正多边形与圆、弧长面积的计算
圆的弧长及面积计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。
今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。
正多边形与圆及弧长与扇形面积的计算【知识点清单】中考数学一轮复习精讲+热考题型(全国通用)

B A O 专题27 正多边形与圆及弧长与扇形面积计算【知识要点】正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形。
正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
正多边形的半径:正多边形外接圆的半径叫做正多边形的半径。
正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
【解题思路】1.正边形半径、边心距和12边长构成直角三角形。
2.已知其中两个值,第三个值可以借助勾股定理求解。
正多边形的对称性:1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
2)一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形.对称中心就是这个正多边的中心。
【小结】正n 变形的内角为(n−2)×180°n ,外角为3600n ,中心角为3600n 内角和为( n-2 )×180°。
【扩展】正多边形常见边心距与边长的比值第一种 正三角形 在⊙O 中△ABC 是正三角形,在Rt △BOD 中,OD:BD:OB=1: √3 : 2 (图一) 变式 正三角形内切圆与外切圆半径比为1:2 (图二)第二种 正方形 在⊙O 中四边形是正方形,在Rt △OAE 中,OE:AE:OE=1:1: √2 (图三) 变式 正方形内切圆与外切圆半径比为1: √2 (图四)第三种 正六变形 在⊙O 中六边形是正六边形,在Rt △OAB ,AB:OB:OA=1: √3 : 2 (图五)图一 图二 图三 图四 图五 设的半径为R ,圆心角所对弧长为l ,弧长公式:l=nπR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:圆锥的侧面积公式:122S l r rlππ==(其中l是圆锥的母线长,r是圆锥的底面半径)母线的概念:连接圆锥顶点和底面圆周任意一点的线段。
圆与正多边形、弧长扇形的面积

得到正五边形ABCDE.
∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
A
∴ AB=BC=CD=DE=EA,
∴B⌒CE=C⌒DA=3A⌒B
∴ ∠A=∠B.
B
E
·O
同理∠B=∠C=∠D=∠E.
C
D
又∵五边形ABCDE的顶点都在⊙O上,
∴ 五边形ABCDE是⊙O的内接正五边形, ⊙O是五边形 ABCDE的外接圆.
A
D
D' A'
C'
B
C
4.(2018·河南)如图,在△ABC中, ∠ACB=90°,AC=BC=2,将△ABC绕AC 的中点D逆时针旋转90°得到△A′B′C′,其 中点B的运动路径为,则图中阴影部分的面 积为____________.
B′
C′
C
D
A
A′
B
5.如图,将半径为2,圆心角为120°的 扇形OAB绕点A逆时针旋转60°,点O, B的对应点分别为O′,B′,连接BB′,则 图中阴影部分的面积是( )
圆心角为1°的扇形所对的面积是多少?
在半径为R 的圆中,n°的圆心角所对的扇
形面积计算公式为
S = S n nR2
扇形 S扇形360 360圆
=
n 360
πR2
扇形的面积与扇形所在的圆的半径和弧所对
的圆心角的度数有关系.
n
n
n
L弧 360 C圆 360 d 180 R
S扇形
C
A
D
B
O
割补法:由弧出发找扇形
2.(2015·河南)如图,在扇形AOB中, ∠AOB=90°,点C为OA的中点,CE⊥OA交于 点E,以点O为圆心,OC的长为半径作弧交OB
正多边形和圆、弧长和扇形面积分析

正多边形和圆、弧长和扇形面积一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正多边形.● 通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长180n R l π=和扇形面积2360n R S π=扇的计算公式,并应用这些公式解决问题.● 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题. 重点难点:● 重点:正多边形半径和边长、边心距、中心角之间的关系;n °的圆心角所对的弧长180n R l π=,扇形面积2360n R S π=扇及它们的应用;圆锥侧面积和全面积的计算公式. ● 难点:正多边形半径和边长、边心距、中心角之间的关系;弧长和扇形面积公式的应用;由圆的周长和面积迁移到弧长和扇形面积公式的过程;圆锥侧面积和全面积的计算公式. 学习策略:● 要结合图形真正理解掌握相关概念,注意多观察实物模型、多动手.二、学习与应用(一)多边形的内角和公式为 ,多边形的外角和为 .(二)正n 边形有 个内角,每一个内角都 ,每一个内角的度数为 . (三)正n 边形有 个外角,每一个外角都 ,每一个外角度数为 . (四)正n 边形有 条对角线.(五)圆的半径为r ,则其周长为 ,面积为 .知识点一:正多边形的概念各边 ,各角也 的多边形是正多边形. “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对知识要点——预习和课堂学习知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?判断一个多边形是否是正多边形,必须满足两个条件:(1)各边;(2)各角;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形).知识点二:正多边形的重要元素(一)正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.(二)正多边形的有关概念(1)一个正多边形的圆的圆心叫做这个正多边形的中心.(2)正多边形圆的半径叫做正多边形的半径.(3)正多边形每一边所对的角叫做正多边形的中心角.(4)正多边形的到正多边形的一边的叫做正多边形的边心距.