鼻咽癌精准放疗正常组织的勾画图谱王孝深

合集下载

鼻咽癌靶区勾画

鼻咽癌靶区勾画

鼻咽癌靶区勾画(中山大学附属肿瘤医院)一、鼻咽大体肿瘤体积(GTVnx ):以CT sim 扫描所获得的增强CT显示的肿瘤,参照放疗体位M R I勾画GTV。

二、颈部大体肿瘤体积(GTVnd ):增强CT / MRI 显示的颈部肿大淋巴结(内见坏死灶或短径≥1cm)三、CTV1临床靶体积1(CTV1):为GTVnx向前、上下、两侧各外扩0.5~1.0cm,向后外扩0.3~0.5cm(根据肿瘤累及情况以及与脊髓、脑干等组织结构的间距决定外扩的适当距离)。

CTV 1-勾画依据1:(1). 据头颈病理研究结果: 肉眼可见的肿瘤区域(GTV )周围,通常肿瘤细胞密度较高,其密度接近于GTV 边缘的肿瘤细胞密度,而向外周扩展时肿瘤细胞密度则逐渐减低(通常约在GTV 周围1CM 的范围)。

(2). 鼻咽粘膜下存在丰富的毛细淋巴管网,肿瘤细胞极易沿粘膜下扩展,即使肿瘤局限于一侧壁,对侧壁仍存在一定的受侵机率(鼻咽多点活检发现对侧壁肿瘤侵犯的比例达18% )CTV1 手工勾画或调整时遵循以下要求:⑴包括全部鼻咽部粘膜以及粘膜下0.5cm;⑵上下均在GTVnx 外两层;⑶咽旁侵犯CTV1 需包括舟状窝、卵圆孔;⑷颈动脉鞘区无直接侵犯或淋巴结转移,视咽颅底筋膜有无侵犯而定,如果咽颅底筋膜有侵犯,则颈动脉鞘区需包括在CTV1 ;⑸颈动脉鞘区侵犯需全部包括在CTV1 ;⑹仅有同侧咽后淋巴结转移,CTV1 包括同侧颈内静脉后缘,对侧颈内动脉后缘;⑺咽后淋巴结转移并咽颅底筋膜受侵,则咽旁、翼内肌、舟状窝、颈动脉鞘区应完整包括在CTV1内;⑻双侧破裂孔软组织需包括在CTV1 ;⑼早期病例蝶骨基底部包括在CTV1 ;⑽仅有鼻咽粘膜侵犯,CTV1 不需要包括斜坡皮质及髓腔;⑾头长肌有侵犯而无斜坡侵犯,CTV1 仅需包括斜坡皮质。

四、CTV2临床靶体2(CTV2 ):为CTV1向前、上下、两侧各外扩0.5~1.0cm 后外扩0.3~0.5cm(根据肿瘤累及情况以及与脊髓、脑干等组织结构的间距决定外扩的适当距离),及GTVnd 和所在淋巴引流区及需要预防照射的阴性淋巴引流区。

鼻咽癌调强放射治疗靶区勾画-中国医学科学院肿瘤医院经验总结

鼻咽癌调强放射治疗靶区勾画-中国医学科学院肿瘤医院经验总结

鼻咽癌调强放射治疗靶区勾画-中国医学科学院肿瘤医院经验总结易俊林;曲媛;高黎;徐国镇;黄晓东;罗京伟;李素艳;肖建平;王凯;张世平【期刊名称】《肿瘤预防与治疗》【年(卷),期】2011(24)3【摘要】Objective : To summarize the experience and skill in contouring target volume of IMRT for nasopharyngeal carcimoma of our hospital. Methods: The intensity-modulated radiotherapy( IMRT ) technique has been applied since Novemher 2001 in our hospital. During the past 9 years, the methods and skill of contouring the target volume of nasopharyngeal carcinoma have been estahlished and improved. We intend to describe the detailed experience and tips in this field here. Results : we have established a complete protocol of contouring target volume of nasopharyngeal carcinoma and made it as a daily practice guideline, and we also accumulated abundant tips in dealing with some dilemma. All these were confirmed by the outcomes of 376 patients treated by IMRT in our department. Conclusion: The protocol of contouring target volume of nasopharyngeal carcinoma in IMRT is a fruit of whole wisdom of our department. We hope it may he useful in daily practice.%目的:总结我院鼻咽癌调强放射治疗靶区勾画及个体化处理经验.方法:自2001年11月到2010年7月我院已开展鼻咽癌调强放疗技术9年,通过不断摸索和完善,制定了鼻咽癌靶区勾画规范,本文描述在靶区勾画中的经验和技巧.结果:通过开展鼻咽癌调强放射治疗技术9年来的实践,我们制定了比较完善合理的鼻咽癌靶区勾画方法,并在一些细节和个体化处理上积累了丰富的经验,形成了日常临床实践的指南,通过治疗376例鼻咽癌,得到了良好的临床疗效.结论:我院鼻咽癌调强放射治疗靶区勾画经验与技巧取得了较好的临床疗效,可供其他单位鼻咽癌靶区勾画时参考.【总页数】8页(P157-163,172)【作者】易俊林;曲媛;高黎;徐国镇;黄晓东;罗京伟;李素艳;肖建平;王凯;张世平【作者单位】中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021;中国医学科学院中国协和医科大学肿瘤研究所肿瘤医院放射治疗科,北京,100021【正文语种】中文【中图分类】R739.63;R730.55【相关文献】1.图像引导鼻咽癌调强放射治疗靶区勾画研究进展 [J], 刘均;陈宏2.鼻咽癌旋转调强放射治疗与固定野动态调强放射治疗的剂量学比较 [J], 杨振;宾石珍;雷明军;刘归;张子健;吕知平3.建立鼻咽癌调强放射治疗靶区勾画指南的必要性 [J], 王孝深;胡超苏;应红梅;何霞云;朱国培;冯炎4.容积旋转调强放射治疗与9野静态调强放射治疗在侵犯颅内鼻咽癌患者中的剂量学特点 [J], 刘小慧5.《中国医刊》杂志、《中国临床医生》杂志与中国医学科学院肿瘤医院、秦皇岛市肿瘤医院共同举办“全国第二届肿瘤规范化、标准化诊治学术会” [J],因版权原因,仅展示原文概要,查看原文内容请购买。

