分式定义及意义(优.选)
分式概念及意义知识讲解

分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
分式的定义

分式的定义分式是由两个整式构成的比值,它通常写成$\frac{A(x)}{B(x)}$的形式,其中$A(x)$和$B(x)$是两个整式,$B(x)$不等于0。
分子$A(x)$是分式的分子,分母$B(x)$是分式的分母。
分数可以表示为带分数或小数,但分式只能表示为分式形式。
分子和分母都是整式的分式称为代数分式,而分子或分母中含有实数或变量的分式称为含有实数或变量的分式。
分数是初中数学中最简单和最重要的概念之一。
分式的含义是把一个整体分成若干份,并取其中的一份或几份,或者将分子分数与分母分数的比较简单的方法。
分式的定义把两个多项式的表达式用除法来表示,分母是被除数的表达式,分子是除数的表达式。
分式中的分式在代数上的意义是相同的。
例如,$\frac{2}{3}$和$\frac{4}{6}$表示相同的数值,它们都代表同一个比值。
分式中不能出现分母为0的情况,因为任何数除以0都无法得到一个有意义的结果。
如果分母为0,那么分式就没有定义。
一个分式是简单分式,当分母和分子都为一次多项式时。
一个分式是复杂分式,当分子或分母中至少有一个高于一次的多项式时。
如果一个分子中的每一个项都是分母的因数,则该分式被称为真分式。
如果一个分式的分子是一个多项式,这个多项式可以被分解成独立的因子,每个因子都不是分母的因子,那么这个分式被称为带余式。
分式的基本运算要比整式复杂得多,因为要注意分母不能为零。
对于分式的四则运算来说,最重要的原则是分母化通,即把每个分式的分母化为相同的多项式,这样就能进行加减乘除了。
例如,如果要计算$\frac{a}{b}+\frac{c}{d}$,那么需要把分母化为相同的多项式,最终结果才能以分式的形式表示。
因此,可以将分母通分为$bd$,然后得到等效的分式$\frac{ad+bc}{bd}$。
总之,分式是代数学中一个非常重要的概念,它被广泛应用于各种数学方面,包括高等数学,物理和工程学。
了解分式的基本概念和运算方法是理解更高级数学理论的关键。
分式和分式方程的概念和意义

分式和分式方程的概念和意义如何理解分式和分式方程?1. 什么是分式?分式是数学中的一个重要概念,它表示为a/b的形式,其中a和b都是整数且b不等于0。
分式也可以表示为小数形式,比如2/3可以表示为0.6667。
2. 分式的意义是什么?分式可以表示部分的概念,比如一块蛋糕被分成4份,每份就可以用1/4来表示。
分式的意义在于它可以准确地表示一个整体被分成若干份时每一份所占的比例。
3. 分式方程又是什么?分式方程就是含有未知数的分式表达式,并且这个未知数不是分式中的参数。
比如(x+1)/3 = 2,这个方程中的未知数是x,方程中含有分式。
4. 分式和分式方程的解的意义?解分式方程可以得到未知数的值,可以帮助我们解决实际生活中的问题,比如工程施工中需要确定某种材料的用量,涉及到分式方程的计算。
5. 个人观点和理解对于分式和分式方程的概念,我认为它们是数学中非常重要且实用的概念。
在现实生活中,我们经常会遇到一些比例和分配的问题,比如商业中的利润分成,生活中食物的配比等等,这些都可以用分式和分式方程来表示和求解。
学好分式和分式方程对于提高解决实际问题的能力是非常有帮助的。
回顾总结通过本次写作,我对分式和分式方程的概念有了更加深入和全面的理解。
我会在以后的学习和工作中更加灵活地运用这些概念,提高数学解决实际问题的能力。
本文总结了分式和分式方程的概念和意义,并对其进行了全面深入的讨论。
希望本文能帮助您更好地理解和应用分式和分式方程。
续写:6. 分式方程的应用分式方程在实际生活中有很多应用。
比如在商业中,我们经常需要解决利润分成的问题,这就可以通过分式方程来表示和求解。
另外,在化学实验中,需要按照一定的比例混合不同的溶液,这也可以用分式方程来描述。
在工程施工中,需要确定材料的用量,也可以通过分式方程来进行计算。
学好分式方程可以帮助我们更好地解决实际生活和工作中的问题。
7. 分式方程的解法解分式方程的方法主要有通分法、分离变量法等。
分式知识点总结

