以设想把中性轴附近的材料移 植到边缘处,常采用的截面形状有工字型截面、 槽型截面;再者,工程实际用的较多的形状还有 如图所示的型钢组合截面的压杆。
对于中柔度压杆,由经验公式看出,临界应力与材 料的强度有关,因此对于中柔度的压杆,可用高强 度钢制造以提高稳定性。对小柔度的短粗压杆,本 身就是强度问题,高强度钢优于普通碳素钢。
一、选择合理的截面形状
提高压杆稳定性,就是在给定面积大小的条件下,
提高压杆的临界力。临界力Fcr A cr ,当面积一定 时,提高临界力的关键在于提高临界应力 cr 。
细长杆 cr 2E 2,中长杆 cr a b ,因此, 减小柔度 即可以提高临界应力 cr 。
比,故在其他条件相同的情形下,用弹性模量高的 材料制成的压杆,其临界力也高。
从材料手册中可以查出,碳钢的弹性模量大于铜、 铸铁或铝材料的弹性模量,故钢制压杆的临界力也 是这几种材料制成的压杆中最高的。
但对各种钢材来说,弹性模量值差别不大,用高强 度钢时,临界应力的提高不显著,所以细长压杆用 普通钢制造,既合理又经济。
相关文档
最新文档