鼻咽癌鼻咽及颈部靶区勾画课件

鼻咽癌鼻咽及颈部靶区勾画课件

手术治疗需注意保护周围正常组织, 减少术后并发症的发生。
手术治疗后可能出现吞咽困难、张口 受限等并发症,需进行康复训练和对 症治疗。
CHAPTER 04
鼻咽及颈部靶区勾画
靶区勾画的原理
靶区勾画是放射治疗的关键步骤,目 的是确保肿瘤接受足够剂量的照射, 同时减少对周围正常组织的损伤。
靶区勾画还需要结合影像学检查结果 ,如CT、MRI等,以更准确地确定肿 瘤的范围。
淋巴结转移
鼻咽癌易通过淋巴系统转 移至颈部淋巴结,影响淋 巴结的结构和功能。
鼻咽癌的临床表现
01
02
03
04
鼻塞
肿瘤阻塞鼻腔导致鼻塞,严重 时可影响睡眠和呼吸。
涕血
肿瘤表面破溃可引起涕中带血 或鼻出血。
头痛
肿瘤侵犯颅底或鼻腔顶部可引 起头痛,常表现为单侧持续性
头痛。
颈部肿块
鼻咽癌易转移至颈部淋巴结, 表现为颈部肿块,质地硬、活
生化指标诊断
通过检测血液、尿液等相关生 化指标,评估肿瘤的恶性程度
及转移情况。
诊断标准
01
病理学诊断阳性,结合临床表现 和影像学检查结果,可确诊为鼻 咽癌。
02
对于影像学检查发现异常,但病 理学诊断阴性的患者,可结合临 床表现及其他检查结果进行临床 诊断。
诊断流程
初步检查
通过问诊、体查及相关生化指标检测 ,初步判断是否存在鼻咽癌可能。
动度差。
CHAPTER 02
鼻咽癌的诊断
诊断方法
病理学诊断
通过活检或细胞学检查获取病 变组织,进行组织病理学诊断
,是确诊鼻咽癌的金标准。
影像学诊断
通过CT、MRI等影像学检查, 观察肿瘤的位置、大小、浸润 深度及淋巴结转移情况。

鼻咽癌IMRT靶区勾画

鼻咽癌IMRT靶区勾画

IMRT优势
1. 整体照射避免重叠或漏照 2. 同时满足不同靶区处方剂量要求 3.剂量分布与靶区的3D形状一致 4. 提高放射治疗增益比—物理效应、生物效应 5. 提高肿瘤局部控制率、生存率 6. 减轻放疗并发症,改善患者生存质量
IMRT局限性
肿瘤侵犯范围和重要靶区的不确定性,影响预后。 剂量-反应参数不确定性,小体积大剂量和大体积小剂量
IMRT
将射野内均匀的剂量率变成所需要的非均匀的剂量输 出率,即强度调节满足以下要求:高剂量区分布形状在3D 空间方向上与靶区的形状一致;照射野(靶区)内各点的 剂量按要求的方式进行调整,使靶区内的剂量分布符合预 定的要求。
特点 剂量分布适形,产生内凹的等剂量线。 靶区和正常结构边缘之间产生剂量陡峭跌落区。 多部位同时照射,允许同时给予多个靶区不同的照射剂量。
GTV-T、GTV-N 225cGy/次, 6975cGy/31次
CTV1 195cGy/次, 6045cGy/31次
CTV2、CTV-N 180cGy/次, 5580cGy/31次
T3T4 IMRT-1 GTV-T 225cGy/次, 6300cGy/28次
GTV-N 220cGy/次, 6160cGy/28次
疗野或野剂量反复修改直至得到 可接受的临床结果。
IMRT适应症
放疗有肯定疗效,剂量提高有可能提高局控率 接近重要的正常结构或靠近以往治疗区域
(利用IMRT陡峭的剂量梯度) 摆位或器官运动不确定因素小
(增大治疗边界减少IMRT功效) • Margin:纠正治疗间靶区移动和每次治疗可能的器官运
动带来的不准确。 • Margin 大小与特定的治疗部位和固定、定位技术有关
IA
上界 颏舌骨肌 下界 颈阔肌 前界 颏联合 后界 舌骨体 内界 二腹肌前腹

鼻咽癌放射治疗危及器官自动勾画的几何和剂量学分析

鼻咽癌放射治疗危及器官自动勾画的几何和剂量学分析

鼻咽癌放射治疗危及器官自动勾画的几何和剂量学分析黄新;王新卓;薛涛;刘双童;刘斌;吴迪;张恒;王辉【期刊名称】《生物医学工程与临床》【年(卷),期】2024(28)1【摘要】目的探讨分析鼻咽癌容积旋转调强放射治疗(VMAT)中危及器官(OAR)自动勾画(AS)的几何和剂量学准确度,并检验OAR勾画的几何和剂量学之间的相关性,为放射治疗(简称放疗)患者OAR勾画提供参考依据。

方法回顾性选择120例鼻咽癌放疗患者,其中男性84例,女性36例;年龄11~82岁,中位年龄55岁;病灶位于颅底与软腭之间,垂直径和横径各3~4 cm,前后径2~3 cm。

其中随机数字法选择85例患者经AccuLearning深度学习训练平台训练形成AS模型,将AS模型导入AccuContour软件。

利用AS模型勾画未训练的35例鼻咽癌放疗患者的18个OAR。

比较AS与手动勾画(MS)OAR的几何度量有戴斯相似性系数(DSC)、杰卡德系数(JAC)、质心偏差(DC)、豪斯多夫距离(HD95)、对称位置平均表面距离(ASSD)、相对绝对体积差异(RAVD)。

