人教版七年级下学期期末综合达标训练卷[答案]

合集下载

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.在实数0,-π,和-4中,最小的数是( )A .0B .-πC .D .-42.下列计算中,正确的是( )A 2=±B 1=-C 7=-D .5=3.已知点P (x ,y )在第二象限,且2x =,3y =则点P 的坐标为( )A .(-2,3)B .(2,-3)C .(-3,2)D .(2,3)4.将△ABC 沿AB 方向平移到△EFD 的位置,若∠1=31°,∠2=57°,则∠D 的度数为( )A .91°.B .90°.C .92°.D .105°. 5.若m 为任意实数,点(2m +1,m -2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,下列能判定AB ∥EF 的条件有( )①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A .1个B .2个C .3个D .4个7.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是( )A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况8.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对七年级学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作出如下两幅不完整的统计图.由图中信息可知,下列结论错误的是( )A .本次调查的样本容量是600B .选“奉献”的有90人C .扇形统计图中“感恩”所对应的扇形圆心角度数为108°D .选“感恩”的人数比选“敬畏”的人数多100人9.某校运动员分组训练,若每组6人,则余3人;若每组7人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .{6y =x −37y =x +5B .{6y =x −37y +5=xC .{6y =x +37y +5=xD .{6y =x +37y =x +510.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A .6环B .7环C .8环D .9环11.已知二元一次方程组{5m +4n =200①4m −5n =8②,如果用加减法消去n ,则下列方法可行的是( ) A .①×4+②×5B .①×5+②×4C .①×5﹣②×4D .①×4﹣②×512.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤二、填空题(本大题共4小题,每小题2分,共8分)13.比较大小用“>”、“<”或“=”填空)14.如图,直线AB CD ,55B ∠=︒和35D∠=︒,则E ∠的度数是 度15.某校学生会组织七年级和八年级共30名同学参加环保志愿者活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于500个,则七年级学生参加活动的人数至多是名16.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是度.三、解答题(本答题共8小题,共56分)17|118.已知ABC在平面直角坐标系中的位置如图所示.将ABC向右平移6个单位长度,再向下平移6个单位长度得到111.(A B C图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的111A B C;(2)直接写出111A B C各顶点的坐标.19.若方程组342312x yax by+=⎧⎨-=⎩与25210x yax by-=⎧⎨+=⎩有相同的解,求a与b的值.20.解不等式组4(1)713843x xxx+≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.21.某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:.4045A x ≤< .4550B x ≤< .5055C x ≤< .5560D x ≤< .6065E x ≤< .6570F x ≤≤ 并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题(1)补全频数分布直方图,并求出 m 的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?22.如图,已知ACB BDE ∠=∠ 180CAD E ∠+∠=︒.(1)AD 与EF 平行吗?试说明理由.(2)若DA 平分∠BDE ,60ACB BAC ∠=∠=︒ 求证:EF AF ⊥.23.小明家原有15头大牛和5头小牛,每天约用饲料325kg ;三月后,由于经济效益好,小明父亲决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需要多少饲料?若小明父亲估计每头大牛1天约需要饲料15~18kg ,每头小牛1天约需要饲料7~8kg ,你觉得小明父亲的估计准确吗?24.某单位为做好防疫物资调配发放工作,租用A 、B 两种型号的车给全市各个防疫点配送消毒液。

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。

人教版数学七年级下册期末达标检测卷(含答案)

人教版数学七年级下册期末达标检测卷(含答案)

