基因结构及功能分析

合集下载

微生物基因组的结构和功能分析

微生物基因组的结构和功能分析

微生物基因组的结构和功能分析微生物是指自然界中的一类微小生物体,它们的存在和生长带来了各种生态效益,但同时也对生态环境和人类健康带来了威胁。

微生物的基因组是它们的生命和功能的基础,因此对微生物基因组的结构和功能进行深入的分析和研究对于深入认识微生物的生物学特征,以及开发针对微生物的防治策略具有重要的意义。

一、微生物基因组的结构和特征微生物基因组的结构与其他生物种类的基因组结构有所不同。

微生物基因组大小广泛分布,从几千个碱基对到数百万个碱基对不等,与其他生物基因组大小相比较小。

在基因结构上,微生物基因复杂性低于其他更高等级的生物种类,但是它们基因数量较多,存在大量的非编码DNA。

微生物基因组在组成成分上也很特殊,相较于其他生物种类基因组的蛋白编码基因,微生物的蛋白编码基因的平均长度更短,这与微生物的代谢途径和基因组大小有关,同时也可能与其适应不同环境的能力相关。

二、微生物基因组的功能分析基因组是细胞和生物体功能的基础,微生物的基因组研究也是生物学和生命科学中的重要研究方向之一。

微生物的基因组研究主要包括两个方面的内容:基因组注释和功能预测。

基因组注释是指对基因组进行解释和说明,并对其进行命名。

基因组注释需要从序列水平上对微生物基因组进行分析,包括:编码基因、RNA基因、反义基序列、转座因子和其他反复序列等。

同时还需要将微生物基因组的重要的生物学特征进行分析和评估,包括编码基因的数量和复杂度、基因组大小和损伤度、内含子和拼接位点分布的情况等等。

除了基因组注释,微生物基因组功能预测也是一个相当重要的方向。

功能预测可以通过生信技术和各种基因组学的研究手段进行。

常用的研究手段包括转录组学和蛋白质组学。

转录组学通过确定转录本的数量和位置,研究转录物在不同的时间和环境中的表达水平和功能差异。

蛋白质组学通过对基因组进行全面的分析,研究蛋白质的组成、结构和功能不仅能够更容易地了解微生物的生物学特征,也可通过蛋白结构探索利用蛋白结构优化基因工程,优化抗体工程等相关方向。