在同一个VMAT计划下,通过剂量体积直方图(DVH),比较AS与MS勾画的OAR剂量学参数。

采用双尾Spearman来分析几何指标和剂量学绝对差异值之间的相关性。

结果AS勾画的OAR轮廓与MS勾画的OAR轮廓具有差异性。

几何指标DSC、JAC、RAVD勾画质量表现最佳的是下颌骨,其均值±标准差分别为0.94±0.01、0.88±0.02、6.34±4.13。

左晶状体的HD95、ASSD结果最好,其均值±标准差分别为2.04±0.91、0.22±0.12。

DC均值±标准差最佳的是右眼球,为0.93±0.77。

DSC和JAC中勾画质量表现最差是视交叉,其均值±标准差分别为0.75±0.06、0.60±0.07。

鼻咽癌靶区勾画

鼻咽癌靶区勾画

广州
鼻咽腔、咽旁间隙,颅底骨质、蝶窦下 1/3、后组筛窦、鼻腔后1/3、上颌窦后 1/3、翼内外肌、咽旁和咽后间隙、斜坡 1/2、破裂孔、翼突、翼腭窝
包括临床触及和/或影像学观察到的肿大 淋巴结范围,及其所在的淋巴引流区, 还须超出1~2个阴性淋巴结引流区
整理版
6
香港
鼻咽腔、咽旁间隙,蝶窦下部、后组筛 窦、鼻腔后1/3、上颌窦后1/3、翼内外肌、 咽旁和咽后间隙、斜坡前1/2、岩尖、翼 突、翼腭窝,区域淋巴结
整理版
7
台湾
鼻咽腔、咽旁间隙,蝶窦下1/3、后组筛 窦、鼻腔后1/3、上颌窦后1/3、翼内外肌、 咽旁和咽后间隙、斜坡1/2、岩尖、翼突、 翼腭窝,区域淋巴结
整理版
8
二、勾画好鼻咽癌需要哪些知识储备
整理版
9
一、解剖: 从颅底 鼻咽 口咽 喉咽 到胸廓入口 记住颅底孔、裂、窝及颈部分区及淋巴结位置
卵圆孔 棘孔
破裂孔
翼管 岩蝶裂
颈动脉管外口 舌下神经管
斜坡(枕骨段)
整理版
26
Image 7
蝶骨大翼 蝶鳞缝 鼓鳞裂 岩蝶裂 岩枕裂 斜坡
翼上颌裂 翼突 翼板
茎突
翼腭窝 下颌骨髁突 乳突
枕髁
整理版
22
Image 3
翼突 翼板
茎突 枕乳缝
颧骨 Байду номын сангаас腭窝
(左)蝶棘 乳突 枕骨(基底部和枕髁)
整理版
23
Image 4
颧面孔 颧弓 蝶骨大翼
翼突
舌下神经管 枕鳞
蝶腭孔 翼腭窝 翼板 蝶棘 茎突基底部 枕乳缝
枕骨基底部(后斜坡)
• •
斜上坡界由为枕鞍骨背基,底下部界和为蝶枕骨骨体 大共 孔同 前构 缘成 ,, 两向 侧整前 毗理上 邻版约 破呈 裂4孔5、°岩角枕倾裂斜、颈静脉孔、舌下神经管内2口4 等结构