期末达标检测卷一、选择题(每题3分,共30分)1.以下不适合用全面调查的是( )A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解全市中小学生每天的零花钱2.下列各等式中,正确的是( )A .-(-3)2=-3B .±32=3C .(-3)2=-3D .32=±33.已知a ,b 两个实数在数轴上的对应点如图所示,则下列各式一定成立的是( )A .a -1>b -1B .3a >3bC .-a >-bD .a +b >a -b4.如图,AB ∥CD ,EF ⊥AB 于点E ,EF 交CD 于点F ,EM 交CD 于点M ,已知∠1=55°,则∠2=( )A .55°B .35°C .125°D .45°5.如果点M (3a -9,1+a )是第二象限的点,则a 的取值范围在数轴上表示正确的是( ) 6.如图,将四边形ABCD 先向左平移3个单位长度,再向下平移3个单位长度,那么点D 的对应点D ′的坐标是( )A .(0,1)B .(6,1)C .(6,-1)D .(0,-1)7.甲、乙两人练习跑步,如果让乙先跑10 m ,那么甲跑5 s 就追上了乙;如果让乙先跑2 s ,那么甲跑4 s 就追上了乙,求甲、乙两人的速度.若设甲、乙两人的速度分别为x m/s ,y m/s ,则下列方程组正确的是( )A.⎩⎨⎧5x +10=5y ,4x -4y =2B.⎩⎨⎧5x =5y +10,4x -2=4yC.⎩⎨⎧5x -5y =10,4(x -y )=2yD.⎩⎨⎧5(x -y )=10,4(x -2y )=2x 8.若关于x 的不等式组⎩⎪⎨⎪⎧2x <3(x -3)+1,3x +24>x +a 有四个整数解,则a 的取值范围是( ) A .-114<a ≤-52 B .-114≤a <-52 C .-114≤a ≤-52 D .-114<a <-529.某校现有学生1 800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试.现抽取部分测试成绩(得分取整数)作为样本,进行整理后分成五组,并绘制成频数分布直方图(如图).根据图中提供的信息,下列判断不正确的是( )A .样本容量是48B .估计本次测试全校在90分以上的学生约有225人C .样本中70.5~80.5这一分数段内的人数最多D .样本中50.5~70.5这一分数段内的人数所占比例是25%10.已知方程组⎩⎨⎧x +y =1-a ,x -y =3a +5的解x 为正数,y 为非负数,给出下列结论:①-1<a ≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共30分)11.-5的绝对值是________,116的算术平方根是________.12.下列命题:①不相交的直线是平行线;②同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④对顶角相等.其中是真命题的有________(填序号).13.已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是________.14.某冷饮店一天售出各种口味雪糕量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味的雪糕________支.15.如图,直线AB ,CD 交于点O ,OE ⊥AB ,若∠AOD =50°,则∠COE 的度数为________.16.如图,点E 在AC 的延长线上,给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A =∠DCE ;(4)∠D +∠ABD =180°.能判断AB ∥CD 的有________个. 17.如图,ABCD 是一块长方形场地,AB =18米,AD =11米,A ,B 两个入口处的小路的宽都为1米,两小路汇合处的路宽为2米,其余部分种植草坪,则草坪面积为________平方米.18.如果关于x ,y 的方程组⎩⎨⎧x +2y =6+k ,2x -y =9-2k的解满足3x +y =5,则k 的值为________. 19.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排________人种甲种蔬菜.20.如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其排列顺序为图中“→”所指方向,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 025个点的坐标为________.三、解答题(21,22题每题8分,23,24题每题10分,25,26题每题12分,共60分)21.计算下列各题:(1)35+23-|35-23|; (2)(-2)2-327+|3-2|+ 3.22.解方程组或不等式组:(1)⎩⎨⎧6x +5y =31,①3x +2y =13;② (2)⎩⎪⎨⎪⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②23.如图,在平面直角坐标系中,OA=2,OB=3,现同时将点A,B向上平移2个单位长度,再向右平移2个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)写出点A,B,C,D的坐标;(2)在线段CO上是否存在一点P,使得S三角形CDP=S三角形PBO?如果存在,试求出点P的坐标;如果不存在,请说明理由.24.