弹塑性力学第四章弹性本构关系资料
弹性力学_第四章 本构关系

1
第四章 本构关系
§4-1 本构关系概念 §4-2 广义胡克定律 §4-3 应变能和应变余能
2
§4-1 本构关系概念
在以前章节我们从静力学和几何学观点出发, 得到了连续介质所共同满足的一些方程。显然,仅 用这些方程还不足以解决变形固体的平衡问题,因 为在推导这些方程时,并没有考虑应力和应变的内 在联系,而实际上他们是相辅相成的,对每种材料, 他们之间都有完全确定的关系,这种关系反映了材 料所固有的物理特性。本章就是要建立在弹性阶段 的应力和应变的关系——本构关系。
x
x E
x 是由于y的作用所产生的相对缩短
x
ν
y E
x 是由于z的作用所产生的相对缩短
7
x
ν
z
E
Chapter 5.1
§4-1 本构关系概念
将上述三个应变相加,即得在x、y、z同时作用下
在x轴方向的应变
x E x ν E y ν E zE 1 x νy z
同理可得到在y轴和z轴方向的应变
E0 ; G 0 ; K 0
19
Chapter 5.1
§4-1 本构关系概念
∵
E0 ; G 0 ; K 0
G
=
E 2(1 + ν)
K23G31E2
故要上式成立必要求:
10; 12 0
即 10.5
20
Chapter 5.1
§4-1 本构关系概念
10.5
若设=0.5,则体积模量K=,称为不可压缩材料,
§4-1 本构关系概念
x
1 E
x ν
y z
y
1 E
y
ν x
z
z
第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。
弹塑性力学第四章

x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
弹塑性力学本构关系1资料.

在
平面上任取一点,坐标为 (1, 2 , 3 )
它代表一个应力状态,对应的应力张量分量为 ij
相应的平均应力为 m 易见有
m
1 2
3
3
0
将应力张量分解为应力球张量和应力偏张量,即
ij m ij sij sij
上式表明,与此应力状态相应的应力球张量为零,应力张量
等于应力偏张量。 平面上每一点对应的应力张量是应力偏张量。
• Drucker把它引伸到复杂应力 情况,这就是Drucker公设.
0 d p 0
ij
0 ij
d
p ij
0
d d p 0
第二式中的等号适用于理想 塑性材料.
d
ij
d
p ij
0
Drucker公设在塑性力学中有
重要意义.
屈服面的外凸性和塑性应变增量的法向性
•我们如将塑性应变空间与应力空间重合起来,由Drucker公 设的第一式, 把它看成是两个矢量的点积.
在应力空间中代表一曲面,此曲面称为屈服曲面。
屈服曲面内的点满足不等式
f (1, 2,3) c 时,代表弹性状态。 屈服曲面上及屈服曲面外的点满足 f (1, 2,3) c
时,代表塑性状态。因此,屈服曲面是弹、塑性状态的分界面。
4.2.3 等倾线与 平面
1.等倾线 在应力空间中,过坐标原点与三个坐标轴成相同倾角的直线 叫等倾线。
PR线上每一点都代表一个应力状态。 PR线上的点有相同的应力偏张量和不同的应力球张量。
因为应力球张量不影响屈服,所以如果P点在屈服曲面上, 那么PR线上所有点都应该在屈服面上。因此屈服曲面实际上 是一个柱面,并且柱面的母线平行于等倾线OL
P
弹塑性力学第四章

若通过物体每一点可作这
样的轴(如x3轴),在此轴 成垂直的平面内,所有射
线方向的弹性性质都是相
同的,称这个平面为各向
同性面,如地层属于此类。
[C]中独立系数为5个:
x1
x3 x2’
x2Fra bibliotek各向同性面
x1’
2019/10/18
28
§4-2 线弹性体的本构关系
2.4 横观各向同性材料——弹性体对一个轴对称
ij
2019/10/18
12
§4-1 应变能、应变能密度与弹性材料的
本构关系
W ijij
比较上面二式,得:
W
W
ij
ij
ij
W
ij
fij ( kl )——本构关系(方程)
适用于各种弹性情况(线性、非线性)
2019/10/18
13
§4-1 应变能、应变能密度与弹性材料的 本构关系
本构关系
时刻达到 应变增量
t
+t:位移有增量 u
ijeie j
uiei
外力功增量 :
A V f udV SF udS
2019/10/18
8
§4-1 应变能、应变能密度与弹性材料的
本构关系
:函数增量
A V f udV SF udS
WdV
V
S Fi uidS S (ij ui )njdS V ( ji ui ), j dV
代入外力功增量
2019/10/18
10
§4-1 应变能、应变能密度与弹性材料的 本构关系
弹性力学-本构关系