鼻咽癌正常器官勾画

鼻咽癌正常器官勾画

Supplementary Table 1: Clinical characteristics of the 41 NPC patientsand 21 patients with NPC and unilateral TLNCharacteristic Value for the 41 NPC patients Value for the 21 NPC patients with unilateral Number 41 21GenderMale 31 16Female 10 5Age (years)≤ 40 13 8> 40 28 13T stage aT1 7 1T2 9 1T3 17 3T4 8 16N stage aN0 6 4N1 20 12N2 11 5N3 4 0Overall stage aI 2 1II 11 1III 16 3IV 12 16Radiation technique bVMAT 17 0Static IMRT 24 21ChemotherapyNo 6 3Yes 35 18Involved lateralityLeft side 13Right side 8Abbreviations: TLN, temporal lobe necrosis; IMRT, intensity modulated radiotherapy; VMAT, volumetric modulated arc therapya According to the 7th AJCC/UICC staging system.b All the patients were treated with IMRT including 17 with VMA T and 24 with static IMRT.Supplementary Table 2: Comparison of dosimetric parameters between temporal lobes with and without TLN using the two contouring methodsDosimetric parametersMethod 1a Method 2bt Mean difference P-value t Mean difference P-valueD0.1cc c 6.15 10.46 <0.001 6.09 10.40 <0.001 D0.5cc 5.08 8.03 <0.001 6.84 11.87 <0.001 D1cc 6.98 12.84 <0.001 7.01 12.86 <0.001 D5cc 7.12 14.28 <0.001 7.70 14.81 <0.001 D10cc 5.92 12.91 <0.001 6.55 13.45 <0.001 D15cc 4.70 10.09 <0.001 5.08 10.49 <0.001 D20cc 3.80 7.29 0.001 4.26 7.77 <0.001 D25cc 3.52 5.44 0.002 3.96 5.79 0.001 D30cc 3.44 3.45 0.004 4.18 4.24 0.001 D35cc 2.42 1.97 0.025 4.42 3.03 <0.001 D40cc 2.00 1.31 0.049 3.85 2.17 0.001 D1d7.06 12.54 <0.001 7.14 12.90 <0.001 D2 7.23 13.82 <0.001 7.25 14.12 <0.001 D5 7.84 14.89 <0.001 8.04 15.05 <0.001 D10 7.12 14.66 <0.001 7.01 14.16 <0.001 D15 6.17 13.02 <0.001 5.46 11.66 <0.001 D20 4.98 11.33 <0.001 4.58 9.12 <0.001 D25 4.61 8.91 <0.001 4.20 6.84 0.001 D30 4.21 7.05 0.001 4.23 4.96 <0.001 D35 4.62 5.75 <0.001 4.81 3.98 <0.001 D40 4.51 4.19 <0.001 4.39 3.00 <0.001 D45 4.03 3.14 0.001 3.98 2.27 0.001 D50 3.63 2.36 0.002 3.74 1.77 0.001 D55 3.61 1.76 0.002 3.67 1.51 0.002 D60 3.59 1.4 0.002 3.71 1.47 0.001 V10e 3.32 4.88 0.003 3.17 5.28 0.005 V20 5.13 5.86 <0.001 5.31 6.15 <0.001 V25 5.95 7.16 <0.001 6.16 6.79 <0.001 V30 6.97 8.72 <0.001 6.95 7.69 <0.001 V35 6.77 9.71 <0.001 6.86 8.18 <0.001 V40 6.18 10.01 <0.001 6.48 8.26 <0.001 V45 5.84 9.89 <0.001 6.10 8.03 <0.001 V50 2.72 3.37 0.013 5.81 7.78 <0.001 V55 5.19 8.61 <0.001 5.39 7.02 <0.001 V60 4.75 7.07 <0.001 4.78 5.75 <0.001 V65 3.88 4.93 0.001 3.88 4.01 0.001 V70 2.85 2.64 0.01 2.87 2.20 0.009 V75 2.06 0.83 0.042 2.19 0.72 0.041 Volume 2.92 3.62 0.009 2.26 3.10 0.035 Dmean 5.83 4.98 <0.001 5.83 4.36 <0.001 D1 of PRV f7.35 11.48 <0.001 7.50 11.80 <0.001 D5 of PRV 7.80 14.19 <0.001 8.20 14.73 <0.001 D10 of PRV 6.80 14.18 <0.001 7.27 14.73 <0.001 D15 of PRV 5.95 13.14 <0.001 5.72 12.45 <0.001D20 of PRV 4.93 11.02 <0.001 4.71 9.59 <0.001D25 of PRV 4.30 8.60 <0.001 4.29 7.15 <0.001D30 of PRV 4.01 6.77 0.001 4.20 5.25 <0.001D35 of PRV 3.94 5.07 0.001 4.26 3.92 <0.001D40 of PRV 4.16 3.88 <0.001 4.38 3.06 <0.001D45 of PRV 3.89 2.93 0.001 4.13 2.35 0.001D50 of PRV 3.70 2.23 0.001 3.91 1.88 0.001D55 of PRV 3.72 1.66 0.001 3.76 1.59 0.001D60 of PRV 3.44 1.25 0.003 3.57 1.40 0.002V20 of PRV 5.31 5.66 <0.001 5.21 5.72 <0.001V25 of PRV 5.73 6.88 <0.001 6.01 6.70 <0.001V30 of PRV 6.94 8.77 <0.001 6.70 7.73 <0.001V35 of PRV 6.59 9.40 <0.001 6.82 8.28 <0.001V40 of PRV 6.22 9.61 <0.001 6.52 8.31 <0.001V45 of PRV 5.96 9.92 <0.001 6.31 8.06 <0.001V50 of PRV 5.74 9.17 <0.001 6.04 7.78 <0.001V55 of PRV 5.53 8.47 <0.001 5.76 7.18 <0.001V60 of PRV 5.05 7.16 <0.001 5.17 6.08 <0.001V65 of PRV 4.33 5,.30 <0.001 4.38 4.51 <0.001V70 of PRV 3.18 2.99 0.005 3.42 2.66 0.003V75 of PRV 2.45 1.10 0.024 2.55 0.98 0.019 Abbreviations: PRV=planning organ at risk volume; D mean= mean dose; TLN=temporal lobe necrosis;a Temporal lobe including the basal ganglia and insula, excluding parahippocampal gyrus and hippocampusb Temporal lobe including parahippocampal gyrus and hippocampus, excluding basal ganglia and insula.c D0.1cc is the minimum dose received by the ‘‘hottest’’ 0.1ml of the organ, the other D with suffixes expresses the same meaning, but the suffix numbers represent the absolute volume.d D1 is the minimum dose received by the ‘‘hottest’’ 1% of the organ, the other D with suffixes express the same meaning, but the suffix nu mbers represent the percentage of volume.e V10 is the percentage of volume of temporal lobe that receives more than 10 Gy, the other V with suffixes express the same meaning, but the suffix numbers represent the doses received.f D1of PRV is the minimum dose received by the ‘‘hottest’’ 1% of the planning organ at risk volume of temporal lobe volume, the other Dx of PRV, Vx of PRV express the same meaning, but the prefix parameter represent the percentage of volume or the dose received.Supplementary Table 3: Anatomic boundaries of the organs at risk in NPC.Organ StandardTPS name [20]Cranial Caudal Anterior Posterior Lateral MedialTMJ TMjoint a Disappearance ofarticular cavity Appearance of thehead of mandible orone slice superior tothe sigmoid notch ofthe neck of mandibleArticular condyle of thetemporal bone, ant.edge of mandibularcondyleSurface of fossaglenoidLat. edge ofmandibular condyle orsurface of fossaglenoidBrainstem BrainStem Optic tract or thedisappearance ofposterior cerebralartery Foramen magnum Post. edge of prepon-tine cistern or basilararteryAnt. edge of forthventricle ormesencephalicaqueductPosterior cerebralartery, anteriorinferior cerebellarartery, cerebellarpeduncleOptic chiasm Chiasm One or two slicessuperiorly Pituitary orsuprasellar cisternOptic canal Infundibulum Internal carotidarteries, middlecerebral arteriesTongue(oral cavity)b Tongue Post. edge of thehard palate or softpalateDisappearance ofanterior belly ofdigastric musclePost. edge of mandibleor is freePalate, oropharynx,the palatine tonsil,hyoid boneMed. edge of themandible or inferioralveoli socketLarynx(larynx and laryngopharynx) Larynx Cranial edge ofepiglottisCaudal edge of cricoidcartilageAnt. edge of thyroidcartilage or cricoidcartilageIncluding arytenoidcartilage, the superiorand inferior horns ofthyroid cartilage andpost. edge ofpharyngeal constrictorMed. edge of hyoidbone, lat. edge ofthyroid cartilage andcricoid cartilage,cervical vessels,nerves, and lateralthyroidUpper Pharyngeal- Caudal edge of Cranial edge of hyoid Nasopharynx, Longus capitis m., Carotid sheathpharyngeal constrictor [22] Const_Upper pterygoid plates bone oropharynx,laryngopharynx, base oftonguelongus colli m., bodyof cervical vertebraMiddle pharyngeal constrictor [22] Pharyngeal-Const_MiddleCranial edge ofhyoid boneCaudal edge of hyoidboneLaryngopharynx Longus capitis m.,longus colli m., bodyof cervical vertebraHyoid boneInferior pharyngeal constrictor [22] Pharyngeal-Const_LowerCaudal edge ofhyoid boneCaudal edge of cricoidcartilageLaryngopharynx orcricoids cartilageLongus capitis m.,longus colli m., bodyof cervical vertebraThyroid cartilage orthyroid glandTrachea Trachea Caudal edge ofcricoid cartilage Two centimetersbelow the caudal edgeof the clavicularheadPost. edge of isthmus ofthyroid glandAnt. edge ofesophagusLateral thyroid gland One-twomillimetersexpanded from thelumen of tracheaSubman- dibular gland Submandibular a Inferior edge ofmedial pterygoid orthe level of C3Appearance of fatspace ofsubmandibulartriangleLat. surface ofmylohyoid m. orhyoglossus m.Parapharyngeal space,cervical vessels andpost. belly of digastricm.,sternocleidomastoidm.Ramus of themandible,subcutaneous fat orplatysmaCervical vessels,superior and middlepharyngealconstrictor m.,hyoid bone, post.belly of thedigastric m.,mylohyoid m. orhyoglossus m.Esophagus [22] Esophagus Caudal edge ofcricoid cartilage Two centimetersbelow the caudal edgeof the clavicular headTrachea Vertebral body orlongus colli m.Fat space or thyroidglandOptic nerve [23] OpticNerve a Below the superiorrectus Superior the inferiorrectusPosterior edge of thecenter of globeOptic canalTemporal lobe TemporalLobe a Cranial edge of the Base of middle cranial Temporal bone and Petrous part of Temporal bone Cavernous sinus,sylvian fissure fossa sylvian fissure,greaterwing of sphenoid temporal lobe,tentorium ofcerebellum, incisurapreoccipitalissphenoid sinus,sella turcica, andsylvian fissure(includingparahippocampalgyrus andhippocampusParotid gland [21] Parotid a External auditorycanal, mastoidprocessAppearance post. partsubmandibular spaceMasseter m. post.border mandibularbone, medial pterygoidm.Ant. bellysternocleidomastoidm., lat. side post. bellyof the digastric m.