真核生物的基因组结构与功能分析

真核生物的基因组结构与功能分析

真核生物的基因组结构与功能分析真核生物是指在生命进化过程中逐渐形成的一类生物,其基本特征之一是存在真核细胞核。

真核生物的基因组结构较为复杂,包含多个线性染色体和一些质粒。

对基因组结构的分析与理解,对于揭示其生物功能和进化机制是至关重要的。

一、真核生物的基因组结构真核生物的基因组大小较大,同一物种不同个体之间的基因组大小存在较大的差异。

基因组大小与细胞大小和复杂度之间存在着类似关联性。

人类基因组大小约为3亿个碱基对,其中蛋白编码基因仅占大约2%。

真核生物的基因组在基本结构上与细菌大相径庭,主要包括以下几个方面。

1. 染色体染色体是真核生物中最重要、最基本的遗传物质,是基因在生物体内的物质传递介质,是遗传信息的载体。

在精细结构上,真核细胞中存在很多复杂的染色体结构,如核小体、类固醇激素受体、平衡染色体等。

2. 基因组复制真核生物的基因组复制主要包括原核生物和真核生物的不同模式,其中原核生物中存在着DNA单线复制机制,而真核生物则采用DNA复制机器进行自我复制。

与原核生物不同的是,真核生物的DNA复制机器必须满足染色体的线性特性和复杂的三维结构,包括多个酶和蛋白质。

3. 基因只读基因只读是指通过读取基因组中的基因序列,进而达到生物高效功能表达和调节的过程。

真核生物基因组的序列阅读具有高度异质性,不同物种、不同个体之间存在大量的序列差异,这在一定程度上阻碍了对真核生物的功能研究。

二、真核生物的基因组功能分析真核生物的基因组分析主要包括以下几个方面。

1. 蛋白编码基因预测蛋白编码基因是真核生物基因组的重要组成部分,对真核生物的基因组进行蛋白编码基因预测,可以揭示其生物功能和进化机制。

目前,已经建立了多种基于序列、结构、相对位置等的蛋白编码基因预测算法与工具,如Glimmer、InterProScan、Pfam等。

2. 生物信息分析真核生物的基因组分析需要大量的计算资源和分析工具,这就需要借助生物信息学的手段来实现。

大豆基因组结构和功能分析

大豆基因组结构和功能分析

大豆基因组结构和功能分析在当今科技飞速发展的时代,基因组学已成为生物科学研究的一项关键技术。

在这个领域里,大豆基因组被广泛地研究,旨在深入了解其结构与功能。

本文将以大豆基因组为例,探讨其结构和功能的分析。

一、基因组结构分析大豆基因组的大小约为1.1 Gb,在染色体中具有20个编号,其中16个种类61个染色体来自同源染色体重组后的基因组主体,另外4个染色体采用单倍型大豆用于组装所有剩余染色体序列。

大豆基因组的大小比人类和小鼠基因组都小,但其拥有的基因数是两者的两倍。

这些基因都编码着生物体的生命活动所必需的不同蛋白质。

为了更好地了解这些基因,需要对它们的结构有一定的了解。

1. 基因分布大豆基因组具有高密度的基因分布,大部分基因(约75%)集中在染色体上,其中七号染色体上的基因数密度最高。

其余基因主要分布在长串连的基因或大量的单独基因中。

因此,大豆的基因分布相当分散,而且基因间的距离差异很大。

这种基因分布结构有助于增加大豆种群的遗传多样性和对环境的适应性。

2. 基因结构大豆基因的结构主要由起始密码子、终止密码子、内含子和外显子组成。

它们的顺序和位置是确定基因间距、编码区域和非编码区域的关键因素。

基因的内含子和外显子之间存在许多不同长度的序列,以调节基因表达和注意其特定的功能。

这些序列涉及不同的转录调控元件,包括启动子、增强子、转录抑制子和小核RNA 等。

3. 基因家族大豆还拥有众多的基因家族,如转录因子家族、结构蛋白质家族、激酶和磷酸酯酶家族等。

它们分别在不同的代谢途径和生物学特征中具有不同的作用,因此这些基因家族对于大豆生长和发育具有重要的意义。

二、基因组功能分析大豆基因组在基因结构分析的基础上,进一步通过功能分析来揭示基因的生物学作用和功能机制,探索它们在代谢途径、信号传导和反应等各方面的作用。

1. 代谢途径大豆基因组分析揭示了大豆的代谢途径,如脂肪酸代谢、碳水化合物代谢、氮代谢、植酸代谢等。

这些途径涉及转录因子、代谢基因和氧化还原酶等。

(完整版)基因组的结构和功能

(完整版)基因组的结构和功能

Alec J.Jeffreys和历史上第一张DNA指纹图谱
1802年的一副杰斐逊和莎莉的讽刺画像
(二)中度重复序列: ➢ 中度重复序列是指在基因组中重复数十次 至数万次的部分,其复性速度快于单拷贝 序列,但慢于高度重复序列。
➢中 度 重 复 序 列 中 有 一 部 分 是 编 码 rRNA 、 tRNA、组蛋白及免疫球蛋白的结构基因,另 一部分可能与基因调控有关。
➢ 是由两个相同顺序的互补拷贝在同一DNA 双链上反向排列而成。
反向重复序列的两种形式 发卡结构
回文结构
画上荷花和尚画 书临汉字翰林书
2. 卫星DNA(satellite DNA) : ➢ 卫星DNA的重复单位一般由2~70 bp组成, 成串排列。 ➢ 卫星DNA占基因组的比例随种属而异,在 0.5~31% 范围内。
➢ 同一种属中不同个体的高度重复顺序的重复 次数不一样,这可以作为每一个体的特征, 即DNA指纹 。
➢ STR分析法已经成为法医学领域个体识别和 亲权鉴定的重要分析方法,可应用于司法案 件调查,也就是遗传指纹分析。
15-year old Lynda Mann
15-year old Dawn Ashworth
进行转录,如组蛋白基因家族;
chromosome 7源自2. 基因家族成簇地分布于不同的染色体上并分 别进行转录,且不同基因编码的蛋白质在功 能上相关,如珠蛋白基因家族。
珠蛋白多基因家族的组织结构
-类珠蛋白基因家族
chromosome 11
-类珠蛋白基因家族
chromosome 16
假基因(pseudogene)——又称为加工基因或 非功能基因。这类基因的核苷酸顺序虽然与正 常的结构基因很相似,但基本上不能表达。

