超声波原理
超声波的发射原理

超声波的发射原理
超声波是一种机械波,它是通过声源发射出去的,具体的发射原理如下:
1. 超声波发射装置:超声波发射器通常由一个压电陶瓷晶体构成。
这个晶体可以通过施加电压而发生振动,在振动过程中产生声波。
2. 压电效应:压电晶体具有压电效应,也就是当施加电压时会发生形变。
当电压施加到压电晶体上时,晶体会振动,产生压力波,从而生成超声波。
3. 振动频率控制:通过改变施加到压电晶体的电压,可以控制晶体的振动频率,进而控制超声波的频率。
一般来说,超声波的频率在20kHz到10MHz之间。
4. 超声波传播:振动的压电晶体会使周围的介质产生振动,从而形成超声波。
超声波在介质中的传播速度取决于介质的密度和弹性模量。
5. 接收器:超声波在被传播的过程中,可以被接收器接收到。
接收器通常也是一个压电陶瓷晶体,当超声波到达时,晶体会产生电荷,这个电荷可以通过放大电路来转换成电信号。
总结起来,超声波的发射原理是通过压电效应产生振动的压电晶体,通过改变电压控制振动频率,并在介质中产生压力波从而形成超声波。
超声波可以被接收器接收并转换为电信号。
超声波作用的原理

超声波作用的原理
超声波是一种频率超过人类能听到的声音的波形,其工作原理可以通过以下几个方面进行描述:
1. 压电效应:超声波的发射和接收通过压电效应实现。
压电材料具有特殊的物理性质,可以在电压的作用下发生形变,同时也可以在受力的作用下产生电压。
当施加电压到压电晶体上时,晶体会发生压缩或拉伸,从而产生超声波。
2. 纵波传播:超声波是一种纵波,类似于空气中的声音波。
纵波是沿着波的传播方向推动介质分子振动的波动。
超声波在介质中传播时,会通过分子的压缩和膨胀产生压力变化,将能量传递给周围分子。
3. 衰减和反射:超声波在介质中传播时,会发生衰减和反射。
衰减是由于介质的吸收和散射,能量逐渐减少;反射是当超声波遇到界面时,部分能量被反射回来。
利用超声波的衰减和反射特性,可以测量距离、检测缺陷等。
4. 驻波效应:当超声波传播到一定距离后,会发生驻波效应。
驻波是指波的传播方向上的正向波和反向波之间发生干涉形成的固定位置的波峰和波谷。
利用驻波效应,可以对介质中的材料性质进行检测和分析。
超声波的应用非常广泛,包括医学、无损检测、测量领域等。
通过利用超声波的原理,可以实现材料的检测、成像、清洗和治疗等功能。
简述超声波工作原理

简述超声波工作原理
超声波工作原理主要基于压电效应。
一些晶体在施加交变电压时,会按其厚度方向做伸长和压缩的交替变化,产生震动,并在晶片周围的媒质上产生相同频率的声波。
如果所加的交变电压的频率是超声频率,那么晶体所发射的声波就是超声波。
这是逆压电效应的一种表现。
另一方面,当振动的外力作用在压电晶片的两个面上而使其发生变形时,会有相应频率的电荷输出,这是压电效应的表现。
超声波是弹性机械振动波,具有一些与可听声波不同的特性。
由于其波长较短,当它通过大于波长的小孔时,会呈现出集中的一束射线向一定方向前进,这种特性称为束射。
同时,超声波的方向性强,可定向采集信息。
以上内容仅供参考,如需获取更多信息,建议查阅超声波相关书籍或咨询物理学家获取。
超声波的震动原理

超声波的震动原理
超声波的震动原理是基于声波传播的原理。
声波是一种能量在介质中传播的机械波,是由物质的振动引起的。
当物体振动时,空气分子也随之振动,形成了一系列的压缩和膨胀。
这些压缩和膨胀形成了声波的传播。
超声波是指频率超过20kHz的声波。
超声波在空气中的传播
速度大约为343 m/s,相比于人耳可以听到的声音的速度更快。
超声波可以通过震动源产生,并通过不同介质中的传播来实现目标。