(三)正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是 .知识点三:正多边形的性质(一)正多边形都只有个外接圆,圆有个内接正多边形.(二)正n边形的半径和边心距把正n边形分成个全等的直角三角形.(三)正多边形都是图形,对称轴的条数与它的数相同,每条对称轴都通过正n 边形的;当边数是偶数时,它也是对称图形,它的就是对称中心.知识点四:正多边形的画法(一)用量角器等分圆由于在同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可以等分圆.(二)用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.知识点五:弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即12R Rππ⨯=;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:、度数、弧所在圆的,知道其中的两个量就可以求出第三个量.知识点六:扇形面积公式(一)扇形定义:由组成圆心角的两条和圆心角所对的所围成的图形叫做扇形.(二)扇形面积公式:半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即221360360RRππ⨯=;(2)在扇形面积公式中,涉及三个量:扇形、扇形、扇形的,知道其中的两个量就可以求出第三个量.(3)扇形面积公式12S lR=扇形,可根据题目条件灵活选择使用,它与三角形面积公式12S ah=有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:21136021802n R n RS R lRππ==⨯⨯=扇形.知识点七:圆锥的侧面积和全面积连接圆锥和底面圆上任意一点的叫做圆锥的母线.圆锥的母线长为l,底面半径为r,侧面展开图中的扇形面积圆心角为n°,则圆锥的侧面积,全面积 .要点诠释:扇形的半径就是圆锥的,扇形的弧长就是圆锥底面圆的 .因此,要求圆锥的侧面积就是求展开图形面积,全面积是由和组成的.类型一:正多边形的概念例1.(1)(2011江苏南通)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)(2)经典例题-自主学习(2)(2)如图,在正方形ABCD中,对角线AC、BD交于O点,若分别以A、B、C、D为圆心,以OA长为半径作弧,分别与各边交于E、F、G、H、K、L、M、N点.求证:八边形EFGHKLMN是正八边形.例2.已知:如图,△ABC是⊙O的内接等腰三角形,顶角∠A=36°,弦BD、CE分别平分∠ABC、∠ACB.求证:五边形AEBCD是正五边形类型二:正多边形的有关计算例3.(1)(2011广东中山)正八边形的每个内角为()A.120° B.135° C.140° D.144°(2)已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.举一反三:【变式1】已知,如图,正八边形ABCDEFGH内接于半径为R的⊙O,求这个八边形的面积.探究思考:这个八边形的边长a=?提示:如图所示,当OA=R时,AK OK==a====类型三:考查弧长和扇形的计算例4.(1)(2011广东广州)如图4,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π图 4(2)制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB的长(结果精确到0.1mm)例5.如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(结果精确到0.1)和扇形AOB的面积(结果精确到0.1).举一反三:【变式1】如图,AB为O的直径,CD AB⊥于点E,交O于点D,OF AC⊥于点F.(1)请写出三条与BC有关的正确结论;(2)当30D∠=,1BC=时,求圆中阴影部分的面积.类型四:圆锥面积的计算例6.(1)(2011山东泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π(2)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)举一反三:【变式1】如图,圆锥形的烟囱帽的底面直径是cm80,母线长cm50.计算这个烟囱帽侧面展开图的面积及圆心角.BA【变式2】如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.三、总结与测评要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.(一)首先要结合图形真正理解掌握正多边形及其相关的一些概念;(二)在进行正多边形的有关计算时,要利用由正多边形的半径、边心距及弦的一半组成的直角三角形结合勾股定理进行计算;(三)注意掌握用尺规等分圆的方法画一些特殊的正多边形;(四)注意弧长公式中,n 表示1°的圆心角的倍数,n 和180都不带单位,若圆心角的单位不统一,应先统一单位,化为度;(五)扇形面积公式lR S 21扇与三角形面积公式类似.把弧长看作底,R 看做高就比较容易记忆了;(六)对组合图形面积的计算问题,应认真全面观察和分析图形,避免拿起题目就盲目乱做.经典例题透析总结规律和方法——强化所学 认真回顾总结本部分内容的规律和方法,熟练掌握技能技巧.1.(1)(2011江苏南通)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)______________(2)______________不同点:(1)______________(2)______________答案:相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).(2)如图,在正方形ABCD中,对角线AC、BD交于O点,若分别以A、B、C、D为圆心,以OA长为半径作弧,分别与各边交于E、F、G、H、K、L、M、N点.求证:八边形EFGHKLMN是正八边形.思路点拨:欲证八边形EFGHKLMN是正八边形,依据定义,只要证它的各角相等(都为135°),各边也相等.证明:设正方形ABCD的边长为a,则同理可证同理可证∴八边形EFGHKLMN的各边相等而△BFG、△CHK、△DML、△AEN都是等腰直角三角形,由三角形的外角性质可得此八边形的每个内角都为90°+45°=135°∴八边形EFGHKLMN是正八边形.2.