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,抽样调查了某中学七年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图所示两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值是________,该校七年级学生共有________人;(2)在该次抽样调查中,活动时间为5天的学生有________人,并补全条形统计图;(3)如果该市七年级的学生共有2 000人,根据以上数据,试估计这2 000人中“活动时间不少于4天”的学生有多少人.25.如图①,已知直线l1∥l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别相交于C,D两点,记∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________;(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.26.某地区遭受罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往该中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.该单位怎样安排可使运费最少?最少运费是多少元?答案一、1.D 2.A3.C 点拨:由数轴可知a <b <0,则b <-b ,根据不等式的性质可知a -1<b -1,3a <3b ,-a >-b ,a +b <a -b ,故C 正确.4.B5.A 点拨:因为点M (3a -9,1+a )在第二象限,所以⎩⎨⎧3a -9<0,1+a >0.解不等式组得-1<a <3.故选A.6.D 点拨:由题图可知D 点的坐标为(3,2),向左平移3个单位长度,再向下平移3个单位长度,即横坐标减3,纵坐标减3,即D ′(0,-1),故选D .7.C8.B 点拨:先解不等式组,得8<x <2-4a .在这个解集中,要包含四个整数,在数轴上表示如图.则这四个整数解为9,10,11,12.从图中可知12<2-4a <13.即-114<a <-52.而当2-4a =12,即a =-52时,不等式组只有三个整数解;当2-4a =13,即a =-114时,不等式组有四个整数解,故-114≤a <-52.9.D10.B 点拨:解方程组得⎩⎨⎧x =3+a ,y =-2a -2. ①由题意得,3+a >0,-2a -2≥0,解得-3<a ≤-1,①不正确;②当3+a =-2a -2时,a =-53,②正确;③当a =-2时,x +y =1-a =3,5+a =3,③正确.故选B.二、11.5;14 12.④ 13.(-3,2) 14.150 15.40° 16.317.160 点拨:由题图可知:长方形ABCD 中去掉小路后,草坪正好可以拼成一个新的长方形,且它的长为(18-2)米,宽为(11-1)米.所以草坪的面积应该是长×宽=(18-2)×(11-1)=160(平方米).18.10 点拨:方程组⎩⎨⎧x +2y =6+k ,①2x -y =9-2k ,②①+②得,3x +y =15-k .因为3x +y =5,所以15-k =5,解得k =10.19.4 20.(45,0)三、21.解:(1)原式=35+23-35+23=4 3.(2)原式=2-3+2-3+3=1.22.解:(1)②×2得,6x +4y =26,③①-③得,y =5.将y =5代入①得,6x +25=31,则x =1.所以方程组的解为⎩⎨⎧x =1,y =5.(2)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.23.解:(1)A (-2,0),B (3,0),C (0,2),D (5,2).(2)存在.设点P 的坐标为(0,y ),因为线段CD 是由线段AB 平移得到的,所以CD =AB =5.因为S 三角形CDP =12·5(2-y ),S 三角形PBO =12·3y ,所以12·5(2-y )=12·3y ,解得y =54,所以在线段CO 上存在一点P (0,54),使得S 三角形CDP =S 三角形PBO .24.解:(1)25%;200(2)50补全的条形统计图如图所示:(3)这2 000人中“活动时间不少于4天”的学生约有2 000×(30%+25%+15%+5%)=1 500(人).25.解:(1)55°(2)∠1+∠2=∠3.理由如下:∵l 1∥l 2,∴∠1+∠PCD +∠PDC +∠2=180°.在三角形PCD 中,∠3+∠PCD +∠PDC =180°,∴∠1+∠2=∠3.(3)由(2)可知∠BAC =∠DBA +∠ACE =40°+45°=85°.(4)当P 点在A 的外侧时,∠3=∠2-∠1;当P 点在B 的外侧时,∠3=∠1-∠2.26.解:(1)(方法1)设饮用水有x 件,则蔬菜有(x -80)件,依题意,得x +(x -80)=320,解得x =200,则x -80=120.答:饮用水和蔬菜分别有200件、120件.(方法2)设饮用水有x 件,蔬菜有y 件,依题意,得⎩⎨⎧x +y =320,x -y =80,解得⎩⎨⎧x =200,y =120.答:饮用水和蔬菜分别有200件、120件.(2)设租甲型货车n 辆,则租乙型货车(8-n )辆.依题意,得⎩⎨⎧40n +20(8-n )≥200,10n +20(8-n )≥120,解得2≤n ≤4.∵n 为正整数,∴n =2或3或4,∴安排甲、乙两种型号的货车时有3种方案:①安排甲型货车2辆,乙型货车6辆;②安排甲型货车3辆,乙型货车5辆;③安排甲型货车4辆,乙型货车4辆.(3)3种方案的运费分别为:方案①:2×400+6×360=2 960(元);方案②:3×400+5×360=3 000(元);方案③:4×400+4×360=3 040(元).∴方案①运费最少,最少运费是2 960元.答:该单位安排甲型货车2辆,乙型货车6辆可使运费最少,最少运费是2 960元.。