分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
〔分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.〕〔分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
〕4.分式的根本性质:分式的分子与分母同乘〔或除以〕一个不等于0的整式,分式的值不变。
用式子表示为〔〕,其中A、B、C是整式注意:〔1〕“C是一个不等于0的整式〞是分式根本性质的一个制约条件;〔2〕应用分式的根本性质时,要深刻理解“同〞的含义,防止犯只乘分子〔或分母〕的错误;〔3〕假设分式的分子或分母是多项式,运用分式的根本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;〔4〕分式的根本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:和分数类似,利用分式的根本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:〔1〕“各分母所有因式的最高次幂〞是指凡出现的字母〔或含字母的式子〕为底数的幂选取指数最大的;〔2〕如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;〔3〕如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的根本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式的意义和性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------分式的意义和性质分式的意义和性质一、分式的概念 1、用 A、 B 表示两个整式, AB 可以表示成的形式,其中 A 叫做分式的分子, B 叫做分式的分母,如果除式 B 中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子 A 可取任意数值,但分母 B 不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3、(1)分式:,当 B=0 时,分式无意义。
(2)分式:,当 B0 时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为 1。
(5)分式:1 / 10,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
二、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M 为不等于零的整式) 3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
三、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
苏科版初中八年级数学下册期末分式有意义及值为0的条件知识点含答案

苏科版初中八年级数学下册期末分式有意义及值为0的条件知识点含答案1、分式的定义一般地,如果,表示两个整式,并且中含有字母,那么代数式叫做分式,其中是分式的分子,是分式的分母.对于任意一个分式,分母都不能为零.2、分式有意义、无意义的条件(1)当分母时,分式无意义; (2)当分母时,分式有意义. 注意:①分母不为0,并不是说分母中的字母不能为0,而是表示分母的整式的值不能为0; ②分式是否有意义,只与分式的分母是否为0有关,而与分式的分子的值是否为0无关.3、分式的值(1)分式值为:分子为且分母不为,即; (2)分式值为正:分子分母同号,即或; (3)分式值为负:分子分母异号,即或. 注意:①分式的值为0必须同时满足两个条件:分子的值为0;分母的值不为0.具体运用时,常常忽视分母不为0这一隐含条件而导致出错;②必须在分式有意义的前提下,才能谈分式的值时多少,也就是说,必须在分式有意义的前提下,才能讨论分式的值是否等于0.典例1(2019春•江阴市期末)若分式有意义,则应满足的条件是 A .B .C .D .【解答】解:若分式有意义, 则,A B B A B A B 0B =A B0B ≠A B 00000A B =⎧⎨≠⎩00A B >⎧⎨>⎩00A B <⎧⎨<⎩00A B >⎧⎨<⎩00A B <⎧⎨>⎩2x x -x ()2x ≠2x =2x >0x ≠2x x -20x -≠解得:,故选:.典例2(2019春•玄武区期末)若分式的值为零,则 . 【解答】解:分式的值为零, 且,解得:.故答案为:1.典例3(2019春•鼓楼区期末)若分式的值为0,则的值为 . 【解答】解:若分式的值为0,则且. 开方得,.当时,分母为0,不合题意,舍去.故的值为.故答案为.2x ≠A 2x x x-x =2x x x-20x x ∴-=0x ≠1x =242x x --x 242x x --240x -=20x -≠12x =22x =-2x =x 2-2-。
分式的概念与运算知识点总结