超声波震动原理是基于压电效应或洛伦兹力的。
压电材料是一种特殊的物质,当施加外力或变形时,可以产生电荷分布的改变。
利用压电材料的特性,可以将电能转化为机械振动能量,并通过超声波的方式传播出去。
另一种原理是利用洛伦兹力。
当电流通过导电线圈时,会在导线周围产生磁场。
当磁场与永久磁铁或其他磁场相互作用时,就会产生力的作用。
这种力被称为洛伦兹力。
通过合理的设计和布置,可以产生超声波的震动效果。
总的来说,超声波的震动原理是通过物质的振动和声波传播来实现的。
压电效应和洛伦兹力是产生超声波振动的两种常用原理。
这些原理在超声波应用中起着重要的作用,例如医学超声设备、工业检测和清洁、声纳等领域。
超声波原理及作用

超声波原理及作用超声波是指频率高于人耳听觉范围(20Hz - 20kHz)的声波。
在物理学和医学等领域中,超声波被广泛应用于不同的实验和诊断工作中,如探测、成像、清洁等方面。
本文将详细介绍超声波的原理和作用。
一、超声波的原理超声波的产生是通过压电效应实现的。
在压电材料中施加电压会使其发生机械变形,而当施加的电压频率达到压电材料的固有频率时,会产生共振效应,形成超声波。
超声波是由高频振动产生的机械波,其在传播过程中以纵波的形式存在。
相比于其他声波,超声波具有高频率、短波长和高能量的特点,能够在介质中穿透和传播。
二、超声波的作用1. 检测与成像超声波在医学领域中广泛用于人体内部的检测与成像。
通过向人体不同部位发射超声波,并记录其回波情况,可以获得部位的形状、结构和功能信息。
超声波成像技术可以用于检测器官、肿瘤、疾病等,成为非侵入性、安全可靠的检测手段。
2. 清洁与除垢超声波在工业领域中被广泛用于清洗、除垢等工作。
利用超声波的高频振动和局部高压力的变化,可以在液体中产生大量微小气泡,并在气泡瞬间坍缩时释放出巨大能量,达到清洁物体表面和微孔中的目的。
3. 材料加工超声波在材料加工领域也有重要应用。
通过超声波的集中能量和高频振动,可以实现对材料的切割、焊接、拼接等加工工艺。
与传统加工方法相比,超声波加工具有操作简单、速度快、精度高等优点。
4. 医疗治疗超声波在医疗治疗中被用于物理疗法。
通过超声波的声压、热量和微震动等效应,可以促进组织血液循环、淋巴循环和细胞代谢,并有助于舒缓疼痛、消肿、促进伤口愈合等。
5. 其他应用超声波还有许多其他应用领域,如测量、无损检测、测速、材料分析等等。
不同行业根据实际需求可以发展出更多特定应用。
总结:超声波作为一种高频振动的机械波,具有广泛的应用前景。
在医学、工业、科学研究等领域中,超声波的原理和作用对于开展相关工作起着重要的支持作用。
随着科技的发展,超声波技术也将不断创新和进步,为各个领域的发展带来更多机遇和挑战。
超声波的原理

超声波的原理
超声波是一种类似于电磁波的电磁波,它的波长比电磁波长得多,可以用于声波检测,传递信息和发射声音。
它的工作原理是,当声波传播到一定的物体表面上时,这些物体会吸收声波,并反射出一些声波,这就是超声波的基础。
超声波在医学领域有着广泛的应用,它可以用来检测和诊断患者的身体情况,例如肝脏、肾脏和心脏等疾病,以及胎儿的发育情况。
此外,超声波也被广泛用于物理检测,例如测量液体的深度、线路检测、测量材料的厚度、检测密封性等。
超声波检测的工作原理是,先将超声波发射器放置在要检测的物体表面上,然后发出超声波,当超声波碰到物体表面时,超声波就会反射,接收器接收反射的超声波,通过计算反射的超声波的时间差和强度,就可以确定检测物体的信息,从而获得准确的结果。
超声波在医疗技术、工业检测、测量等领域有着广泛的应用,它可以提供准确、快速、无损的检测结果,是一种非常先进的检测技术。