(posterior medial),mastoid processSubmandibular fat,platysmaPost. belly of thedigastric m., styloidprocess,parapharyngealspace,sternocleidomastoidSpinal cord SpinalCord Disappearance ofcerebellum Two centimetersbelow the inferioredge of the clavicularheadExclude the subarachnoid spaceBrachial plexus [24] BrachialPlexus a Caudal edge of C4 Caudal edge of T1 atneural foramina andone to two CT slicesbelow the clavicularhead as the posterioraspect of theneurovascularbundleAnterior scalene muscle Middle scalenemuscleFat space Spinal cordThyroid gland Thyroid Caudal edge ofpyriform sinus ormidpoint of thyroidcartilage Body of fifth toseventh cervicalvertebraSternohyoid orsternocleidomastoidCervical vessels orlongus colli m.Cervical vessels orsternocleidomastoidThyroid cartilage orcricoids cartilage oresophagus orpharyngealconstrictorMandible Mandible The mandible be contoured as whole organ but not be divided into the left and the right. Contouring of the mandible should include alveolar bone and exclude the teeth.Inner ear Ear_Inner a Cochlea and IAC should be individually delineated and named.Middle ear Ear_Middle a Tympanic cavity, bony part of ET should be individually delineated and named.Eyes Eyes a Ensure the retina to be contoured completely.Lens Lens a The boundary between the lens and the vitreum is obviousPituitary Pituitary The pituitary is located in the hypophysial fossa. Insure the organ be contoured completely but not beyond the surrounding bone. The pituitary is ovoid and can be visualized on 1-2 slices on CT scans of 3 mm thicknessAbbreviations: TMJ, temporomandibular joint; ET, Eustachian tube; IAC, internal auditory canal; m., muscle.a The organs should be divided into left and right, and the standard TPS name of laterality is indicated by appending an underscore character ( _ ), followed by L or R,respectively. For example, the left parotid is named Parotid_L; the right parotid is named Parotid_R.b include the base of the tongue, body of tongue and mouth floor.Supplementary table 4: Abbreviations mentioned in the manuscript. Abbreviations Full nameOAR organ at riskTMJ temporomandibular jointNPC nasopharyngeal carcinomaPC pharyngeal constrictorET Eustachian tubeROC receiver operating characteristicTLN temporal lobe necrosisIAC internal auditory canalRT radiotherapyGTV gross target volumeCTV clinical target volumePTV planning target volumePRV planning organ at risk volumeDmean mean doseDmax maximum doseS.E. standard errorSNHL sensorineural hearing lossOME otitis media with effusionIMRT intensity modulated radiotherapyVMAT volumetric modulated arc therapyAUC Area under the curveDx(xcc) minimum dose received by the ‘‘hottest’’ x% (or x ml) of the organ Vx volume percentage of the organ receiving ≥ X GySupplementary Figure 1. Receiver operating characteristic (ROC) curve analysis for the D1 of the PRV using two different temporal lobe contouring methods in 21 NPC patients with unilateral TLN.Supplementary Figure 2. Recommended atlas of the tympanic cavity, Eustachian tube (ET), cochlea, IAC, TMJ, temporal lobe, brainstem, parotid gland,spinal cord, optic nerve, chiasm, submandibular gland, pituitary, mandible, eyes, lens, brachial plexus, tongue(oral cavity), larynx, pharyngeal constrictors and trachea as OARs based on CT-MRI fusion in NPC patients.Supplementary References 1: The list of literatures relative to OARs contouring1.Baxi S, Park E, Chong V, Chung HT. Temporal changes in IMRT contouring of organs atrisk for nasopharyngeal carcinoma - the learning curve blues and a tool that could help.Technol Cancer Res Treat 2009; 8:131-140.2.Gondi V, Tome WA, Rowley HA, Mehta MP. Hippocampal Contouring: A ContouringAtlas for RTOG 0933. 2011.3.Penumetcha N, Kabadi S, Jedynak B, et al. Feasibility of geometric-intensity-basedsemi-automated delineation of the tentorium cerebelli from MRI scans. J Neuroimaging 2011; 21:e148-55.4.Chau RM, Leung SF, Kam MK, et al. A split-organ delineation approach for doseoptimisation for intensity-modulated radiotherapy for advanced T-stage nasopharyngeal carcinoma. Clin Oncol (R Coll Radiol) 2008; 20:134-41.5.Bonilha L, Kobayashi E, Cendes F, Li LM. The importance of accurate anatomicassessment for the volumetric analysis of the amygdala. Braz J Med Biol Res 2005;38:409-18.6.Wang SZ, Yan XJ, Guo M, et al. Clinical analysis of otitis media with effuse after 3Dplanning system based radiotherapy of nasopharyngeal carcinoma. China Oncol 2006;16:503–7.7.Walker GV, Ahmed S, Allen P, et al. Radiation-induced middle ear and mastoidopacification in skull base tumors treated with radiotherapy. Int J Radiat Oncol Biol Phys 2011; 81:e819-e823.8.Wang SZ, Wang WF, Guo M, et al. Analysis of anatomic factors controlling the morbidityof radiation-induced otitis media with effusion. Radiotherapy and Oncology 2007; 85: 463–468.9.Wang SZ, Li J, Miyamoto CT, et al. A study of middle ear function in the treatment ofnasopharyngeal carcinoma with IMRT technique. Radiotherapy and Oncology 2009;93:530-3.10.Hsin CH, Chen TH, Young YH, Liu WS. Comparison of otologic complications betweenintensity-modulated and two-dimensional radiotherapies in nasopharyngeal carcinoma patients. Otolaryngology-Head and Neck Surgery 2010; 143: 662-8.11.Bhandare N, Antonelli PJ, Morris CG, Malayapa RS, Mendenhall WM.Ototoxicity after radiotherapy for head and neck tumors. Int J Radiat Oncol Biol Phys 2007;67:469-79.12.Petsuksiri J, Sermsree A, Thephamongkhol K, et al. Sensorineural hearing loss afterconcurrent chemoradiotherapy in nasopharyngeal cancer patients. Radiat Oncol 2011; 6:19.13.Pacholke HD, Amdur RJ, Schmalfuss IM, Louis D, Mendenhall WM. Contouring themiddle and inner ear on radiotherapy planning scans. Am J Clin Oncol 2005; 28:143-147. 14.Pan CC, Eisbruch A, Lee JS, Snorrason RM, Ten Haken RK, Kileny PR. Prospective studyof inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 2005; 61:1393-1402.15.Low WK, Burgess R, Fong KW, Wang DY. Effect of radiotherapy on retro-cochlearauditory pathways. Laryngoscope 2005; 115:1823-1826.16.Chen WC, Jackson A, Budnick AS, et al. Sensorineural hearing loss in combined modalitytreatment of nasopharyngeal carcinoma. Cancer 2006; 106 (Suppl. 4):820-829.17.Bhandare N, Jackson A, Eisbruch A, Radiation therapy and hearing loss. Int J Radia OncolBiol Phy 2010; 76:S50-7.18.Zuur CL, Simis YJ, Lamers EA, et al. Risk factors for hearing loss in patients treated withintensity-modulated radiotherapy for head-and-neck tumors. Int J Radiat Oncol Biol Phys 2009; 74:490-6.19.Parashar B, Kuo C, Kutler D, et al. Importance of contouring the cervical spine levels ininitial intensity-modulated radiation therapy radiation for head and neck cancers: implications for re-irradiation. J Cancer Res Ther 2009; 5:36-40.20.Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk ofthoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys 2011; 81:1442-1457.21.Leung WM, Tsang NM, Chang FT, Lo CJ. Lhermitte's sign among nasopharyngeal cancerpatients after radiotherapy. Head Neck 2005; 27:187-194.22.Harari PM, Song S, Tome WA. Emphasizing Conformal Avoidance vs. Target Definitionfor IMRT Treatment Planning in Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2010; 77: 950–958.23.Ezhi M, Starkschall G, Mohan R, Cox J, Komski R. Validation of a model-basedsegmentation approach to propagating normal anatomic regions of interest through the 10 phases of respiration. Int J Radiat Oncol Biol Phys 2008; 71: 900-6.24.Weiss W, Wijesooriya K, Ramakrishnan V, Keall P. Comparison of intensity-modulatedradiotherapy planning based on manual and automatically generated contours using deformable image registration in four-dimensional computed tomography of lung cancerpatients. Int J Radiat Oncol Biol Phys 2008; 70: 572–581.25.Qatarneh SM, Noz ME, Hyodymaa S, Maguire GQ, Kramer EL, Crafoord J. Evaluation ofa segmentation procedure to delineate organs for use in construction of a radiation therapyplanning atlas. Int J Med Inform 2003; 69: 39-55.26.Pak D, Vineberg K, Feng F, Ten Haken RK, Eisbruch A. Lhermitte sign after chemo-IMRTof head-and-neck cancer: incidence, doses, and potential mechanisms. Int J Radiat Oncol Biol Phys 2012; 83(5):1528-33.27.Uhl M, Sterzing F, Habl G, et al. CT-myelography for high-dose irradiation of spinal cordand paraspinal tumors with helical tomotherapy: revival of an old tool. Strahlenther Onkol 2011; 187:416-20.28.Brouwer CL, Steenbakkers RJ, Van den Heuvel E, et al. 3D Variation in delineation ofhead and neck organs at risk. Radiat Oncol 2012; 7:32.29.Schreibmann E, Fox T. Towards automated planning for unsealed source therapy. J ApplClin Med Phys 2012; 13:3789.30.Urbano TG, Clark CH, Hansen VN, et al. Intensity Modulated Radiotherapy (IMRT) inlocally advanced thyroid cancer: Acute toxicity results of a phase I study. Radiother Oncol 2007; 85:58-63.31.Zwicker F, Roeder F, Hauswald H, et al. Reirradiation with intensity-modulatedradiotherapy in recurrent head and neck cancer.Head Neck 2011; 33:1695-702.32.Park SH, Park HC, Park SW, et al. Multi-institutional Comparison of Intensity ModulatedRadiation Therapy (IMRT) Planning Strategies and Planning Results for Nasopharyngeal Cancer. J Korean Med Sci 2009; 24:248-55.33.Eisbruch A, Marsh LH, Dawson LA, et al. Recurrences near base of skull after IMRT forhead-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys 2004; 59:28-42.34.Claus F, Duthoy W, Boterberg T, et al. Intensity modulated radiation therapy fororopharyngeal and oral cavity tumors: clinical use and experience. Oral Oncol 2002;38:597-604.35.Chen AM, Li BQ, Farwell DG, Marsano J, Vijayakumar S, Purdy JA. Improved dosimetricand clinical outcomes with intensity-modulated radiotherapy for head-and-neck cancer of unknown primary origin. Int J Radiat Oncol Biol Phys 2011; 79:756-62.36.Dirix P, Nuyts S. Evidence-based organ-sparing radiotherapy in head and neck cancer.Lancet Oncol 2010; 11:85-91.37.Strigari L, Benassi M, Arcangeli G, Bruzzaniti V, Giovinazzo G, Marucci L. A novel doseconstraint to reduce xerostomia in head-and-neck cancer patients treated with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2010; 77:269-76. 38.Zhang Y, Lin J, Zhou W, Tang J, Liao Y. Dosimetric verification and clinical efficacyof intensity modulated radiotherapy in nasopharyngeal carcinoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2009;34: 879-8539.van Rij CM, Oughlane-Heemsbergen WD, Ackerstaff AH, Lamers EA, Balm AJ, RaschCR. Parotid gland sparing IMRT for head and neck cancer improves xerostomia related quality of life. Radiat Oncol 2008; 3:41.40.Huang K, Xia P, Chuang C, Weinberg V, et al. Intensity-modulated chemoradiation fortreatment of stage III and IV oropharyngeal carcinoma: the University of California-SanFrancisco experience. Cancer 2008; 113:497-507.41.Seung S, Bae J, Solhjem M, et al. Intensity-modulated radiotherapy for head-and-neckcancer in the community setting. Int J Radiat Oncol Biol Phys 2008; 72:1075-81.42.Bhide S, Clark C, Harrington K, Nutting CM. Intensity Modulated Radiotherapy ImprovesTarget Coverage and Parotid Gland Sparing When Delivering Total Mucosal Irradiation in Patients With Squamous Cell Carcinoma of Head and Neck of Unknown Primary Site Med Dosim 2007; 32:188-95.43.Guerrero Urbano MT, Clark CH, et al. Target volume definition for head and neck intensitymodulated radiotherapy: pre-clinical evaluation of PARSPORT trial guidelines. Clin Oncol (R Coll Radiol) 2007; 19:604-13.44.Lee NY, de Arruda FF, Puri DR, et al. A comparison of intensity-modulated radiationtherapy and concomitant boost radiotherapy in the setting of concurrent chemotherapy for locally advanced oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006; 66:966-74.45.Braam PM, Terhaard CH, Roesink JM, Raaijmakers CP. Intensity-modulatedradiotherapy significantly reduces xerostomia compared with conventional radiotherapy.Int J Radiat Oncol Biol Phys 2006; 66:975-80.46.de Arruda FF, Puri DR, Zhung J, et al. Intensity-modulated radiation therapy for thetreatment of oropharyngeal carcinoma: the Memorial Sloan-Kettering Cancer Center experience. Int J Radiat Oncol Biol Phys 2006; 64:363-73.47.Kwong DL, Pow EH, Sham JS, et al. Intensity-modulated radiotherapy for early-stagenasopharyngeal carcinoma: a prospective study on disease control and preservation of salivary function. Cancer 2004; 101:1584-93.48.Chao KS, Ozyigit G, Blanco AI, et al. Intensity-modulated radiation therapy fororopharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys 2004;59:43-50.49.Parliament MB, Scrimger RA, Anderson SG, et al. Preservation of oral health-relatedquality of life and salivary flow rates after inverse-planned intensity- modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004;58:663-73.50.van Asselen B, Dehnad H, Raaijmakers CP, Roesink JM, Lagendijk JJ, Terhaard CH. Thedose to the parotid glands with IMRT for oropharyngeal tumors: the effect of reduction of positioning margins. Radiother Oncol 2002; 64:197-204.51.Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment ofnasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 2002; 53:12-22.52.Sultanem K, Shu HK, Xia P, et al. Three-dimensional intensity-modulated radiotherapy inthe treatment of nasopharyngeal carcinoma: the University of California-San Francisco experience. Int J Radiat Oncol Biol Phys 2000; 48:711-22.53.Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids andescalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 2000;46:195-205.54.Butler EB, Teh BS, Grant WH 3rd, et al. Smart (simultaneous modulated acceleratedradiation therapy) boost: a new accelerated fractionation schedule for the treatment of headand neck cancer with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 1999;45:21-32.55.Grégoire V, Jeraj R, Lee JA, O'Sullivan B. Radiotherapy for head and neck tumours in2012 and beyond: conformal, tailored, and adaptive? Lancet Oncol 2012; 13:e292-300. 56.Scrimger R. Salivary gland sparing in the treatment of head and neck cancer. Expert RevAnticancer Ther 2011; 11:1437-48.57.Anand AK, Jain J, Negi PS, et al. Can dose reduction to one parotid gland preventxerostomia?--A feasibility study for locally advanced head and neck cancer patients treated with intensity-modulated radiotherapy. Clin Oncol (R Coll Radiol) 2006; 18:497-504. 58.Faggiano E, Fiorino C, Scalco E, et al. An automatic contour propagation method to followparotid gland deformation during head-and-neck cancer tomotherapy. Phys Med Biol 2011;56:775-91.59.Feng M, Demiroz C, Karen A, et al. Normal Tissue Anatomy for Oropharyngeal Cancer:Contouring Variability and Its Impact on Optimization. Int J Radiat Oncol Biol Phys, 2012;84:e245-9.60.Mukesh M, Benson R, Jena R, et al. Interobserver variation in clinical target volume andorgans at risk segmentation in post-parotidectomy radiotherapy: can segmentation protocols help? The British Journal of Radiology 2012; 85: e530–e536.61.Loo SW, Martin WM, Smith P, Cherian S, Roques TW. Interobserver variation in parotidgland delineation: a study of its impact on intensity-modulated radiotherapy solutions witha systematic review of the literature. Br J Radiol 2012; 85:1070-7.。