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。

门票设个人票和团队票两大类。

个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。

1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。

3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A . B . C . D . 3.下列各点中,在第四象限的是( )A .3,0B .()2,5-C .()5,2--D .()2,3- 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.下列说法正确的是( )A .23π-是分数 B .互为相反数的数的立方根也互为相反数 C .25xy -的系数是15- D .64的平方根是4±7.①如图1,//AB CD ,则180A E C ∠+∠+∠=︒;②如图2,//AB CD ,则–P A C ∠=∠∠;③如图3,//AB CD ,则1E A ∠=∠+∠;④如图4,直线////AB CD EF ,点O 在直线EF 上,则–180∠∠+∠=︒αβγ.以上结论正确的个数是( )A .1个B .2个C .3个D .4个8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.十、填空题10.点A (2,4)关于x 轴对称的点的坐标是_____.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.十三、填空题13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.十四、填空题14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 十五、填空题15.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为“美丽点”,若某个“美丽点”P 到y 轴的距离为2,则点P 的坐标为___.十六、填空题16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.十七、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭十八、解答题18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.十九、解答题19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).二十、解答题20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 二十一、解答题21.已知a 172的整数部分,b 173的小数部分.(1)求a ,b 的值;(2)求()()324a b -++的平方根. 二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 二十四、解答题24.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD(1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).二十五、解答题25.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.【详解】 ∵23π-是无理数, ∴A 错误,∵互为相反数的数的立方根也互为相反数,∴B 正确, ∵25xy -的系数是52-, ∴C 错误,∵64的平方根是±8,∴D 错误,故选B .【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.7.B【分析】如图1所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠C +∠CEF =180°,则∠A +∠C +∠AEC =360°,故①错误;如图2所示,过点P 作PE //AB ,由平行线的性质即可得到∠A =∠APE =180°,∠C =∠CPE ,再由∠APC =∠APE =∠CPE ,即可得到∠APC =∠A -∠C ,即可判断②;如图3所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠1=∠CEF ,再由∠AEF +∠CEF =∠AEC ,即可判断③ ;由平行线的性质即可得到=180BOE α∠+∠,180COF γ∠+=∠,再由180BOE COF β∠+∠+∠=,即可判断④.【详解】解:①如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠C +∠CEF =180°,∴∠A +∠AEF +∠C +∠CEF =360°,又∵∠AEF +∠CEF =∠AEC ,∴∠A +∠C +∠AEC =360°,故①错误;②如图所示,过点P 作PE //AB ,∵AB //CD ,∴AB //CD //PE ,∴∠A =∠APE =180°,∠C =∠CPE ,又∵∠APC =∠APE =∠CPE ,∴∠APC =∠A -∠C ,故②正确;③如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠1=∠CEF ,又∵∠AEF +∠CEF =∠AEC ,∴180°-∠A +∠1=∠AEC ,故③错误;④∵////AB CD EF ,∴=180BOE α∠+∠,180COF γ∠+=∠,∵180BOE COF β∠+∠+∠=,∴180180180αβγ-∠+∠+-∠=,∴–180αβγ∠∠+∠=,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.十、填空题10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 十二、填空题12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.十三、填空题13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.十四、填空题14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当解析:(2,2),(-2,23)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当x=2时,则y+2=2y,解得:y=2,∴点P的坐标为(2,2),当x=-2时,则y-2=-2y,解得:y=23,∴点P的坐标为(-2,23),综上所述:点P的坐标为(2,2)或(-2,23).故答案为:(2,2)或(-2,23).【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.十六、填空题16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2021的坐标.【详解】解:根据题意得4的整数倍的各点如A 4,A 8,A 12等点在第二象限,∵2021÷4=505…1;∴A 2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A 2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.十七、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.十九、解答题19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.二十、解答题20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1)a=2,b=;(2)±3【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值;(2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵,∴,∴,,∴a=2,b解析:(1)a =2,b 4;(2)±3【分析】(123的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵< ∴45<,∴223<,132<<,∴a =2,b 314-;(2)()()324a b -++=())23424++- =9∴()()324a b -++的平方根为±3. 【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD(2)∵B 表示的数为-1,∴∴点E 1;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMN =90°,∠APM =∠PMQ ,∴∠PMQ -∠QMN =90°,∴∠APM -∠QMN =90°;当点M ,N 分别在射线QD ,QF 上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMQ +∠QMN =90°,∠APM +∠PMQ =180°,∴∠APM +90°-∠QMN =180°,∴∠APM -∠QMN =90°;综上,∠APM +∠QMN =90°或∠APM -∠QMN =90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.二十四、解答题24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.二十五、解答题25.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