超声波的使用不仅可以检测出物体的物理特征,还可以用于探测潜在的缺陷,从而有效地帮助企业提高产品质量,减少不良产品的产生。
总之,超声波是一种实用而有效的技术,它的应用可以改善人们的生活质量,为社会的发展和进步做出重要贡献。
超声波的应用举例及原理

超声波的应用举例及原理原理简介超声波是指频率高于人类听觉范围(20 kHz)的声波。
它是通过振动介质分子而传播的机械波,具有高频率、高方向性和能量集中的特点。
超声波的应用十分广泛,包括医学影像、工业无损检测、测距测速、清洗等领域。
超声波的原理是利用超声波在媒介中传播的特性。
超声波产生器将电能转化为高频机械振动,然后由超声波传感器将机械振动转化为电能。
超声波在传播过程中,会受到媒介的压力、密度等因素的影响,从而形成回波信号。
通过接收和分析回波信号,可以了解媒介的性质及存在的问题。
应用举例以下是几个超声波应用的具体举例:1. 医学影像(超声诊断)超声波在医学影像领域得到了广泛的应用。
医学超声技术利用超声波对人体进行无创检测,用于诊断疾病和监测人体器官的变化。
通过超声波的回波信号分析,医生可以观察到人体内部的器官、血管以及异常的增生物等,从而判断病情、指导治疗。
2. 工业无损检测超声波在工业领域中的无损检测应用非常广泛。
通过超声波的传播和反射特性,可以检测材料的内部缺陷、裂纹以及厚度等参数。
这些检测结果可以帮助工程师评估材料的质量,并采取相应的措施,以确保产品的可靠性和安全性。
3. 测距测速超声波可以用于测量物体的距离和速度。
利用超声波的传播速度和回波信号的时间差,可以计算出目标物体的距离。
此外,通过测量回波信号的频率变化,还可以得出目标物体的运动速度。
这种测距测速技术在交通领域、工地安全监测等方面有广泛应用。
4. 清洗超声波在清洗领域也有重要应用。
超声波清洗技术利用超声波的高频振动特性,将液体中的微小气泡在冲击波的作用下迅速破裂,产生强大的冲击力和微小的涡流,从而实现对工件表面的彻底清洁。
这种清洗技术被广泛应用于电子器件、光学元件和钟表等领域。
总结超声波作为一种高频机械波,具有高方向性、高能量集中的特点,被广泛应用于医学影像、工业无损检测、测距测速和清洗等领域。
超声波的原理基于机械振动在介质中的传播特性,通过分析超声波的回波信号,可以了解媒介的性质和存在的问题。
超声波仪器的原理和应用

超声波仪器的原理和应用一、超声波仪器的原理超声波仪器是利用超声波在物质中传播和反射的原理,通过测量超声波在物体内部传播和反射过程中的特征参数,来实现对物体结构和性质的非破坏性检测和成像。
其原理包括超声波的产生、传播、接收和信号处理等几个方面。
1. 超声波的产生超声波的产生通常通过压电材料的压电效应来实现。
当压电材料受到外加电场时,会发生相应的形变,从而产生机械振动。
这种机械振动可以被传导到物质中间介质内,形成超声波。
2. 超声波的传播超声波在物质中的传播速度与该物质的密度、弹性系数和纵波声速有关。
传播过程中,超声波与物质中的界面发生反射、折射和散射等现象,进而形成回波信号。
3. 超声波的接收超声波在物体内部传播过程中,一部分被物体吸收,一部分被物体内部结构反射。
超声波接收器通过压电效应将反射回来的超声波信号转换为电信号,供后续信号处理和成像。
4. 信号处理超声波接收到的电信号经过放大、滤波和数字化等处理,用于生成超声波的接收信号。
通过对接收信号的处理,可以获取物体的结构和性质信息。
二、超声波仪器的应用超声波仪器作为一种非破坏性检测技术,被广泛应用于不同领域,包括医学、工业、材料科学和地质勘探等。
1. 医学应用超声波在医学领域有着重要的应用,如超声波成像、超声心动图、超声诊断等。
