三相变压器的连接组别
三相变压器的连接组别(星形连接、三角形连接)

三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
三相变压器联结组别判断方法

三相变压器联结组别(标号)的判定方法一、联结组别(标号)概念三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。
采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。
B.12639图1-1二、影响联结组别的因素三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。
(一)联结方法的影响变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。
常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax绕组的x端可以和b连接,也可以与c连接。
按照ax-by-cz-ax 顺序接线的称为顺接,按照ax-cz -by-ax 顺序接线的称为逆接;星形接法用Y 表示;三角形接法用D 表示,如图1-2所示。
Czcab .cca b图1-2(a )星形联结 (b )三角形联结(顺联) (c )三角形联结(逆联)在三相变压器里 ,一次绕组的首端用A 、B 、C 表示 ;末端用X 、Y 、Z ;二次绕组的首端用a 、b 、c 表示,末端用x 、y 、z 表 示。
星形接法中点可以引出中线,也可以不引出。
这样,一、二绕组的接法就有各组合:(1)Y,y 或YN,y 或Y,yn;(2)Y,d 或YN,d;(3)D,y 或D,yn;(4)D,d 。
其中大写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接法的中心点引出标志。
(二)绕组电动势相位的影响在变压器的接线图中 ,一次绕组按A 、B 、C 相序排列,相位保持不变 ;二次绕组按a 、b 、c 相序排列,相位可有改变(abc 、bca 、cab )。
同一铁心柱上的绕组属于同一相,相位相同 ;错开一个铁心柱相位滞后1200,钟点数按顺时针方向增加4h ,错开两个铁心柱,相位滞后2400,钟点数按顺时针方向增加8h ,如图1-3(a )、(b )所示。
三相变压器联结组别判断方法

三相变压器联结组别(标号)的判定方法一、联结组另U (标号)概念三相变压器的联结组别是指三相变压器一次(高压)绕组的线电压(电动势与二次(低压)绕组的线电压(电动势)之间的相位关系。
采用所谓的时钟表示法,就是把高压绕组的电压向量看成是时钟的长针,低压绕组的电压向量看成时钟的短针,长针指向12,看短针指在哪个数字上,这个数字即连接组号,如图1-1所示。
图1-1二、影响联结组别的因素三相变压器的联结组别与绕组的联结方法、各相电动势的相位及同名端的标志有关。
(一)联结方法的影响变压器绕组最常用的联结方式有星形、三角形接法,也有开口三角形、自藕形和曲接形(Z形)接法。
常见的有星形和三角形接法,而三角形接法又有逆接和顺接两种,即ax绕组的X端可以和b连接,也可以与C连接(1)Y,y 或 YN,y 或 Y,yn;(2)Y,d 或 YN,d;(3)D,y 或 D,yn;(4)D,d 。
其中大 写字母表示高压绕组接法,小写字母表示低压绕组接法,字母N,n 是星形接 法的中心点引出标志。
(二)绕组电动势相位的影响在变压器的接线图中 ,一次绕组按 A 、B 、C 相序排列,相位保持不 变;二次绕组按 a 、b 、C 相序排列,相位可有改变(abc 、bca 、Cab )。
同一铁心柱上的绕组属于同一相,相位相同 ;错开一个铁心柱相位滞后1200,钟点数按顺时针方向增加4h ,错开两个铁心柱,相位滞后2400,钟点数按顺时针方向增加 8h ,如图1-3 (a )、(b )所示。
按照ax-by-cz-ax 顺序接线的称为顺接,按照 ax-cz -by-ax 顺序接线的称为逆接;星形接法用 Y 表示;二角形接法用 D 表示,如图 1-2所示。
* UC(a )星形联结 在三相变压器里 (b )三角形联结(顺联) ,一次绕组的首端用 A B 、 (C )三角形联结(逆联)C 表示;末端用X 、丫、Z 二次绕组的首端用a 、b 、C 表示,末端用x 、y 、Z 表 示。
三相变压器接线组别