如,c22 c2222 , c56 c2331
广义胡克定律的一般形式最广泛地描述了材料的线弹性性质,但未能描述物体 外部环境条件和内部物理特征。
§4-2 线弹性体的本构关系
如果材料在变形过程中处于等温绝热过程。
根据热力学第一定律和相应数学推导,
ij f ij 有势,
其势函数U0(ij) 为物体单位体积的变形能(应变能)。
线性关系。
称为广义胡克定律的一般形式
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
y c21 x c22 y c23 z c24 xy c25 yz c26 zx
即
z c31 x c32 y c33 z c34 xy c35 yz c36 zx
y
c22
c23
c24
c25
c26
y
xzy
对
c33
c34 c44
c35 c45
c36 c46
xzy
yz
zx
称
c55
c56
yz
c66 zx
弹性矩阵为对称矩 阵,共有21个独立的弹 性常数
广义胡克定律的上述形式表征的是各向异性材料的本构关系。
如果材料具有弹性对称面,则本构关系 还可简化,使弹性常数进一步缩减。
mij
ij
2G
E
ij
1
2
3E
ij
1 2G
ij
1
3E
ij
所以 当 i j 时,因
1 2G
ij
1 2G
mij
1 2G
ij mij
1 2G
sij
eij
1 2G
sij
弹塑性力学-弹塑性本构关系

W D ( ij ij ) d ij 0
0 p
由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外 部作用在应变循环内做功WI和应力循环所作的外部功之间仅差 一个正的附加项: 1
d
p
d
p
2
因此可将应变循环所作的外部功,写成
WI WD 1 2 d ij d
d
p
2 3
d e ij d e ij
p
p
m ises : q s H ( d W
p
)[ 或 H ( d
p
p
)] 0
p
tresca : m ax s H ( d W
)[ 或 H ( d
)] 0
在应力空间中,这种后 继屈服面的大小 只与最大 的应力状态有关,而与中 间的加载路径无关。在右 图中,路径1与路径2的最 终应力 状态都刚好对应于 加载过程中最大应力状态, 因此两者的最终后继屈服 是一样的;而路径3的最 终后继屈服面由加载路径 中最大应力状态来定。
0
p
ij
0
ij
0
W D ( ij a d ij ij ) d
0
p
ij
0
1 a
1 2
当 ij ij时 , 略 去 无 穷 小 量
0
( ij ij ) d ij 0
0 p
屈服面的外凸性 塑性应变增量方向 与加载曲面正交
当
0 ij
( ij , H ) F ( I 1 , J 2 , J 3 ) K 0 初始屈服面 硬化系数
p p
t r e s c a 、 vo n m ises 、 M - C K H ( d W ) 或 H ( d
塑性力学第四章塑性本构关系