基因元件结构和功能的分析研究

基因元件结构和功能的分析研究

基因元件结构和功能的分析研究在生物学的领域中,基因元件是指构成基因的功能模块。

基因元件的结构和功能对维持生命活动有着重要的作用。

在本文中,我们将深入探讨基因元件结构和功能的分析研究。

一、基因元件的结构我们先来了解一下基因元件的结构。

基因元件通常被分为启动子、转录因子结合位点、增强子、剪切位点以及终止子等多个部分。

这些部分都拥有自己独特的功能。

启动子位于基因的上游区域,它是与RNA聚合酶结合的地方,起到调节基因的表达量的作用。

转录因子结合位点则负责吸引转录因子,来进一步激活基因的表达。

增强子则能够增强基因表达量,这一部分在逆转录病毒中有着重要的应用。

另外,剪切位点则是控制蛋白质编码序列的部分,它们能够帮助环状RNA (lncRNA)的剪接过程。

终止子则是指基因末端区域的序列,它们能够控制RNA 聚合酶在基因上的移动,进而使蛋白质表达完成。

二、基因元件的功能基因元件的功能也是非常重要的。

基因元件通过DNA序列间的相互作用,调控基因的表达和维持生物体的稳态。

首先来看启动子,它是基因表达的起点。

启动子中的一些DNA序列能够与RNA聚合酶特异性互相作用,进而促进RNA聚合酶的结合和转录开始。

从而能够实现精确调节基因表达量。

增强子的功能则是增强基因表达量。

它们能够增大某些基因的表达量,并引导蛋白质的编码过程。

这样可以使得基因表达更加精确,并允许生物体在不同的生物环境中产生强力的适应性。

在不同的细胞状态下,增强子的目的也是很重要的。

剪切位点能够影响lncRNA的剪接过程。

lncRNA的剪接有助于它们的功能发挥。

它们可以参与各种生物过程的调节,如翻译、RNA干扰以及转录后的RNA加工等。

终止子也是可以调节基因表达的。

终止子能够调节RNA聚合酶在基因上的移动和停止,这样使得RNA能够非常快速地被制造出来。

同时,终止子的存在也可以使RNA加工的过程进行更加精确和快速。

三、结论基因元件的结构和功能是相互联系的。

这种相互联系导致了大量的生物学和技术应用。

基因网络拓扑结构和功能模块的分析

基因网络拓扑结构和功能模块的分析

基因网络拓扑结构和功能模块的分析近年来,基因组学领域的发展突飞猛进,随着大规模基因测序技术的出现,人们已经可以生成大量的高质量基因网络。

这些基因网络可以揭示基因之间的关系,从而帮助我们研究生命现象的本质和变化规律。

在这些基因网络中,拓扑结构和功能模块的分析是非常重要的,有助于我们更好地理解生命现象,并提出更好的假设来解释这些现象。

基因网络的拓扑结构是指基因之间的连接方式和拓扑属性,包括连接强度、平均路径长度、集聚系数等指标。

在分析基因网络的拓扑结构时,常用的方法有以下几种。

首先,可以使用聚类分析方法将基因分为不同的簇。

聚类分析可以通过计算基因之间的相似性来确定基因之间的相关关系,并将其分为不同的簇。

然后,可以使用网络图来可视化这些簇之间的联系。

同时,还可以利用该方法来推断基因功能,找到与某个生命现象相关的基因群。

其次,可以使用网络分析方法来研究基因网络的拓扑结构。

网络分析可以通过计算网络的度分布、平均路径长度和集聚系数等指标来分析基因网络的特性。

度分布指的是每个基因的连接数,平均路径长度指的是网络中两个节点之间的平均距离,而集聚系数则可以反映基因之间的相似性程度。

通过这些指标的分析,可以更好地理解基因网络的拓扑结构。

除了拓扑结构,基因网络的功能模块也是非常重要的。

基因网络的功能模块是指基因集合的子图,这些子图反映了基因之间的相互关系和相互作用。