分式的概念与运算知识点总结分式是数学中常见的一种表示方法,用于表示两个数之间的比例关系或部分关系。
本文将对分式的概念和运算相关的知识点进行总结,以帮助读者更好地理解和运用分式。
一、分式的基本概念1. 分式的定义:分式是由分子和分母组成的表达式,其中分母不能为零。
2. 分式的读法:分子通常读作“分子”,分母读作“分母”。
例如,"3/4 "读作“三分之四”。
3. 分式的意义:分式表示部分与整体的比例关系,可用于表示分数、比率、百分比等概念。
二、分式的基本形式1. 真分式:分子小于分母的分式,如:3/4。
2. 假分式:分子大于等于分母的分式,如:5/4。
3. 整式:分子恒为零的分式,如:0/6。
4. 真分数:分子绝对值小于分母的分式,如:|-2/5|。
5. 假分数:分子绝对值大于等于分母的分式,如:|7/2|。
三、分式的基本运算1. 分式的相等:若两个分式的分子、分母完全相同,则它们相等。
例如,1/2 = 2/4。
2. 分式的加减运算:将两个分式的分母取相同的公倍数,然后将分子相加或相减。
例如,1/3 + 1/4 = 7/12。
3. 分式的乘除运算:将两个分式的分子相乘,分母相除。
例如,2/3 × 4/5 = 8/15。
4. 分式的倒数:将分式的分子与分母互换位置得到的新分式称为原分式的倒数。
例如,倒数为3/4的分式为4/3。
5. 分式的化简:将分式的分子和分母约分,使它们没有公因数。
例如,8/12可以化简为2/3。
四、分式的应用1. 分式在比例问题中的应用:通过设置分式的比例关系来求解问题。
例如,已知一辆车以每小时60公里的速度行驶,求2小时行驶的距离。
2. 分式在百分数问题中的应用:将百分数转化为分式,进行运算。
例如,计算75%的数值为多少。
3. 分式在平均数问题中的应用:通过设置分式的平均数关系来求解问题。
例如,已知某次数学考试的平均分为80分,其中A同学的得分为90分,求B同学的得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1 分式定义及意义
一、复习引入:
1、什么是单项式?多项式?举例说明。
2、根据条件列出代数式
①半径为r 的圆的面积 。
②长方形的宽为am ,长比宽多5m ,求该长方形的面积; 。
③面积为102cm 的长方形花坛,如果原计划长为b cm ,后决定延长3cm ,那么它的宽用代数式表示为 。
④底为(a-2)cm ,面积为s 2cm 的三角形的高为 。
思考:观察所列代数式①②与③④有何区别? 。
二、引导思维、自学感知
1、观察③④,试总结分式定义:一般地,用A 、B 表示 ,A ÷B (B ≠0)可以表示为 的形式。
如果B 中含有 ,那么我们把式子 ( )叫分式。
(另一种定义:分母中含有 的代数式叫分式)
例1 下列各式是分式吗?如果不是,请说明理由。
⑴23+x x (x ≠ -2) ⑵3
2+x
例2 当x 取什么值时,下列各式有意义?
⑴
13-x x ⑵3
21+-x x ⑶)1)(2(3+-+x x x
小结:分式有意义的条件:
2、巩固练习(一):
1、下列各式哪些是分式?哪些是整式? ⑴b 1 ⑵325+-a a ⑶y x y x --22 ⑷πx ⑸2
n m + ⑹1312-b 2、x 取什么值时,下列分式有意义?
⑴123++x x ⑵5332+-x x ⑶2
132x x -- ⑷65922+--x x x
2、例题分析
例1、当x 是什么数时,分式2
312+-x x 的值等于零? 例2、若分式11+-x x 的值为零,求x 的值。
例3、当x 取什么值时,分式3
92--x x 值为零?
小结:分式的值为零的条件: 。
巩固练习:(二)
1、当x 取什么值时,下列分式值为零? ⑴x
352- ⑵392--x x ⑶2652-+-x x x ⑷622-+-x x x
三、拓展提高:
1、若分式
x 352-值小于零,求x 的取什么值范围。
2、若132+-x x >0成立,求x 的取值范围。
3、当x 为何值时分式2
)1(1-+x x 的值为正数? 4、当a 为何值时,2)1(4+a 的值为1?
四、课堂小结:
通过本节课你有什么收获?
五、课堂检测
1、下列各式44b -,57+a ,14+a ,b a +2,6
-πx 是分式的有( ) A 、1个 B 、2个 C 、3个 D 、4个
2、填空:(1)当x 时,分式124+-x x 值为零 (2)当x 时,分式1
324+-x x 有意义 (3)当x 时,分式14+x 无意义 (4)当x 时,代数式 1
225-+x x 是分式 3、 当x 取什么值时,下列分式值为零? ⑴x x 5213+- ⑵7
32-+x x ⑶112+-x x
※4、若分式
x 15253-的值为负数,求x 的取什么值范围。
※5、当x =3时,1
3-+x k x 的值为零,求k 的值。
六、作业:P5 练习1、2、3。