ii
1 2
E
ii
eij
1 2G
Sij
第二个式子是六个方程,但因为有 Sii 0, 所以有5个是独立的. 从第二式可以看到在弹性范围内应力主轴和应变主轴是一致 的. 应变偏量的分量和相应的应力偏量的分量成正比.
第二式也可以写成 Sij 2Geij ,把它代入应力强度的表达式
就可以得到下面的第二式, 然后有 G i / 3i 再代回上面第
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
即
i
A
m i
这就是Il’yushin简单加载定律.有人认为只有第(1)条就可以了.
塑性成形力学基础--韩志仁
4-6 卸载定律
• 从单向拉伸实验的应力应变曲线
A
看:加载至过弹性极限达到A点,然后
ij
1 E
1
ij
ij kk
• 也可以表示为:
ii
1 2
E
ii
eij
1 2G
Sij
我们来证明一下:
由应力和应变的分解式,即 ij Sij ij m , ij eij ijm
代入上面广义Hooke定律的公式,考虑到 G E / 21
法则就得到弹塑性硬化材料的增量型本构方程:
dii
1 2
E
d ii
deij
在线性强化时 H 时常数.由把Levy-Mises流动法则代入塑性
应变增量强度
d
p i
的公式得到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
由能量守恒定律和应变能理论可证明,弹性常数 之间存在关系
36个弹性常数减少到21个. 弹性矩阵是对称矩阵.
具有一个弹性对称面的各向异性体, 弹性常数 有13个。单斜晶体(如正长石)具有这类弹性对称。
• 如果在物体内的任意一点有三个互相正交的弹性对 称面, 这种物体称为正交各向异性体。如: 煤块、均 匀的木材、叠层胶木、复合材料等
正交各向异性体有9个弹性常数。其弹性矩阵为
3.横观各向同性体
如物体内任意一点, 在平行于某一 平面的所有各个方向都有相同的弹性性 质, 这类正交异性体为横观各向同性体。 如不同层次的土壤、复合板材等。
四. 物理方程的其他表示形式
物理方程:
用下标记法可将广义虎克定律表示为
e ij
1
E
s ij
3
E
s mij
s ij
2G
3
E
s mij
由上式可验证
q
ex
ey
ez
3(1
2
E
)
s
m
令
em
q
3
(1 2)
E
sm
K E
3(1 2)
K称为体积弹性模量,简称体积模量。
(4.35)
(4.36) (4.37) (4.38)
• 例如:材料单轴拉伸应力-应变曲线:
s 塑形变形
s 塑形变形
e 线弹性
e 非线弹性
二. 各向同性材料的广义Hooke定律(本构方程) • 由材料力学已知,Hooke定律可表示为:
单向拉压
纯剪切 横向与纵向变形关系
E为拉压弹性模量; G为剪切弹性模量
为泊松比
对复杂应力状态,在弹性力学假设条件下,应用叠加原理: 考虑x方向的正应变:
• 弹性矩阵为
• 极端各向异性体的特点:
(1) 当作用正应力 时, 不仅会产生正应变
,
还会引起剪应变
。
(2) 当作用剪应力时, 不仅会产生剪应变, 也会引起正 应变。
2.正交各向异性体 如在均匀体内, 任意一点都存在着一个对称面,
在任意两个与此面对称的方向上, 材料的弹性性质 都相同。 称为具有一个弹性对称面的各向异性体。 该对称面称为弹性对称面, 垂直于弹性对称面的方 向称为物体的弹性主方向。
弹性本构关系
第四章 弹性本构方程
§4-1 应力—应变关系的一般表达 §4-2 各向异性线弹性体 §4-3 各向同性线弹性体 §4-4 弹性应变能与弹性应变余能
§4-1 应力—应变关系
一、本构方程
从静力学的角度对应力进行了分析 从几何学的角度对应变进行了分析
平衡微分方程 几何方程和变形协调方程
上述方程适用于任意连续物体,包括弹性力学和塑 性力学。
这些方程还不能解决弹塑性力学问题。
需要研究应力与应变之间的物理关系,即本构关系。 对应的函数方程称为物理方程,或本构方程。
• 材料的应力与应变关系需通过实验确定的。
• 本构方程实际是应力与应变关系实验结果的数学 描述。
• 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
当自变量(应变)很小时,式(1)中的各表达式可用泰 勒级数展开.略去二阶及以上的高阶微量,则式(1)中 的第一式展开为:
表示应变分量为零时的值,由基本假设,初始应力为 零.故
表示函数f1对应变分量的一阶偏导数在应变分量为零 时的值,等于一个常数
故, 式(1)可用一个线性方程组表示(线弹性体)
式(2)是纯数学推导结果,实际上与虎克定律线性关 系一致,是在弹性小变形条件下弹性体内任一点的应力与应 变的一般关系式.
因此
q
sm
K
,em
sm
3K
ex
ex
em
(1
E
sx
3
E
sm)
1 3K
sm
1 2G
sx
ey
ey
em
1 2G
sy
ez
ez
em
1 2G
sz
exy
e xy
1 2G
xy
1 2G
sxy
eyz
e yz
1 2G
yz
1 2G
syz
exz
e xz
1 2G
xz
1 2G
sxz
整整理理以以上上六六个个式式子子,,得得
单位体积中具有的应变能,称为应变能密度或比能。
变分法是研究泛函求极值的方法。弹性力学问题的变 分法,也称为能量法,是和弹性体的应变能或应变余能 密切相关的,是有限元法的基础。
一、一维状态
细长直杆,长度为L,横截面积为S,两端受拉力P作用。
产生的伸长量为DL,外力作的功为:
单位体积的应变能U0为:
单位体积的应变能U0代表应力-应变曲线中阴影部分的面积。 单位体积的应变余能U0为:
横观各向同性体只有五个 弹性常数, 弹性矩阵为
4.各向同性体
物体内任意一点, 沿任何方向的弹性性质都相同。 各向同性体只有两个独立的弹性常数, 弹性矩阵为:
比较: 可见:
§4-3 弹性应变能
弹性体受外力作用后产生变形,外力在其作用位置的 变形上做功。忽略速度、热交换和温度等因素,则外力所 做的功全部转换为应变能储存在物体的内部。