人教版七年级下册数学期末综合检测试卷(含答案)

人教版七年级下册数学期末综合检测试卷(含答案)

人教版七年级下册数学期末综合检测试卷时间:90分钟满分:100分一.选择题(每小题2分,满分24分)1.如果=﹣,那么a,b的关系是()A.a=b B.a=±b C.a=﹣b D.无法确定2.生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有()血型A型B型AB型O型频率0.34 0.3 0.26 0.1 A.17人B.15人C.13人D.5人3.若a、b为实数,且+(b+4)2=0,点P(a,b)的坐标是()A.第一象限B.第二象限C.第三象限D.第四象限4.a,b是两个连续整数,若a<<b,则a+b的值是()A.7 B.9 C.21 D.255.已知是方程mx﹣y=2的解,则m的值是()A.﹣1 B.﹣C.1 D.56.为了说明“若a≤b,则ac≤bc”是假命题,c的值可以取()A.﹣1 B.0 C.1 D.7.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于()A.25°B.35°C.40°D.45°8.在平面直角坐标系中,线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),则线段A1B1的中点的坐标为()A.(7,6)B.(6,7)C.(6,8)D.(8,6)9.解方程组的最佳方法是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC.加减法消去a,①﹣②×2得3b=3D.加减法消去b,①+②得3a=910.已知a<b,下列式子不成立的是()A.a+1<b+1 B.4a<4bC.﹣>﹣b D.如果c<0,那么<11.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.14 B.12 C.10 D.812.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.﹣2 D.﹣1二.填空题(满分18分,每小题3分)13.将不等式“﹣2x>﹣2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.14.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有人.15.若点P(5+m,m﹣3)在第二、四象限角平分线上,则点P的坐标为.16.已知方程组有无数组解,则a+c的平方根的是.17.已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=.18.已知点4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则=.三.解答题19.(6分)解下列方程组:(1)(2).20.(7分)解不等式组:,并把不等式组的解集表示在数轴上.21.(8分)近几年居民购物的支付方式日益增多,为了解居民的支付习惯,七年级数学兴趣小组的学生利用课余时间在超市收银处进行了调查统计(每人只能选择其中一种方式支付),并将统计后的数据整理后绘制成如下不完整的两幅统计图,请根据图中有关信息解答下列问题:各种支付方式的扇形统计图各种支付方式的条形统计图(1)本次共调查统计了多少人?(2)B支付宝支付占所调查人数的百分比是多少?C现金支付的居民有多少人?(3)请补全条形统计图.22.(7分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.23.(10分)某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.(10分)当a、b都是实数,且满足2a﹣b=6,就称点P为完美点.(1)判断点A(2,3)是否为完美点?(2)完美点一定不在第象限;(3)已知关于m、n的方程组,当t为何值时,以方程组的解为坐标的点B 是完美点,请说明理由.25.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+2|+(b﹣4)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM 的面积相等,请求出点P的坐标.参考答案一.选择题1.解:∵=﹣,∴a=﹣b,故选:C.2.解:本班O型血的有50×0.1=5(人),故选:D.3.解:∵+(b+4)2=0,∴a+1=0,b+4=0,∴a=﹣1,b=﹣4,则点P的坐标为(﹣1,﹣4),∴P在第三象限.故选:C.4.解:∵3<<4,∴a=3,b=4,∴a+b=7,故选:A.5.解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.6.解:若a≤b,而c=﹣时,ac≤bc不成立,所以“若a≤b,则ac≤bc”是假命题.故选:A.7.解:∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+35°=65°,∵l1∥l2,∴∠3=∠4=65°,∵∠4+∠EFC=90°,∴∠EFC=90°﹣65°=25°,∴∠2=25°.故选:A.8.解:∵线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),∴B1的坐标为:(6,8),则线段A1B1的中点的坐标为:(7,6).故选:A.9.解:解方程组的最佳方法是加减法消去b,①+②得3a=9,故选:D.10.解:A、不等式两边同时加上1,不等号方向不变,式子a+1<b+1成立,故这个选项不符合题意;B、不等式两边同时乘以4,不等号方向不变,式子4a<4b成立,故这个选项不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,式子﹣a>﹣b成立,故这个选项不符合题意;D、不等式两边同时除以负数c,不等号方向改变,式子<不成立,故这个选项符合题意.故选:D.11.解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=AB+BC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.12.解:把代入方程组得:,解得:,则m﹣n=﹣2,故选:C.二.填空13.解:该步的依据是:不等式两边都乘以(或除以)同一个负数,不等号的方向改变,故答案为:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.14.解:∵各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,∴各组人数分别为5人、10人、25人、15人、5人,∴总人数为:5+10+25+15+5=60(人),故答案为:60.15.解:∵点P(5+m,m﹣3)在第二、四象限的角平分线上,∴5+m+m﹣3=0,解得:m=﹣1,∴P(4,﹣4).故答案为:(4,﹣4).16.解:,由①得:x=7﹣y③,把③代入②得:(2﹣a)y=c﹣7a,∵该方程组有无数组解:∴,解得:,则=±4,故答案为±4.17.解:,②×3﹣①得:9a+27b+3c﹣2a﹣13b﹣3c=216﹣90,7a+14b=126,a+2b=18,①×3﹣②×2得:6a+39b+9c﹣6a﹣18b﹣2c=3b+c,3b+c=270﹣144=18∴.故答案为:1.18.解:由4x﹣3y﹣6z=0,x+2y﹣7z=0,得到x=3z,y=2z,则原式==.故答案为.三.解答19.解:(1)①×2﹣②得:7x=70,解得:x=10,把x=10代入①得:y=10,则方程组的解为;(2)原方程组整理得:,①+②得:6x=48,解得:x=8,把x=8代入①得:y=8,则方程组的解为.20..解:解不等式①得:x≤2,解不等式②得:x>﹣3,把不等式①②的解集表示在数轴上为:,所以,不等式组的解集为:﹣3<x≤2.21.解:(1)由题意可得:A微信支付有60人,A占30%,则本次共调查统计了:60÷30%=200(人);(2)由(1)得,B支付宝支付占所调查人数的百分比是:56÷200×100%=28%,C现金支付的居民有:22%×200=44(人);(3)D支付方式所占百分比为:1﹣30%﹣22%﹣28%=20%,故D支付方式人数为:20%×200=40(人),如图所示:.22.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.23.解:(1)设每辆小客车的乘客座位数是x个,每辆大客车的乘客座位数是y个,依题意,得:,解得:.答:每辆小客车的乘客座位数是20个,每辆大客车的乘客座位数是35个.(2)设租用a辆小客车,则租用(6+5﹣a)辆大客车,依题意,得:20a+35(6+5﹣a)≥330,解得:a≤3,∵a为整数,∴a的最大值为3.答:租用小客车数量的最大值为3.24.解:(1)解a﹣1=2,+1=3,得到a=3,b=4.则2a﹣b=2≠6,所以点A(2,3)不是完美点;(2)由2a﹣b=6,可得b=2a﹣6,代入P中得完美点坐标为(a﹣1,a﹣2).若a﹣1是正数,则a﹣2可能是正数也可能是负数,即在第一或四象限;若a﹣1是负数,则a<1,所以a﹣2必然是负数,在第三象限,故完美点一定不在第二象限;方法二:由坐标(a﹣1,a﹣2)可得这样的点在一次函数y=x﹣1的直线图象上,∵直线y=x﹣1不经过第二象限,所以完美点不在第二象限.故答案为二.(3)解方程组,得到,∴点B坐标为(2+t,2﹣t).∵点B是完美点,则a﹣1=2+t,+1=2﹣t,解得a=3+t,b=2﹣2t.代入2a﹣b=6中,得2(3+t)﹣(2﹣2t)=6,解得t=.所以当t=时,以方程组的解为坐标的点B是完美点.25.解:(1)∵|a+2|+(b﹣4)2=0,∴a+2=0,b﹣4=0,∴a=﹣2,b=4;故答案为:﹣2,4;(2)如图1,过M作CE⊥x轴于E,∵A(﹣2,0),B(4,0),∴AB=6,∵在第三象限内有一点C(﹣3,m),∴ME=|m|=﹣m,∴S△ABC =AB•CE =×6×(﹣m)=﹣3m;(3)当m=﹣3时,M(﹣3,﹣3),此时点M到x轴的距离是3.∵在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,∴点P到x轴的距离是3,∴如图2,符合条件的坐标是:P(0,﹣3)或P′(0,3).第11 页共11 页。