超声波成像技术可以通过对人体内部组织的反射信号进行处理,实现对人体结构的成像,用于辅助医生诊断疾病。
超声心动图可以观察心脏的结构和运动情况,帮助医生判断心脏疾病。
超声诊断则通过检测人体内部组织的声学特性,来提供细微病变的信息。
2. 工业应用在工业领域,超声波可以用于材料表面的缺陷检测、材料的质量控制和非破坏性测试等。
例如,在金属材料的焊接过程中,超声波可以检测焊缝的质量,并判断是否存在缺陷。
此外,超声波还能够用于测量材料的厚度、密度和硬度等重要参数。
3. 材料科学应用超声波在材料科学领域也具有广泛的应用。
通过测量超声波在材料中的传播速度和衰减特性等参数,可以评估材料的微观结构和物理性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
6
5.焊头(HORN): 焊头的作用是对于特定的塑料件制作,符合塑料件的形状、加
工范围等要求。换能器、变幅杆、焊头均设计为所工作的超声频率 的半波长,所以它们的尺寸和形状均要经过特别的设计;任何的改 动均可能引致频率、加工效果的改变,它们需专业制作。耐用根据 所采用的材料不同,尺寸也会有所不同。适合做超声波的换能器、 变幅杆和焊头的材料有:钛合金、铝合金、合金钢等。由于超声波 是不停地以20KHZ左右高频振动的,所以材料的要求非常高,并不 是普通的材料所能承受的。
A
2
1.超声波在塑料加工中的应用原理: 塑料加工中所用的超声波,现有的几种工作频率有15KHZ,
18KHZ,20KHZ,40KHZ。其原理是利用纵波的波峰位传递振幅到塑 料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接 触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目 的。
A
ቤተ መጻሕፍቲ ባይዱ
3
16熔接位置视窗:检视正常熔接时焊头压附工作物之状况。
17.最低点微调螺丝:在熔接熔化块,或外形尺寸需精确时使用可限制汽缸之下降。
18水平微调螺丝:调整此四支螺丝,可使焊头平均压附在工作物上。
19输出电缆及插座:联接机体振动子系统与发振箱线路用。
20控制电缆及插座:联接机体控制单元与发振箱自动控制回路用。
A
4
3.器部分由三部分组成: 换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,
BOOSTER);焊头(又称焊模,HORN或SONTRODE)。
A
5
4. 换能器(TRANSDUCER): 换能器的作用是将电信号转换成机械振动信号。将电信号转换
成机械振动信号有两种物理效应可以应用。 A:磁致伸缩效应。 B:压电效应的反效应。磁致伸缩效应在早期的超声波应用中较常 使用,其优点是可做的功率容量大;缺点是转化效率低,制作难度 大,难于大批量工业生产。自从朗之万压电陶瓷换能器的发明,使 压电效应反效应的应用得以广泛采纳。压电陶瓷换能器具有转换效 率高,大批量生产等优点,缺点是制作的功率容量偏小。现有的超 声波机器一般都采用压电陶瓷换能器。压电陶瓷换能器是用两个金 属的前后负载块将压电陶瓷夹在中间,通过螺杆紧密连接而制成的。 通常的换能器输出的振幅为10μm左右。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F, 三是波长λ。三者之间的关系如下:V=F.λ。波在同一种物质中传播 的速度是一定的,所以频率不同,波长也就不同。另外,还需要 考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离 越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