在分析基因网络的功能模块时,常用的方法有以下几种。

首先,可以使用模块识别方法来确定功能模块。

模块识别方法可以将基因网络划分为不同的子集(模块),每个子集包含相似的基因。

模块之间可以通过相似性指标(如相似度或相互度)来衡量,也可以使用社会网络分析方法来测量子集之间的相似性。

另外,在寻找模块时,可以利用拓扑结构的信息来提高识别模块的准确性。

其次,可以使用基因集合分析方法来进一步研究功能模块。

基因集合分析是一种常用的数据挖掘方法,可以用于鉴定与某个生命现象相关的基因集。

分子遗传学研究基因的结构与功能

分子遗传学研究基因的结构与功能

分子遗传学研究基因的结构与功能在生物学领域中,分子遗传学是研究基因的结构和功能的一门学科。

通过深入探究基因的组成和相互作用,我们可以更好地理解生命的机理,并为疾病的治疗和遗传改良提供有力的科学依据。

一、基因的结构基因是生物体遗传信息的基本单位,它决定了个体的遗传特征和生物功能。

现代分子遗传学的研究发现,基因是由DNA分子构成的。

DNA分子是由四种核苷酸(腺嘌呤、鸟嘌呤、胞嘧啶和鸟嘌呤)组成的双螺旋结构,它们通过特定的碱基配对规则相互连接。

基因的具体结构可以分为启动子、转录因子结合位点、编码区和终止子等部分。

1. 启动子是位于基因的上游区域,它可以促使转录起始复合物形成,进而启动基因的转录过程。

启动子的特定序列决定了基因的表达水平。

2. 转录因子结合位点是指转录因子与DNA分子特定的结合位置。

转录因子结合位点的变异可以影响转录因子的结合能力,进而调控基因的表达。

3. 编码区是基因中最为重要的部分,它包含了特定的DNA序列,决定了编码特定蛋白质的氨基酸序列。

4. 终止子是基因的末端区域,它标记了基因的终止位置,并帮助转录过程的终止。

二、基因的功能基因的功能主要通过编码蛋白质来实现。

蛋白质是生物体中最重要的功能分子,它们构成了细胞的骨架、酶的催化剂、信号分子的传递者等。

在基因转录过程中,DNA序列被转录成为RNA分子,这一过程是通过RNA聚合酶酶催化完成的。

RNA分子进一步参与到蛋白质的合成中,包括mRNA、tRNA和rRNA等。

mRNA分子携带着编码信息,被翻译成蛋白质的氨基酸序列。

tRNA分子通过与mRNA和氨基酸配对,将氨基酸运输到合成蛋白质的位置,同时rRNA分子组装成核糖体,参与到蛋白质的合成中。

基因还可以通过调控DNA的拷贝数目、启动子的甲基化、转录因子的结合和转录水平的调控等方式发挥功能。

三、研究方法与技术分子遗传学的研究方法与技术日益发展,在揭示基因结构和功能方面发挥了重要作用。

1. 基因工程技术:通过定向改变基因组中的DNA序列,可以制造出特定的基因突变体。

人类基因组结构和功能的分析

人类基因组结构和功能的分析

人类基因组结构和功能的分析随着科学技术的不断发展,人类对基因组结构和功能的分析越来越深入。

基因组是生物体中的所有基因的集合,它是生物体遗传信息的载体。

基因组研究的重要性在于它可以帮助我们更好地了解人类基因的特征、功能和变异,从而为人类健康和疾病的预防、治疗提供帮助。

一、基因组的结构人类基因组是由数十亿个碱基(Adenine、Guanine、Cytosine、Thymine)组成的DNA序列。

在人类常染色体中,每对染色体都携带有近2000个基因。

人类基因组的长度约为3.3亿个碱基。

人类基因是由一段长约20,000个碱基组成的DNA序列编码的。

每个基因都指导细胞合成一种蛋白质,而蛋白质是组织和器官所需要的所有功能的基础。

基因组在遗传信息传递中起着重要的作用。

除了编码蛋白质之外,基因组还包含了各种非编码RNA、调节序列和重复序列。