人教版七年级物理(下册)期末综合能力测试卷及答案

人教版七年级物理(下册)期末综合能力测试卷及答案

人教版七年级物理(下册)期末综合能力测试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(每题3分,共45分)1、如图所示,甲、乙、丙、丁是不同的声音先后输入到同一示波器上所显示的波形图则下面说法中正确的是A.甲和乙声音的音调相同 B.甲和丙声音的响度相同C.丙声音在真空中传播速度最快 D.甲和丁声音的音色相同2、图中画出了光线通过透镜(图中未画出)的情形.其中凸透镜是()A.a B.b.d C.c D.a.b.c.d3、关于光的反射,下列说法正确的是()A.当入射光线与反射面的夹角为20°时,反射角也为20°B.入射光线靠近法线时,反射光线也靠近法线C.入射角增大5°时,反射光线与入射光线的夹角也增大5°D.漫反射不遵守光的反射定律,镜面反射才遵守光的反射定律4、量筒做得细而高(如图所示),不做成粗而矮的形状,这主要是因为()A.实验中,细高的量筒便于操作.B.细高的量筒可以做出相对较大的底座,增加稳度.C.细高的量筒与粗矮的相比,相应的刻度间隔较大,便于准确地读数.D.粗矮量筒中的液体较多,筒壁所受压强较大,需用较厚的玻璃,因而不便读数.5、对于同种物质而言,关于密度的公式,下列说法正确的是()A.ρ与m成正比,ρ与V成反比 B.ρ与m成正比C.ρ与V成反比 D.ρ与m、V没有关系,是个恒定值6、一位中学生要用托盘天平称量7.5克药品,在称量过程中发现指针向左偏转,这时应该()A.减少药品B.向右盘中加砝码C.移动游码D.调节平衡螺母7、如图所示,小胡同学做有关声现象的实验时,将一个正在发声的音叉贴近面颊,目的是为了()A.估算发声音叉的质量 B.体验发声音叉的温度C.感受发声音叉的振动 D.判断声音的传播速度8、用放大镜观察一块蔗糖,下列说法正确的是()A.把蔗糖碾碎后,我们能看到蔗糖分子B.我们看到的是放大的蔗糖,不是它的分子C.蔗糖的水溶液中,没有蔗糖分子D.在放大镜下,我们看到了蔗糖分子9、如图所示,有一平面镜与水平面成45°角倾斜放置,有一小球位于平面镜的左侧,为使小球在镜中的像竖直向上运动,应使小球()A.竖直向上运动 B.竖直向下运动C.水平向左运动 D.水平向右运动10、课间休息,小科到直饮水机接了杯热气腾腾的开水,觉得有点烫,便用嘴巴吹了吹,下列有关吹气使开水变凉的解释正确的是()A.吹来的风把开水周围的热空气赶跑了B.吹来的风是凉的C.吹来的风加快了开水的蒸发,水蒸发时要吸热D.吹来的风把开水的热吹掉了11、小磊同学用毫米刻度尺测量一个塑料球的直径时,测得四次数据是3.52厘米、3.53厘米、3.61厘米、3.53厘米,则塑料球的直径应是()A.3.55厘米 B.3.527厘米 C.3.5475厘米 D.3.53厘米12、如图所示,一束激光AO由空气斜射入玻璃砖,折射后从另一侧面射出,其出射点可能是图中的()A.M点 B.N点 C.P点 D.Q点13、如图所示,标出了四个通电螺线管的N极和S极,其中正确的是()A.B.C.D.14、烈日炎炎的夏季,白天海滩上的沙子热得烫脚,海水却很凉爽;傍晚,沙子很快凉了下来,但海水却仍然暖暖的.同样的日照条件下,沙子和海水的温度不一样的原因是( )A.沙子的密度比海水的密度大 B.沙子的比热容比海水的比热容大C.沙子的比热容比海水的比热容小 D.沙子的质量比海水小15、白炽灯丝是由钨丝制成的,长期使用灯泡会变黑,这种现象属于()A.先升华后凝华 B.先蒸发后凝固C.先凝华后升华 D.先汽化后液化二、填空题(每题3分,共15分)1、如图所示,用A、B两刻度尺测同一木块的边长,就分度值而言,_________刻度尺精密些,就使用方法而言,________刻度尺不正确。

新人教版七年级数学(下册)期末综合能力测试卷及答案

新人教版七年级数学(下册)期末综合能力测试卷及答案

新人教版七年级数学(下册)期末综合能力测试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.下列图形具有稳定性的是( ) A . B . C . D .5.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12.求不等式213x+≤325x-+1的非负整数解.3.已知,点A 、B 、C 在同一条直线上,点M 为线段AC 的中点、点N 为线段BC 的中点.(1)如图,当点C 在线段AB 上时:①若线段86AC BC ==,,求MN 的长度.②若AB=a ,求MN 的长度.(2)若8,AC BC n ==,求MN 的长度(用含n 的代数式表示).4.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、A5、A6、C7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、70.4、-15、16、48三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、不等式的非负整数解为0、1、2、3、4.3、(1)①7;②12a;(2)略.4、(1)略(2) ∠AEB=15°(3) 略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末综合达标训练卷(A卷)(满分:100分;时间:90分钟)一、积累与运用(20分)1、给下列划横线的字注音(2分)痴()想匿()笑酝酿()骸()骨2、横线上填字完成词语。

(4分)人听闻径通幽变本加然长逝获益浅心旷神具体而珠联合3、先改正下边广告中的错别字,然后说说你对这一类广告的看法。

(2分)乐在骑中(摩托车广告)随心所浴(热水器广告)4、著名作家朱自清在西南联大任教时,生活十分艰难。

有一次他外出时被一个乞丐跟上了,为了甩掉乞丐,他就说:“老弟,我是教授!”话音刚落,只见乞丐转身就走了。

请问朱自清这句话的言外之意是什么?(2分)5、古诗文名句默写。

(4分)①,各领风骚数百年。

(赵翼《论诗》)②马上相逢无纸笔,。

(白居易《钱塘湖春行》)③此夜曲中闻折柳,。

(李白《春夜洛城闻笛》)④《滁州西涧》中以飞转流动之势,衬托闲淡宁静之景,诗中有画,景中寓景的句子是,。

6、依照下面比喻句的句式,分别以“悲伤”和“快乐”开头,写两个句式相同的比喻句。

成功是你梦寐以求的那朵玫瑰,挫折正是那遍及周围的针刺。

(不超过60字)(2分),。

7、下面句中横线依次应填写的词语应是()(填序号)(2分)音乐教育的本身就是一种审美的教育,它的功用在于:人的鉴赏水平,人的性情,人的心灵,提高人的道德休养,人奋发向上。

A、提高B、净化C、陶冶D、推动8、“110报警台对社会的承诺是:有警必(),有灾必(),有难必(),有求必()。

”括号中依次应填的词是()(2分)A、应、帮、救、出B、出、救、帮、应C、应、救、出、帮D、出、帮、救、应二、阅读理解(50分)(一)古诗词鉴赏(6分)《约客》赵师秀黄梅时节家家雨,青草池塘处处蛙。