已知:如图,△ABC是⊙O的内接等腰三角形,顶角∠A=36°,弦BD、CE分别平分∠ABC、∠ACB.求证:五边形AEBCD是正五边形解:∵△ABC是等腰三角形,顶角∠A=36°,∴∠ABC=72°,∠ACB=72°,又弦BD、CE分别平分∠ABC、∠ACB∴∠ABD=∠DBC=∠ACE=∠BCE=∠BAC=36°∴五边形AEBCD是正五边形.类型二、正多边形的有关计算3. (1)(2011广东中山)正八边形的每个内角为()A.120° B.135° C.140° D.144°思路点拨:正八边形的每个内角为,故选B.答案:B(2)已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.思路点拨:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB于M,在Rt△AOM 中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的.解:如图所示,由于ABCDEF是正六边形,所以它的中心角等于,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a在Rt△OAM中,OA=a,AM=AB=利用勾股定理,可得边心距OM=∴所求正六边形的面积=6××AB×OM=.举一反三:【变式1】已知,如图,正八边形ABCDEFGH内接于半径为R的⊙O,求这个八边形的面积.解:如图,分别连结OA,OC及AC由正八边形的对称性,则AC⊥OB,∠AOC=90°探究思考:这个八边形的边长a=?提示:如图所示,当OA=R时,.类型三、考查弧长和扇形的计算4. (1)(2011广东广州)如图4,AB切⊙O于点B,OA=,AB=3,弦BC∥OA,则劣弧的弧长为().A. B.C.π D.图4思路点拨:连结OB、OC,则,OB=,,,由弦BC∥OA得,所以△OBC为等边三角形,.则劣弧的弧长为,故选A.答案:A(2)制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)思路点拨:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.解:R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.5.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(•结果精确到0.1)和扇形AOB的面积(结果精确到0.1).思路点拨:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.解:的长=S扇形=因此,的长为10.5,扇形AOB的面积为52.4.举一反三:【变式1】如图,为的直径,于点,交于点,于点.(1)请写出三条与有关的正确结论;(2)当,时,求圆中阴影部分的面积.解:(1)答案不唯一,只要合理均可.例如:①;②;③;④;⑤是直角三角形;⑥是等腰三角形.(2)连结,则.,,.为的直径,.在中,,,.,.,是的中位线.....类型四、圆锥面积的计算6.(1)(2011山东泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5π B. 4πC.3πD.2π思路点拨:圆锥的侧面展开图的弧长为2π,圆锥的侧面面积为2π,底面半径为1,圆锥的底面面积为π,则该圆锥的全面积是2π+π=3π.故选C.答案:C(2)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)思路点拨:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为,则(cm)22.03(cm)S纸帽侧=×58×22.03=638.87(cm)638.87×20=12777.4(cm2)所以,至少需要12777.4cm2的纸.举一反三:【变式1】如图,圆锥形的烟囱帽的底面直径是,母线长.计算这个烟囱帽侧面展开图的面积及圆心角.思路点拨:烟囱帽的展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面的周长.解:设扇形的半径为,弧长为,圆心角为,则,.∵∴∴答:烟囱帽侧面展开图的圆心角是,面积是.【变式2】如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.思路点拨:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据可知,用第二个公式比较好求,但是得求出底面圆的半径.解:在Rt△ABC中,AB=13cm,AC=5cm,∴BC=12cm.∵OC·AB=BC·AC(由三角形面积得),∴.∴所以,这个几何体的表面积为.。
正多边形与圆、弧长面积的计算【范本模板】

正多边形与圆、弧长面积的计算一、选择题(共2小题;共10分)1. 如图所示,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为A. √3−π2B. √3−2π3C。
2√3−π2D。
2√3−2π32。
如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则AB的长为A. π5B。
2π5C。
3π5D. 4π5二、填空题(共8小题;共40分)3。
图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,⋯依此规律,当正方形边长为2时,第n 个图中所有圆的面积之和S n=.4. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则AB的长为.5。
如图所示,已知正方形ABCD的边心距OE=√2,则这个正方形外接圆⊙O的面积为.6. 一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.7。
如图所示,正方形ABCD的边长为2,E,F,G,H分别为各边中点,EG,FH相交于点O,以O 为圆心,OE为半径画圆,则图中阴影部分的面积为8. 如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)9. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.10. 如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2√3,则图中阴影部分的面积为.三、解答题(共2小题;共26分)11。