这些元素之间相互作用并形成各种生物过程的复杂调节网络。

二、基因组的功能基因组在生物进化过程中的作用一直备受关注。

近年来,基因组学研究的深入,使人类对基因组的功能有了更深入的认识。

1. 遗传信息传递基因组是遗传信息传递的重要工具,是相对稳定的基因型。

它通过垂直遗传方式传递给后代。

基因组中所含的基因可编码各种蛋白质,其中一些蛋白质的失调可能导致不同疾病的发生。

2. 细胞分化和组织发育基因组中的基因可以使细胞分化和组织发育。

不同的细胞具有不同的基因表达谱。

这意味着细胞可以通过不同的方式表达其基因来产生不同的蛋白质,并在其特定的生长环境中发挥不同的功能。

3. 慢性病的发生很多慢性病,比如糖尿病、高血压、肥胖症等都是由基因组的不良调节所导致。

研究表明,在这些疾病的风险基因中,可能存在大量用于调节基因表达的DNA序列变异。

4. 物种进化基因组在物种进化中也起着重要作用。

比如,人类的基因组和黑猩猩基因组的比较研究,为人类的进化史提供了重要证据。

三、基因组研究的应用基因组学研究应用范围非常广泛,涉及医学、农业、工业、环境等多个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酶Ⅱ型启动子,数据库中的所有启动子数据信息都经过
实 验 证 实 ; TRRD ( transcription regulatory region databases)是一个转录调控区数据库,数据来源于已发
表的科学论文。
目录
四、基因析RNA剪接的方法: ① 基于DNA芯片的分析法 ② 交联免疫沉淀法 ③ 体外报告基因测定法
目录
(三)用数据库分析基因编码序列
在基因数据库中,对各种方法所获得的 cDNA 片段的 序列进行同源性比对,通过染色体定位分析、内含子 ∕外显
子分析、ORF分析及表达谱分析等,可以初步明确基因的
编码序列,并可对其编码产物的基本性质进行分析。 利用有限的序列信息即可通过同源性搜索获得全长基 因序列,然后,利用 NCBI 的 ORF Finder 软件或 EMBOSS 中的getorf软件进行ORF分析,并根据编码序列和非编码序
构特征进行判断, mRNA 的序列基本都由 3部分组成,
即5-UTR、编码序列和3-UTR。 cDNA末端快速扩增(RACE)技术是高效钓取未 知基因编码序
目录
(二)用RNA剪接分析法确定基因编码序列
选择性剪接的转录产物可以通过基因表达序 列标签(expression sequence tag, EST)的比较 进行鉴定,但这种方法需进行大量变异体也很可能丢失。
目录
(三)用免疫组化实验原位检测组织/细胞表达 的蛋白质/多肽
免疫组化实验包括免疫组织化学和免疫细胞化学实验,
二者原理相同,都是用标记的抗体在组织/细胞原位对目标 抗原(目标蛋白质/多肽)进行定性、定量、定位检测。
目录
二、基因转录起点分析技术
转录起点(transcription start site,TSS)
(一)用cDNA克隆直接测序法鉴定TSS
以mRNA为模板,经逆转录合成cDNA第一链,同时 利用逆转录酶的末端转移酶活性,在cDNA第一链的末端 加上polyC尾,并以此引导合成cDNA第二链。将双链 cDNA克隆于适宜载体,通过对克隆cDNA的5-末端进行测 序分析即可确定基因的TSS序列。 该方法比较简单,尤其适于对特定基因TSS的分析。 但可导致5-末端部分缺失,从而影响对TSS的序列测定。
目录
(二)用5-cDNA末端快速扩增技术鉴定TSS
常用的技术包括5-末端基因表达系列分析(5-end serial analysis of gene expression,5-SAGE)和帽分析基因表达 (cap analysis gene expression,CAGE)技术。