有约不来过夜半,闲敲棋子落灯花。

9、赵师秀,字紫芝,号灵秀,永嘉(今浙江温州)人。

与徐照、翁卷、徐玑并称“,”著有《清苑斋集》。

(2分)10、诗歌前两句写景,为我们描绘出。

(2分)11、“处处蛙”既是写池塘中蛙声阵阵,又是采用以衬的写法,烘托出梅雨时节乡村夜晚的恬静和谐气氛,同时还折射出诗人落寞孤寂与烦躁不安的心境。

(2分)(二)文言文阅读(12分)遥闻深巷中犬吠,便有妇人惊觉欠伸,其夫呓语。

既而儿醒,大啼。

夫亦醒。

妇抚儿乳,儿含乳啼,妇拍而呜之。

又一大儿醒,絮絮不止。

当是时,妇手拍儿声,口中呜声,儿含乳啼声,大儿初醒声,夫叱大儿声,一时齐发,众妙毕备。

满座宾客无不伸颈,侧目,微笑,默叹,以为绝妙。

未几,夫齁声起,妇拍儿亦渐拍渐止。

微闻有鼠作作索索,盆器倾侧,妇梦中咳嗽。

宾客意少舒,稍稍正坐。

忽一人大呼“火起”,夫起大呼,妇亦起大呼。

两儿齐哭。

俄而百千人大呼,百千儿哭,百千犬吠。

中间力拉崩倒之声,火爆声,呼呼风声,百千齐作;又夹百千求救声,曳屋许许声,抢夺声,泼水声。

凡所应有,无所不有。

虽人有百手,手有百指,不能指其一端;人有百口,口有百舌,不能名其一处也。

于是宾客无不变色离席,奋袖出臂,两股战战,几欲先走。

忽然抚尺一下,群响毕绝。

撤屏视之,一人、一桌、一椅、一扇、一抚尺而已。

12、下列带点的词意思相同的一项是。

()(2分)A.当是时,妇手拍儿声不知木兰是女郎B.一时齐发,众妙毕备忽然抚尺一下,群响毕绝C.妇抚儿乳,儿含乳啼儿含乳啼声D.人有百口,口有百舌,不能名其一处也。