Y型接线组别的优缺点
优点
结构简单、维护方便、成本低廉 、运行稳定。
缺点
不能承受较大的不平衡负载,当 一相断路时,其它两相电压会升 高,需要配置相应的保护措施。
03
Δ型接线组别
Δ型接线组别的特点
三个线圈呈三角形连接,每个线圈的首尾相接。 三个线圈的匝数相等,相位差为120度。
输入输出电压比为3:1或1:3。
其他特殊接线组别
其他特殊接线组别包括各种不同的接线方式,如三相-三相变压器 接线、三相-单相变压器接线等。这些特殊接线组别通常用于特定 的应用场合,以满足不同的需求。
特殊接线组别的优点在于其能够实现特定的功能,如电压变换、 相位变换等。
然而,特殊接线组别也存在一些缺点,例如其结构复杂、维护困 难等。因此,在实际应用中需要根据具体需求进行选择。
02
Y型接线组别
Y型接线组别的特点
三个线圈的尾端连接 在一起,首端引出作 为电源或负载的接线 端。
输出电压与输入电压 同相位。
三个线圈的匝数相等, 相位差为120度。
Y型接线组别的应用场景
适用于高压输电线路的三相变压 器。
适用于需要三相平衡供电的工业 和商业场所。
适用于需要降低谐波干扰的场合。
Δ型接线组别的应用场景
适用于高压输电线路的三相变压器。
适用于需要平衡三相负载的电力系统。
适用于需要高电压或大电流的工业应 用。
Δ型接线组别的优缺点
优点
结构简单,制造方便,运行稳定,能 够承受较大的短路电流。
缺点
不能实现电气隔离,需要额外的隔离 变压器或光耦等设备来实现电气隔离 。
04
其他接线组别
三相变压器接线 组别
目录
三相变压器的连接组别

பைடு நூலகம்
( 1 ) Y/Y-12 ( Y , y12 )
*
ÙAB =Ùab =-
*
ÙA
Ùa Ùab
ÙA +ÙB
Ùa +Ùb
- ÙA ÙB
ÙAB
*
*
ÙB Ùb ÙC 12 ÙAB 3 Ùc
* *
ÙAB Ùb Ùc
ÙAB
Ùab ÙA Ùa
9 ÙC
Ùab
6
(2) Y/Y-6 ( Y , y6 ) ÙAB = - ÙA + Ù B
ÈA A* ÈA Èa X a
原磁通 减少
*
新产生的 磁通
x
Èa
*
原磁通 增加
ÈA*
A
X a x
*
ÈA
新产生的 磁通
Èa
如下图所示,当原磁通增 加时,A和a( X 和 x )也为同 名端。
*
Èa
三、变压器的连接组别
1、连接组别
变压器高、低压两侧三相绕组的连接方式以及 对应线电压的相位关系(连接组标号),称为变 压器的连接组别。 2、连接组别标号的时钟表示法 以变压器高压侧线电压为时钟的长针,永远 固定在“ 12 ”的位置上,以低压侧对应的线电压 为时钟的短针,短针所指的时数就是变压器连接 组的标号。
纲
二、变压器的极性
要
一、三相变压器的连接方法
三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
将三相绕组的三个末端 X , Y , Z (低压x ,y,z) 分别连接在 一起,三个首端 A 、 B 、 C (低压 a、b、c) 分别引出,便构成星形连 接,用 Y表示 (新:高压Y,低压 y )。 2 、 三角形连接 将高、低压绕组的一相末端 与另一相的首端分别依次连接在 一起,构成一个回路,便构成三 角形连接,用△表示( 新:高压 D,低压d )。 顺序三角形接法:ax-by-cz-a 逆序三角形接法:ax-cz-by-a
三相变压器的连接组别

三相变压器的连接组别一、Dyn11与Yyn0的区别三角形对星形接法,DYn11:D表示一次绕组为三角型接线,Y表示二次测绕组星型接线,n表示引出中性线,11表示二次测绕组的相角滞后一次绕组330度,用时钟的表示方法,假设一次测绕组为中心12点时刻,那么二测绕组就在11点位臵Yyn0:高压星形连接、低压星形连接并引出中性线;Dyn11:高压三角形连接,低压星形连接并引出中性线。
当低压三相负载不平衡时,低压线圈存在零序电流,Yyn0连接的变压器由于高压星形连接,零序电流没有通路,所以低压零序电流产生零序磁通,从而感应出零序电势,也就是说相电压存在零序分量,使得三相相电压失去平衡,波形失真。
而在Dyn11连接的变压器中,由于高压是三角形连接,高压线圈中也感应出零序电流,它所产生的零序磁通抵消低压所产生的零序磁通,相电压中就不存在零序分量了。
所以说,Dyn11变压器比Yyn0变压器带不平衡负载的能力强。
但 Yyn0变压器结构要简单些,一般在1600KVA以下小容量的的变压器中仍然可以采用这种接法。
1)根据配电线路负荷的特点,美式箱变采用Dyn11结线,具有输出电压质量高、中性点不漂移、防雷性能好等特点。
在箱变低压侧三相负荷不平衡时,由于零序电流和三次谐波电流可以在高压绕阻的闭合回路内流通,每个铁心柱上的总零序磁势和三次谐波磁势几乎等于零,所以低压中性点电位不漂移,各项电压质量高;同样由于雷电流也可以在高压绕阻的闭合回路内流通,雷电流在每个铁心柱上的总磁势几乎等于零,消除了正、逆变换过电压,所以防雷性能好,但存在非全相运行问题,我公司采取在低压主开关加装欠压保护装臵。
2)Yyn0接线,当高压熔丝一相熔断时,将会出现一相电压为零,另两相电压没变化,可使停电范围减少至1/3。
这种情况对于低压侧-9*3为单相供电的照明负载不会产生影响。
若低压侧为三相供电的动力负载,一般均配臵缺相保护,故此不会造成动力负载因缺相运行而烧毁。
三相变压器的连接组别