目录
(三)用数据库搜索TSS
用能切断DNA 骨架的化学试剂处理 DNA-蛋白质 复合物,由于化学试剂无法接近结合了蛋白质的 DNA 区域,因此在电泳上形成空白区域的位置 就是 DNA 结合蛋白的结合位点。最常用的化学
足 迹 法 是 羟 自 由 基 足 迹 法 ( hydroxyl radical
footprinting)。
目录
目录
(四)循环芯片测序被称为第二代测序技术
循环芯片测序(cyclic-array sequencing)
优势: ① 可实现大规模并行化分析 ② 不需电泳,设备易于微型化 ③ 样本和试剂的消耗量降低,降低了测序成本
技术平台:454测序、Solexa测序(Illumina测序)、 SOLiD测序等。
目录
测定,从而快速获得转录组或基因组的全貌。
目录
二、通过检测蛋白质/多肽而在翻译水平 分析基因表达
(一)用蛋白质印迹技术检测蛋白质/多肽 (二)用酶联免疫吸附实验分析蛋白质/多肽
酶联免疫吸附实验( ELISA )也是一种建立 在抗原-抗体反应基础上的蛋白质/多肽分析方法, 其主要用于测定可溶性抗原或抗体,
在定义启动子或预测分析启动子结构时应包括启 动子区域的3个部分 ① 核心启动子(core promoter); ② 近端启动子(proximal promoter):含有几个 调控元件的区域,其范围一般涉及TSS上游几百个碱基; ③ 远端启动子( distal promoter ):范围涉及 TSS上游几千个碱基,含有增强子和沉默子等元件。
目录
(一)双脱氧法和化学降解法是两种常规的 DNA测序方法
Sanger双脱氧测序(dideoxy sequencing)法
目录
Maxam-Gilbert化学降解测序法
目录
(二)全自动激光荧光DNA测序技术的原理 基于Sanger双脱氧法
1. 四色荧光法: 采用四种不同的荧光染料标记同一引物或4种不同的 终止底物 ddNTP,最终结果均相当于赋予 DNA片段 4种不 同的颜色。因此,一个样品的 4 个反应产物可在同一个泳 道内电泳。 2. 单色荧光法: 采用单一荧光染料标记引物 5′-端或dNTP,所有产物 的5′-末端均带上了同一种荧光标记,一个样品的四个反应 必须分别进行,相应产物也必须在四个不同的泳道内电泳
目录
2. 预测启动子的其他结构特征
启动子区域的其他结构特征包括 GC 含量、 CpG 比 率、转录因子结合位点、碱基组成及核心启动子元件等。 用 于 启 动 子 预 测 的 数 据 库 : EPD ( eukaryotic promoter databases )数据库,主要预测真核 RNA 聚合
目录
(一)用核酸杂交法检测RNA表达水平 1. 用RNA印迹分析RNA表达 RNA 印迹被广泛应用于 RNA 表达分析,并 作为鉴定RNA转录本、分析其大小的标准方法。 2. 用核糖核酸酶保护实验分析RNA水平及其剪接情况 RNA 酶 保 护 实 验 ( ribonuclease protection assay , RPA )是一种基于杂交原理分析 RNA 的方 法,既可进行定量分析,又可研究其结构特征。
生物化学与分子生物学
目录
第二十二章
基因结构与功能分析技术
The Analysis Technology for Gene Structure and Function
目录
人类的多种疾病都与基因的结构或功能异常 有关,因此,要阐明疾病发生的分子机制和 进行有效的诊断与防治,均需首先揭示基因 的结构与功能。