举世闻名13.下列句中有通假字的一项是。

()(2分)A.众宾团坐。

B.施八尺屏障,口技人坐屏障中。

C.满坐寂然,无敢哗者。

D.宾客意少舒,稍稍正坐。

14翻译下列句子。

(4分)(1)未几,夫齁声起,妇拍儿亦渐拍渐止。

译文:(2)忽一人大呼“火起”,夫起大呼,妇亦起大呼。

译文:15、文中带点的句子描写的是什么?写这些的目的是什么?(2分)16、“撤屏视之,一人、一桌、一椅、一扇、一抚尺而已。

”这句话突出了什么?这样写的作用是什么?(2分)(三)、阅读《羚羊木雕》中语段回答(11分)“那只羚羊哪儿去啦产妈妈突然问我。

妈妈说的羚羊是一只用黑色硬木雕成的工艺品。

那是爸爸从非洲带回未给我的。

它一直放在我桌子的犄角上。

这会儿,我的心怦怦地跳了起来,因为昨天我把它送给我的好朋友万苦了。

“爸爸不是说给我了么?”我小声地说。

“我知道给你了,可是现在它在哪儿?”妈妈的目光紧紧地(A.盯B.看C.望)着我。

我发现事情不像我想的那么简单。

“我把它收起来了。

”“放在哪儿了?拿来我看看。

”妈妈好像看出我在撒谎。

因为我站在那儿一动不动,低着头不欢看她。

“要说实话……是不是拿出去卖啦?”妈妈变得十分严厉。

“没有卖……我送人了。

”我觉得自己的声音有些发抖。

“送给谁了?告诉我。

”妈妈把手搭在我的肩膀上。

“送给万芳了,她是我最好的朋友。

’”“你现在就去把它要回来!”妈妈坚定地说,“那么贵重的东西怎么能随便送人呢?要不我和你一起去!”“不,我哭着喊了起来。

爸爸走了进来,听妈妈讲完事情的经过,他地点燃一支烟,地对我说:“小朋友之间不是不可以送东西,但是,要看什么样的东西。

这样贵重的东西不像一块点心一盒糖,怎么能自作主张呢?”爸爸的声音一直很,不过带着一种不可抗拒的力量。

“是的,这是爸爸给你的,可并没有允许你拿去送人啊!”我没有理由了。

我想到他们马上会逼我去向万芳要回羚羊,心里难过极了。

[他们不知道,万芳是个多么仗义的朋友]!17在括号里选择恰当的现词填在方格内. (1分)18在下列词语中选择恰当的填在横线上。

(2分)A慢慢B.静静C.平静19爸爸、妈妈对“我”送掉羚羊这件事的反应,有什么相同和不同?(2分)答:相同:不同:20妈妈说:“要不我和你一起去。

”这句话是什么意思?请选择最佳答案()(2分)A.怕“我”一个人出门胆小,要陪“我”去。

B.怕“我”有情绪,陪我去,可以减轻“我”的反感。

C.说是“一起去”,实是逼“我”去,非要讨回羚羊不可。

D.“一起去”说明事态的严重性,告诫“我”千万不能把贵重东西送人。

21“我”是不是真的“没有理由了”呢?你的看法如何?(2分)答:22“她是我最好的朋友”这句话为什么妈妈听不进去?(2分)答:(四)、阅读下面一篇短文后答题。

(11分)⑴“伟伟,你的新伞呢?”我一跨进家门,妈妈劈头就问。

“妈妈,珍珍的旧伞被大风刮破,淋湿了全身,到我们家路口时,我的新伞借给她了。

”我轻描淡写地说。

⑵下午,珍珍来还伞,妈妈撑开伞东瞧西瞅,发现了芝麻粒儿大的一个小眼,立刻沉下脸,瞥了一眼珍珍,走到我跟前骂道:“死丫头,叫你爱惜点,爱惜点,你瞧瞧!”从那以后,珍珍再也不来我家做作业了。

⑶有一天,妈妈突然问我:“伟伟,你最近跟珍珍闹意见啦?”我不知妈妈这话的意思,没有回答。

妈妈又说:“乖伟伟,听妈的话,今后,要跟珍珍好一点,请她常来玩,噢!”⑷哦,妈妈已经理解我们之间的友谊了,我真高兴!⑸又有天放学后,我一跨进门槛儿,妈妈便拿起一把崭新的红尼龙折叠伞塞给我,说:“伟伟,给珍珍送去,她准喜欢。

”⑹我莫名其妙,迟疑地说:“这,这,有必要吗?我和珍珍好,从来没互送过东西。

”⑺“傻丫头,就是死心眼儿,她爸爸现在是副厂长了!你跟她女儿是好朋友,今后……”妈妈抚摸着我的头,语重心长地说:“今天是她生日,快给她送去!”⑻哦,原来如此!妈妈过去是车间主任,而珍珍的爸爸是一名普通职工,现在却倒了过来。

⑼“快去快回,好孩子,妈妈在家给你煎荷包蛋,快呀!”⑽我无可奈何地接过伞,双脚不由自主地挪出了家门。

⑾“怎么对珍珍说呢?”路上,我低着头,掂量着这把漂亮的折叠伞,心里一阵犹豫……最后,我终于转回身,朝自己家走去……23 从文中找出四个成语写在下面的横线上。

(2分)⑴____________⑵____________⑶____________⑷_____________24、贯穿全文的线索是________________________________(1分)25 、将⑺段中省略号所省略的意思补上:(2分)_______________________________________________________________________ 26、“妈妈抚摸着我的头,语重心长地说:‘今天是她的生日,快给她送去!’”这句话表明妈妈:_____________________________________________________________(2分)27、妈妈的性格特点主要是通过__________________、________________表现出来的。

(2分)28、联系全文,伟伟为什么没把伞给珍珍送去?(2分)(五)阅读文章《九十九分的苦恼》然后回答问题。

(10分)我历尽坎坷,中年才得一女。

望着她那越来越像我的小尖鼻子和玲拢的小嘴,我的心头洋溢着得意和欢快。

她妈妈认为孩子比我漂亮,比我聪明,比我有更好的气质,将来会比我更有出息,至于和院子里那些同龄孩子相比,她妈妈更是自豪,认为没有一个能和她并驾齐驱.在这种情感氛围中,我们对孩子寄富了很高的期望,这期望近乎成为信仰。

可是,等女儿入了小学,一年年往上升,这种信仰却一次又一次地遭到打击。

最关键的是考试成绩,虽然孩子每次考试都在90分以上,但总不能使她的妈妈满意。

在她看来,我们的孩子应该门门都l00分才顺理成章,人家的孩子都能考到96分97分,她感到不可理解。

孩子每次拿了94分95分回来,她脸上都没有笑容。

有时孩子失误,只拿到八十几分,于是就有(1)(引发引起发生)一场暴风骤雨的可能。

每当这时,首当其冲的是孩子,平时各式各样的小毛病,甚至不是毛病的小事都被妈妈拿出来数落一顿。

这时孩子默默垂泪,可怜巴巴地看着我,那眼神显然是希望我马上相救。

可是妻子也在看我,那眼神显然是希望我为她找出更多责备孩子的理由。

夹在两种目光中的我只好装傻。

孩子自然拿我没办法,但她妈妈对孩子的数落却有了发展。

原来用的是第二人称单数,“你总是”如何如何不听话,不久就变成“你们总是”如何如何,最后干脆成了“你们两个人”如何如何。

这时,我如果分辩两句,其结果“你们”会立即变成“你”。

孩子解放了,批判的矛头便立即转移到我头上,指责我懒散,不爱整洁,待人大大咧咧,买东西又贵又次,等等。

怎么办好呢?我想最关键的还是要切实有效地帮助孩子提高成绩,于是,我开始亲自辅导孩子做作业。

皇天不负有心人。

不久后的一天,孩子放学回家,老远就喊着(2)(走冲迈)进门来了:“爸??爸!”我知道这肯定是好消息了。

果然带回来一个99分。

我大喜。

待她妈妈下班回来,我努努嘴暗示孩子把考卷奉上。

我看到妻子脸上一丝微笑还没有来得及闪烁就消失了。

她往椅子上一瘫:“我就是弄不明白,你为什么就拿不下那最后1分!\'我大为震惊,本想顶回去:“你上小学考过几个100分?我看连90分都难得。

”但是我知道,这样意气用事是绝对愚蠢的,只能破坏孩子成绩有提高所带来的良好气氛。

相关文档
最新文档