如图,已知正方形ABCD的边心距OE=√2cm,求这个正方形外接圆⊙O的面积.12。
图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形−正八边形.(1) 如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2) 在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180∘)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.答案第一部分1。
专题11 正多边形以及与圆有关的计算

专题11 与圆有关的计算一、正多边形和圆1. 正多边形的定义:各条边 ,并且各个 也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴ 正多边形的中心:正多边形的 的圆心叫做这个正多边形的中心.⑵ 正多边形的半径:正多边形外接圆的半径叫做正多边形的 .⑶ 正多边形的中心角:正多边形每一边所对的 叫做正多边形的中心角.⑷ 正多边形的边心距: 到正多边形的一边的距离叫做正多边形的边心距.3. 正多边形的性质:⑴正n 边形的半径和边心距把正n 边形分成2n 个 的直角三角形;⑵正多边形都是轴对称图形,正n 边形共有n 条通过正n 边形 的对称轴;⑶偶数条边的正多边形既是 图形,也是轴对称图形,其 就是对称中心.【例 1】⑴求正三角形的边心距、半径和高的比。
⑵若同一个圆的内接正三角形、正方形、正六边形的边心距分别为3r ,4r ,6r ,求346::r r r 。
边心距二、与圆有关的计算 1、弧长的计算如果弧长为 l ,圆心角度数为 n ,圆的半径为 r ,那么,弧长 l = 。
【推导】:【例 2】⑴将下表补充完整。
⑵【易错】若弦AB 将圆的周长分为1:5的两部分,则弦AB 所对的圆周角为 。
⑶图中有五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿1ADA 、12A EA 、23A FA 、3A GB 的路线爬行,乙虫沿ACB 路线爬行,则下列结论正确的是( )A. 甲先到B 点B. 乙先到B 点C. 甲、乙同时到B 点D. 无法确定⑷如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针A 3A 2A 1GFE D CBAB DOA2、扇形面积计算方法一:如果已知扇形圆心角为n,半径为r,那么扇形面积S=。
【推导】:方法二:如果已知扇形弧长为l ,半径为r,那么扇形面积S=。
【推导】【例 3】将下表补充完整。
人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形与圆、弧长面积的计算
一、选择题(共2小题;共10分)
1. 如图所示,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A. √3−π
2B. √3−2π
3
C. 2√3−π
2
D. 2√3−2π
3
2. 如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则AB的长为
A. π
5B. 2π
5
C. 3π
5
D. 4π
5
二、填空题(共8小题;共40分)
3. 图1中的圆与正方形各边都相切,设这个圆的面积为S1;图2中的四个圆的半径相等,并依次外
切,且与正方形的边相切,设这四个圆的面积之和为S2;图3中的九个圆半径相等,并依次外切,且与正方形的各边相切,设这九个圆的面积之和为S3,⋯依此规律,当正方形边长为2时,第n 个图中所有圆的面积之和S n=.
4. 如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则AB的长为.
5. 如图所示,已知正方形ABCD的边心距OE=√2,则这个正方形外接圆⊙O的面积为.
6. 一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在
圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.
7. 如图所示,正方形ABCD的边长为2,E,F,G,H分别为各边中点,EG,FH相交于点O,以O
为圆心,OE为半径画圆,则图中阴影部分的面积为
8. 如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)
9. 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.
10. 如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2√3,则图中阴影部分的面积
为.
三、解答题(共2小题;共26分)
11. 如图,已知正方形ABCD的边心距OE=√2cm,求这个正方形外接圆⊙O的面积.
12. 图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形−正八边形.
(1) 如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,
保留作图痕迹);
(2) 在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180∘)是一个圆锥的侧
面,则这个圆锥底面圆的半径等于.
答案第一部分
1. A
2. D
第二部分
3. π
4. π
3
5. 4π
6. 2√2
π
7. 1
2
8. π
6
π
9. 16
3
10. 2π−3√3
第三部分
11. (1) 连接OC,OD.
∵圆O是正方形ABCD的外接圆,
∴O是对角线AC,BD的交点,
∠ADC=45∘.
∴∠ODE=1
2
∵OE⊥CD,
∴∠DOE=90∘−∠ODE=45∘,
∴OE=DE=√2cm.
由勾股定理得OD=√OE2+DE2=2(cm),
∴这个正方形外接圆⊙O的面积是π⋅22=4π(cm2).12. (1) 如图,正八边形ABCDEFGH即为所求.
.12. (2) 15
8。