超声波原理
A
1
№1.超声波应用原理 我们知道正确的波的物理定义是:振动在物体中的传递形成波。
这样波的形成必须有两个条件:一是振动源,二是传播介质。波 的分类一般有如下几种:一是根据振动方向和传播方向来分类。 当振动方向与传播方向垂直时,称为横波。当振动方向与传播方 向一致时,称为纵波。二是根据频率分类,我们知道人耳敏感的 听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。 低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
6.声波调整:调整振动子系与发振回路之共振匹配,使转换效率达到理想。
7.振幅表:显示声波空载或负载工作之振幅强弱。
8.电源开关及灯:电源开关之控制,及指示开路之信号
9.选择开关(自动/手动/声波检查):自动或手动之选择,及作声波空载检视之按纽。
10.声波出力调整纽:声波出力段数之设定用,1~2段为一般使用,3~4段为强力输出用。
A
7
№2.波工作原理: 塑性塑料的超声波加工,是利用工作接面间高频率的摩擦而使分
子间急速产生热量,当此热量足够熔化工作时,停止超声波发振, 此时工件接面由熔融而固化,完成加工程序。通常用于塑料加工的 频率有20KHZ和15KHZ,其中20KHZ仍在人类听觉之外,故称为超声 波,但15KHZ仍在人类听觉范围只内。
2212接保地险螺丝母座::电电子子回线路路之之接过地载线 保连护接。用,漏A电时之安全保障。
10
№5.机器安装法: 1.将发振箱放置于机体附近操作员易于观察及调整之处。 2.接地:将地线一端接地,另一端接于发振箱后面之接地旋钮。 3.发振箱与机体联接:将机体之输出电缆插头及控制电缆插头接于 发振箱插座及机体插座上 4.接空压源:将高压气压管引清净干燥之空压源与熔接机体上空气 滤清器入口接头以管束结合锁紧。 5.接电源:发振箱后面之电源线及插头,请接上AC220V,∮60/50HZ 电源。
A
9
№4.功用说明:
1.迟时间设定:调整开始发振时间,在限制开关动作后0~9.99秒开始发振。
2.熔接时间设定:调整熔接时间长短,在延迟时间终了发振0~9.99秒之范围。
3.硬化时间设定:调整发振终了工作物熔接处冷却定型时间在0~9.99秒之范围。
4.计数器:工作循环次数记录用,附有归零压扣。
5.调整及压力表:工作压力之指示及调整压力用。
11.声波过载灯:显示声波过载之不正常,需做声波调整,至过载灯不会显示为止。(若
仍无法解除,请来电洽询)
12.频率指示:调试机器时做机器频率显示
13焊头:传动振动能量于工作物之上,使之熔接。
14上升/下降缓冲调整:调整孔位于机台侧面可适当调整,使升降惯性适中。
15下降速度调整:调整合理适当之下降工作速度用。
2.波焊机的组成部分: 超声波焊接机主要由如下几个部分组成:发生器、气动部分、
程序控制部分,换能器部分。发生器主要作用是将工频50HZ的电源 利用电子线路转化成高频(例如20KHZ)的高压电波。气动部分主 要作用是在加工过程中完成加压、保压等压力工作需要。程序控制 部分控制整部机器的工作流程,做到一致的加工效果。换能器部分 是将发生器产生的高压电波转换成机械振动,经过传递、放大、达 到加工表面。
A
8
№3波机构原理: 20V,50HZ转变为15KHZ(或20KHZ)之高压电能,利用震动子
转换成机械能。如此的机械振动,经由传动子,焊头传至加工物, 并利用空气压力,产生工作接面之摩擦效果。振动子和传动子装置 在振筒内,外接焊头,利用空压系统和控制回路,在事先设定之条 件下升降,以完成操作程序。