常见肿瘤放疗靶区勾画(2)——鼻咽癌(1)

常见肿瘤放疗靶区勾画(2)——鼻咽癌(1)

常见肿瘤放疗靶区勾画(2)——⿐咽癌(1)导读进⼊21世纪以来,调强放射治疗(intensity modulated radiation therapy, IMRT)成为治疗⿐咽癌的主流放疗技术。

IMRT成功治疗⿐咽癌的三个主要环节是:靶区的准确勾画,精确的计划设计,精确照射。

其中靶区的准确勾画是前提条件,⼀旦靶区勾画出了问题,后⾯的两个环节都会相应出问题,⿐咽癌的局部控制率就会随之下降。

局部失败后导致继发的远处转移率增加,总⽣存率下降;局部失败后的挽救治疗效果差,后遗症发⽣率⾼,严重影响患者的⽣活质量。

因此,有必要系统掌握靶区勾画的相关知识。

1⿐咽癌靶区勾画的影像学要求1强调治疗前要有完整的影像学检查资料,MRI是⿐咽癌靶区勾画⾸选的影像学⼯具,多序列、多相位扫描,平扫+增强都要做。

靶区勾画者要有扎实的影像解剖知识和读⽚技能。

2⿐咽原发肿瘤GTV勾画细节2建议采⽤CT/MRI融合技术勾画GTV,强调不能⽚⾯依赖MRI,要衡量融合误差,综合CT和MRI的所有信息,对于显⽰肿瘤侵犯引起的成⾻性改变,CT优于MRI。

3⿐咽原发肿瘤CTV勾画原则与细节3强调建⽴统⼀的CTV勾画指南的必要性,介绍CTV勾画指南的数据来源,以实际的T2 和T4期⿐咽癌病例显⽰CTV的勾画范围。

2颈部淋巴结CTV勾画原则与细节4列举了⼏个代表性的淋巴结影像学分区和复旦⼤学附属肿瘤医院⼀系列针对⿐咽癌淋巴结转移分布规律的研究,总结了淋巴结分布规律,规定了根据淋巴结分期⽽个体化设定CTV的总体原则,特别指出了II区淋巴结上界、茎突后间隙(VIIb)、咽后淋巴结、IIa淋巴结外侧界、V区淋巴结后界、腮腺淋巴结(VIII区)、IVb区淋巴结的勾画细节以及勾画依据。