利用对寡核苷酸帽法构建的全长cDNA文 库5-末端测序所得的数据信息建立了一个TSS 数据库(database of transcription start sites,
DBTSS),并在此基础上,通过将寡核苷酸帽
法和大量平行测序技术相结合开发了一种TSS 测序法,从而实现了一次测试可产生1×107 个 TSS的数据。
基本流程:
① 将基因组DNA随机切割成为小片段DNA; ② 在所获小片段DNA分定于固体 表面; ④ 对固定片段进行克隆扩增,从而制成polony 芯片。 ⑤ 针对芯片上的DNA,利用聚合酶或连接酶进 行一系列循环反应,通过读取碱基连接到 DNA链过程中释放出的光学信号而间接确定 碱基序列。
列的结构特点,便可确定基因的编码序列。
目录
五、基因拷贝数分析技术
分析某种基因的种类及拷贝数,实质上就是对 基因进行定性和定量分析,常用的技术包括 DNA 印迹(Southern印迹)、实时定量PCR技术等。 DNA 印迹是根据探针信号出现的位置和次数 判断基因的拷贝数
实时定量PCR是通过被扩增基因在数量上的差
目录
(1)用核酸酶进行足迹分析
酶 足 迹 法 ( enzymatic footprinting ) 是利用 DNA 酶处理 DNA蛋白质复合物,然后通过 电泳分析蛋白质结合序列。 常用的酶有 DNA 酶 I ( DNase I )和核酸外切 酶III。
目录
(2)用化学试剂进行足迹分析
化学足迹法( chemical footprinting )是利
目录
(五)单分子测序技术被称为第三代测序技术
主要策略:
① 通过掺入并检测荧光标记的核苷酸,来实现单分 子测序,如单分子实时技术(single molecule real time technology,SMRT); ② 利用DNA聚合酶在DNA合成时的天然化学方式 来实现单分子测序; ③ 直接读取单分子DNA序列信息。
异推测模板基因拷贝数的异同
DNA测序是最精确的鉴定基因拷贝数的方法
目录
第二节 基因表达产物分析技术
目录
一、通过检测RNA而在转录水平分析 基因表达
根据分析方法的原理和功能特性,可将基因 转录水平分析分为封闭和开放性系统研究方法。 封闭性系统研究方法(如 DNA 芯片、 RNA 印迹、实时 RT-PCR 等)的应用范围仅限于已知 基因。开放性系统研究方法(如差异显示PCR、 双向基因表达指纹图谱、分子索引法、随机引物 PCR指纹分析等)可用于发现和分析未知基因。
目录
三、基因启动子结构分析技术
(一)用PCR结合测序技术分析启动子结构
该方法最为简单和直接,即根据PCR法扩增启动
子,经测序分析启动子序列结构。
目录
(二)用核酸-蛋白质相互作用技术分析启动 子结构
1. 用足迹法分析启动子中潜在的调节蛋白结合位点 足迹法(footprinting)是利用DNA电泳条带 连续性中断的图谱特点判断与蛋白质结合的DNA 区域,它是研究核酸-蛋白质相互作用的方法,而 不是专门用于研究启动子结构的方法。 分类:酶足迹法 化学足迹法
2. 用电泳迁移率变动分析和染色质免疫沉淀技术鉴定 启动子 电泳迁移率变动分析( EMSA )和染色质免 疫沉淀(ChIP)只能确定DNA序列中含有核蛋白 结合位点,故尚需结合DNA足迹实验和 DNA测序 等技术来确定具体结合序列。
目录
(三)用生物信息学预测启动子
1. 用启动子数据库和启动子预测算法定义启动子
目录
(三)焦磷酸测序是一种基于发光法测定焦磷 酸的测序技术
焦磷酸测序技术操作简单, 结果准确可靠,可应用于单核 苷酸多态性位点(SNP)分析、 等位基因频率测定、细菌和病 毒等微生物的分型鉴定、CpG 甲基化分析、扫描与疾病相关 基因序列中的突变点等领域。 该方法 的 测 序 长 度一般短于 Sanger法。
相关文档
最新文档