Δ/Y-11连接
一次绕组为Δ型连接,二次 绕组为Y型连接,且一次绕 组的线电压超前于二次绕 组的线电压30度,适用于 需要输出电压幅值小于输 入电压幅值的场合。
03 三相变压器连接组别的判 断方法
通过绕组接线端子进行判断
总结词
通过观察三相变压器绕组的接线端子,可以初步判断其连接组别。
详细描述
根据接线端子的排列和连接方式,可以大致判断出变压器的连接组别。例如, 如果接线端子顺序为"Y-Y-Y",则可能是"Y"型连接组别;如果接线端子顺序为 "D-D-D",则可能是"D"型连接组别。
在无功补偿装置中的应用
无功补偿原理
三相变压器在无功补偿装置中起到关键 作用。通过调整变压器的变比,可以改 变无功补偿装置的输出电压,从而实现 对系统无功的补偿或吸收。
VS
无功补偿装置的应用
在电力系统中,无功补偿装置通常与三相 变压器配合使用,以实现系统的无功平衡 和电压稳定。通过合理配置三相变压器的 连接组别,可以优化无功补偿装置的性能 ,提高电力系统的稳定性。
在电机控制中的应用
电机启动控制
通过三相变压器,可以实现电机的启动控制。通过改变变压 器的输入电压或电流,可以控制电机的启动转矩和启动速度 ,从而实现对电机的精确控制。
电机调速控制
利用三相变压器的变比特性,可以实现电机的调速控制。通 过改变变压器的匝数比或相位角,可以改变电机输入的电压 或电流,从而实现电机的调速。
电压变换
通过三相变压的变换,实现电力系统中的电压 等级转换,满足不同设备的用电需求。
隔离与保护
三相变压器能够隔离故障设备,减小故障影响范 围,提高电力系统的稳定性和安全性。
三相变压器的连接组别