(王孝深欧丹)动动⼿指,关注放疗青咖汇(责任编辑:包永兴)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了减少正常组织的放射损伤,正常组织 的勾画与剂量限制至关重要!
CRTOG
复旦大学附属肿瘤医院 放疗中心6
鼻咽ห้องสมุดไป่ตู้IMRT需要考虑的正常结构
• 脊髓、脑干、视交叉、视神经、颞叶 • 垂体、内耳、肺尖、颞颌关节、下颌骨、眼球、晶体、
气管、食管、甲状腺、皮肤、口唇
• 唾液腺(腮腺、颌下腺、舌下腺、口腔小唾液腺) • 吞咽相关器官(咽上/中/下缩肌、舌根、喉与声门上喉、
左腮腺
CRTOG
咽缩肌
复旦大学附属肿瘤医院 放疗中心16
口腔
下颌骨
右颌下腺
喉 左颌下腺
脊髓
脊髓
咽缩肌
备注:会厌、劈裂、假声带、声带统一命名为喉,作为一个结构勾画
CRTOG
复旦大学附属肿瘤医院 放疗中心17
脊髓
喉 左腮腺
咽缩肌
皮肤
脊髓
左腮腺
脊髓
皮肤
咽缩肌
备注:体表外轮廓自动生成后均匀内收2-3mm,作为皮肤
指导审核专家
• 胡超苏,复旦大学附属肿瘤医院放疗中心 • Avraham Eisbruch,美国Michigan大学肿瘤中心
CRTOG
复旦大学附属肿瘤医院 放疗中心3
鼻咽癌CT定位扫描时的体位
患者仰卧位,选择合适曲度的头枕,人体放松 双侧上肢自然垂放在身体两侧 头部处于中立位,头颈肩面罩固定
CRTOG
左侧内耳
左右颞颌关节
CT 默认 bone窗
脑干 左右颞颌关节
右侧内耳
左侧内耳 右侧内耳 左侧内耳
备注:有条件的单位可以把耳蜗、前庭、内听道独立命名,分别勾画
CRTOG
复旦大学附属肿瘤医院 放疗中心12
下颌骨
右腮腺
脑干
右腮腺 左腮腺
口腔 左腮腺
脑干
CRTOG
复旦大学附属肿瘤医院 放疗中心13
口腔
下颌骨
复旦大学附属肿瘤医院 放疗中心4
图像扫描要求
扫描层厚:颅底和鼻咽层厚3mm,其余部位5mm 扫描范围:颅顶——锁骨头下2CM 推荐CT和MRI扫描采用相同的体位 推荐CT/MRI融合勾画靶区
CRTOG
复旦大学附属肿瘤医院 放疗中心5
鼻咽癌精准放疗的目标
• 提高肿瘤的局部区域控制率 • 减少正常组织的放射损伤
左侧内耳 右侧内耳
左侧内耳
CT 默认 bone窗
右侧内耳
左侧内耳 右侧内耳
左侧内耳 右侧内耳
左侧内耳
备注:有条件的单位可以把耳蜗、前庭、内听道独立命名,分别勾画
CRTOG
复旦大学附属肿瘤医院 放疗中心11
左右颞颌关节
左右颞颌关节
左右颞颌关节
CT 默认 head窗
右侧内耳
左侧内耳
左右颞颌关节
右侧内耳
备注:实际勾画时,CT图像上无法详细分辨出外侧束、 内侧束和后束,只能勾画出上干、中干和下干。
CRTOG
复旦大学附属肿瘤医院 放疗中心25
备注:本PPT里面的臂丛神经勾画方法和图片来自该文章。 有兴趣的医生可以下载该全文认真查阅。
CRTOG
复旦大学附属肿瘤医院 放疗中心26
臂丛勾画方法介绍
• CT上辨认并勾画出 C5, T1, T2椎体。 • 辨认并勾画锁骨下和腋下的神经血管束。 • 丛C5开始辨认并勾画出钱、中斜角肌,一直到斜角肌止点第一肋骨。 • 用5mm直径的画笔勾画臂丛。 • 丛C5到T1椎体的神经孔开始勾画臂丛(丛椎管外侧缘到前、中斜角肌之间的
脊髓
咽缩肌
左腮腺
备注1:小唾液腺弥散分布在硬腭、颊粘膜、舌、上下牙龈上,所以把上 述结构勾画在一起,命名为口腔。
备注2:尽管咽缩肌分为咽上缩肌、咽中缩肌、咽下缩肌,但CT上无法辨
认具体分界,所以统一命名为咽缩肌。
CRTOG
复旦大学附属肿瘤医院 放疗中心15
下颌骨
口腔
舌下腺
右颌下腺
咽缩肌
左颌下腺
右腮腺 脊髓
鼻咽癌精准放疗正常组织的勾画图谱
王孝深
复旦大学附属肿瘤医院放疗中心
2016-7-22
CRTOG
1
靶区勾画专家组成员
• 王孝深,复旦大学附属肿瘤医院放疗中心 • 胡超苏,复旦大学附属肿瘤医院放疗中心 • Avraham Eisbruch,美国Michigan大学肿瘤中心
CRTOG
复旦大学附属肿瘤医院 放疗中心2
右侧晶体 右侧眼球 右侧视神经
右侧颞叶
视交叉
左侧晶体
左侧眼球 左侧视神经 左侧颞叶
CRTOG
脑干
复旦大学附属肿瘤医院 放疗中心9
右侧晶体
右侧眼球 右侧视神经
右侧颞叶
垂体
左侧眼球 左侧视神经 左侧颞叶
CRTOG
脑干
复旦大学附属肿瘤医院 放疗中心10
CT 默认 head窗
右侧内耳
左侧内耳 右侧内耳
CRTOG
复旦大学附属肿瘤医院 放疗中心18
皮肤 喉
左腮腺
脊髓
咽缩肌
甲状腺 气管 脊髓
脊髓
咽缩肌
备注:体表外轮廓自动生成后均匀内收2-3mm,作为皮肤
CRTOG
复旦大学附属肿瘤医院 放疗中心19
甲状腺
气管
脊髓
皮肤
脊髓
食管
备注:体表外轮廓自动生成后均匀内收2-3mm,作为皮肤
CRTOG
复旦大学附属肿瘤医院 放疗中心20
间隙)。 • 在看不到神经孔的CT层面上,只勾画前、中斜角肌之间的间隙。 • 持续勾画前、中斜角肌之间的间隙,直到中斜角肌止于锁骨下神经血管束区
C5~6组成上干,C7为中干,C8~T1组成下干。 • 在相当于锁骨中段水平处,每一干又分成前、后两股。上干
与中干的前股组成外侧束,下干的前股组成内侧束,三干的 后股组成后束。(神经束) • 各束在喙突平面分出神经支,外侧束分出肌皮神经和正中神 经外侧头,后束分为腋神经和桡神经,内侧束分出尺神经和 正中神经内侧头。

右腮腺
右腮腺 左腮腺
左腮腺
脊髓
咽缩肌
脊髓
备注1:小唾液腺弥散分布在硬腭、颊粘膜、舌、上下牙龈上,所以把上 述结构勾画在一起,命名为口腔。
备注2:尽管咽缩肌分为咽上缩肌、咽中缩肌、咽下缩肌,但CT上无法辨 认具体分界,所以统一命名为咽缩肌。
CRTOG
复旦大学附属肿瘤医院 放疗中心14

口腔
下颌骨
右腮腺
食管入口)
• 臂丛神经
CRTOG
复旦大学附属肿瘤医院 放疗中心7
实际病例正常组织轮廓演示
备注:
• 采用造影剂增强CT扫描 • 颅内结构的勾画采用了CT/MRI融合技术 • 但考虑到很多单位没有CT/MRI融合技术,也为了PPT
页面的简洁,所以只显示CT图像
CRTOG
复旦大学附属肿瘤医院 放疗中心8
CRTOG
复旦大学附属肿瘤医院 放疗中心21
CRTOG
复旦大学附属肿瘤医院 放疗中心22
气管
食管
皮肤
脊髓
CRTOG
肺尖
复旦大学附属肿瘤医院 放疗中心23
臂丛神经的勾画
CRTOG
复旦大学附属肿瘤医院 放疗中心24
臂丛神经
• 臂丛神经是由C5~8和T1前支组成。 • 神经根从椎间孔发出后,在前斜角肌外侧缘组成神经干,
相关文档
最新文档