三相变压器的连接组别三相变压器是一种常见的电力设备,用于将电能从一种电压水平转换为另一种电压水平。
其连接组别是指变压器的三个相线如何连接以实现所需的电压转换。
在三相变压器中,有两种常见的连接组别方式:星形连接组别(Y 型连接)和三角形连接组别(Δ型连接)。
1. 星形连接组别(Y型连接):在星形连接组别中,变压器的三个相线的连接形成一个星形。
这意味着变压器的winding的一个端点集中连接在一起,并且该点是系统的中性点。
另外两个端点通过电缆连接到三相电源或负载。
星形连接组别常用于系统中电压较低的一侧,而不适用于高电压一侧。
星形连接组别的优点包括:- 提供对称的电压和电流分配,减少不平衡问题。
- 较低的绝缘要求,因为相线与中性点的绝缘相对较小。
- 使系统能够接地,并提供对地故障电流的路径。
星形连接组别的缺点包括:- 较低的电压变换比,因为相线与中性点之间有额外的电阻。
- 需要中性点的绝缘,以保证安全。
2. 三角形连接组别(Δ型连接):在三角形连接组别中,变压器的三个相线的连接形成一个闭合的三角形回路。
这意味着电流在三个相线之间按顺序循环,并且没有中性点。
三角形连接组别常用于系统中电压较高的一侧,因为它可以实现较高的电压变换比。
三角形连接组别的优点包括:- 较高的电压变换比,因为没有额外的电阻。
- 高电流负载能力,适用于大功率负载。
三角形连接组别的缺点包括:- 不提供对称的电压和电流分配,可能会导致不平衡问题。
- 更高的绝缘要求,因为相线之间的电压相对较高。
除了以上的两种常见的连接组别方式,还有其他一些特殊的连接组别方式,例如Zig-Zag连接组别、V连接组别等。
这些连接组别方式根据具体的应用和需求而定,用于特殊的电压转换和电力系统配置。
需要注意的是,无论使用哪种连接组别方式,安全性都是非常重要的。
变压器应该根据规范进行正确的接线和绝缘,以确保电能转换的安全和稳定。
总结:三相变压器的连接组别是指变压器的三个相线如何连接以实现所需的电压转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三相变压器的连接方法 二、变压器的极性 三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
A
将三相绕组的三个末端 X ,
B
Y , Z (低压x ,y,z) 分别连接在
C
一起,三个首端 A 、 B 、 C (低压
a、b、c) 分别引出,便构成星形连
接,用 Y表示 (新:高压Y,低压
ÙAB
ÙAB = - ÙA +ÙB Ùab = Ùb
ÙB
A
*
ÙA
Ùa
*
ÙB
Ùb
*
ÙC
Ùc
逆序三角形接法
bz Ùb
ÙAB
Ùc cx
Ùa
a y ÙA
ÙC
12
9
Ùab ÙAB
3
6
a
*Ù
ab
*
*
四、变压器连接组别综述(小结)
1、变压器的连接组别很多,为了制造和并列运行 的方便,我国电力变压器只生产Y/Y0-12、 Y0/Y12 、 Y/Y-12 、Y/△-11 及Y0/△-11五种连接组别,
y )。
2 、 三角形连接
将高、低压绕组的一相末端
与另一相的首端分别依次连接在
一起,构成一个回路,便构成三
A
角形连接,用△表示( 新:高压
D,低压d )。
顺序三角形接法:ax-by-cz-a
逆序三角形接法:ax-cz-by-a
Xx
a
Yy
b
Zz
c
星形连接
顺序三角形接法 a
逆序三角形接法
二、变压器的极性
同极性端(同名端):
任意瞬间,高压绕组的某 一端点的电位为正(高电位)
ÈA
A*
ÈA
时,低压绕组必有一个端点的 电位也为正(高电位),这两 个具有正极性或另两个具有负
Èa X a
* Èa
x
极性的端点称为同极性端或同 *
名端。
如上图所示,当原磁通 减少时A和a( X 和 x )为
ÈA* A *
同名端。
Èa
ÈA
如下图所示,当原磁通增 加时,A和a( X 和 x )也为同 名端。
X
a * Èa
x
原磁通 减少
新产生的 磁通
原磁通 增加
新产生的 磁通
三、变压器的连接组别
1、连接组别
变压器高、低压两侧三相绕组的连接方式以及 对应线电压的相位关系(连接组标号),称为变 压器的连接组别。 2、连接组别标号的时钟表示法
3
Ùb
6
(3) Y/△ -1 ( Y , d1 )
ÙAB
ÙAB = - ÙA +ÙB Ùab = - Ùa
ÙB
ÙAB
- Ùa
ÙA
bx
Ùa
Ùb
ÙC
az
Ùc y c
* ÙA
* Ùa
Ùab
* ÙB
* Ùb
* Ù顺C 序三角形接法Ùc
*
12
9
ÙAB
Ùab 3
6
(4) Y/△ -11 ( Y , d11 )
其中Y/Y0-12、 Y/△-11、 Y0/△-11三种最常用。
2、 Y/Y0-12、 Y0/Y-12的相量图 与Y/Y-12相同,只 是接线上前者低压绕组有中线,后者高压绕组有中 线。 3、 Y0/△-11的相量图 与Y/△-11相同,只是接线上 Y0/△-11高压绕组有中线。
4、变压器的连接组别的分析步骤
ÙB
*
ÙC 12
*
Ùa
Ùab
*Байду номын сангаас
Ùb
*
Ùc
Ùab
Ùb
9 Ùab
ÙAB
3
ÙA Ùa Ùc
ÙC
6
(2) Y/Y-6 ( Y , y6 )
ÙAB = - ÙA + Ù B Ù ab = Ùa - Ù b
ÙB
*
ÙAB
ÙA
* ÙB
* Ùa
Ù
ab
* Ùb
ÙAB
*
*
ÙC
Ùc
12
Ùc
Ùa
ÙA
Ùab
Ùab
ÙC
9 Ùab
以变压器高压侧线电压为时钟的长针,永远 固定在“ 12 ”的位置上,以低压侧对应的线电压 为时钟的短针,短针所指的时数就是变压器连接 组的标号。
3 、变压器连接组别示例
( 1 ) Y/Y-12 ( Y , y12 )
*
ÙAB =- ÙA +ÙB Ùab =- Ùa +Ùb
ÙAB
ÙA
*
ÙB ÙAB
- ÙA ÙAB
谢谢观看! 2020