沥青路面车辙病害的类型及防治措施
沥青路面车辙成因及防治措施

沥青路面车辙成因及防治措施摘要:沥青路面车辙对公路的使用品质和使用寿命造成了严重危害,甚至会造成巨大的经济损失和司乘人员的生命安全,本文就车辙产生的原因和如何进行防治提出可行措施,并为公路路面的日常养护提出一定的参考意见。
关键词:沥青路面;车辙;防治;引言1车辙产生的机理以及类型1.1 产生机理公路的车辙属于路面累积变形造成的。
公路在长期使用的情况下,受到持续性的作用力影响发生变形并逐渐形成较为显著的车辙痕迹。
因沥青混合料在运营初期被荷载进一步压实,且沥青处于塑性流动状态,在高温、车辆碾压等情况下发生一定程度的变形,在长期影响下沥青路面结构剪力遭到破坏,车辙是沥青路面变形的重要表现形式。
1.2 类型车辙形成根本性原理不存在差别,均是在车辆行驶造成的长期负荷影响下,由于公路所在地自然因素的作用,造成公路表面的混凝土发生疲劳变形形成。
根据车辙产生的原因进行分类,通常有四种类型:(1)车辆失稳造成的车辙;(2)持续性负荷造成的车辙;(3)车辆结构影响形成的车辙;(4)路面磨损形成的车辙。
2 车辙成因分析以及防治措施2.1 成因分析(1)温度在夏季持续高温作用下,由于沥青路面的蠕动性加强,结构的流动性增强,车辆负荷造成的路面变形更为显著。
另因沥青表面的变形差异,车辆行驶过程中由于重心稳定度下降造成车辆失稳的可能性更高,车辙的影响因此扩大。
(2)荷载公路作为区域货物运输的主要通道,日常通行量极大,由于大量重型车辆通行,路面长期处于高负荷的状态;又因重型车辆载重的重心不固定,导致车辆轮胎与地面的接触压力并不完全相同,接地压力较大的部分车辙痕迹就更为明显。
因此公路在长期处于高负荷的情况下造成的持续性破坏难以避免,导致沥青路面的结构遭到破坏,甚至出现显著的剪力破坏情况。
(3)路面材料当前我国大部分公路路面均为沥青混合料。
沥青在高温状态下发生变形,是此类材料塑性的主要形式,因此该类型的材料无法完全避免高温变形的问题。
沥青路面车辙病害分析

沥青路面车辙病害分析一、何为车辙?车辙是路面受到行车荷载的反复作用,在纵向上不断发生微小变形,这种变形再经过不断叠加、累积而形成的压痕,主要表现为在轮迹内形成凹陷,而在轮迹两侧产生隆起的凸起,是沥青混凝土路面的主要病害形式之一。
路面铺筑初期,车辙深度几乎为零,乘车舒适度较好;但是随着行车次数的不断增加,车辙深度不断增大,对行车造成的影响也不断变大,乘车舒适度明显下降;当车辙深度达到一定值时,甚至会对出行者的行车安全产生一定程度的影响。
二、车辙的四种类型我国根据车辙产生原因的不同对车辙病害类型进行了划分,主要分为以下四种:结构型车辙、失稳型车辙、磨耗型车辙和压密型车辙。
1、结构型车辙由于荷载作用超出了路面的承受力,会造成沥青面层以下的包括路基在内的结构发生永久性的变形,这种现象叫做结构性车辙。
这种车辙现象的特点是:宽度大,两侧无明显的隆起显像,V字形横断面。
2、失稳型车辙另外还有一种车辙叫做沥青混合料的流动性或失稳性车辙,即在高温条件影响下,车轮反复作用,使荷载能力超出沥青混合料的稳定极限所导致的现象。
损坏时容易使车轮对应的路面部位下凹,车轮作用的路面两侧容易产生隆起现象。
在弯道处还明显向外推挤,使车道线与停车线容易变成弯曲的曲线,造成交通事故的发生。
毫无疑问,这部分的车辙主要表现为于沥青混合料流动的特性。
这种车辙现象主要发生在上坡路段和交叉口附近,因为这段里面的车速慢、轮胎接地发生的横向应力较大,对主要行驶双轮车的路段,车辙断面成w形,对行驶宽幅单轮车的路段,车辙成非对称形状。
3、磨耗型车辙磨损性车辙的发生现象是比较少的,由于我国的基层基本上都是半刚性基层,而车辙基本上都属于沥青混合料的流动性车辙,目前,针对这一车辙只能通过采用新材料和改造再生材料来对付和防止磨损性车辙现象的产生。
4、压密型车辙由于沥青面层的压密性而造成的,有些高速公路在压实施工方面没有使路面的形成充分的压实度,并且过分的追求平整度,待降低温度后碾压,都会造成压实度不足致使通车后的第一个高温季节混合料继续压密,在交通车辆的反复碾压作用下,空隙率不断减小,达到极限的残余空隙率后才趋于稳定。
沥青路面病害类型和防治措施-车辙、低温开裂

沥青路面病害的危害
车辙
车辙是指车辆行驶过程中在路面上留下的印痕,通常表现为 纵向或横向的凹槽。车辙不仅影响路面的平整度和美观度, 还会导致雨天路面积水,增加交通事故的风险。
低温开裂
沥青路面在低温环境下可能会出现开裂现象,通常是由于材 料收缩、温度变化等因素引起的。低温开裂会导致路面的防 水性能下降,加速路面的损坏,同时也给行人和车辆带来安 全隐患。
02
沥青路面病害类型
车辙
01
02
03
原因
车辆负载过大、高温环境 、沥青混合料抗变形能力 不足等。
表现
路面出现横向的凹槽,严 重时可能形成陡峭的斜坡 。
影响
影响行车安全,降低道路 使用寿命。
低温开裂
原因
低温环境下,沥青混合料 的抗拉强度不足,加上内 部应力作用导致开裂。
表现
路面出现纵向或网状裂纹 。
防治措施:针对低温开 裂的防治,可以采取以 下措施
选择温度敏感性较低的 沥青材料,提高沥青混 合料的低温抗裂性能。
加强路面的排水设计, 避免水分渗透到路基中 ,降低路基的强度和稳 定性。
对沥青路面进行预处理 ,如对裂缝进行填补、 对龟裂进行修补等,以 增强路面的防裂性能。
05
结论与展望
沥青路面病害防治的重要性和紧迫性
影响
加速路面的损坏,降低道 路使用寿命。
03
沥青路面病害防治措施
车辙的防治措施
01
02
03
04
减轻交通压力
通过优化道路交通布局,减少 道路交通压力,降低车辙发生
的风险。
沥青路面的病害形式形成原因及处理方法

沥青混凝土路面病害的形成及和处理方法一常见沥青路面病害类型沥青路面的病害产生是多种因素综合作用的结果,其种类繁多,但主要表现为裂缝、车辙、沉陷、坑槽、泛油和油斑、路面推移等。
1.裂缝:①横向裂缝。
横向裂缝是指垂直于路线方向的有规则的裂缝,②纵向裂缝。
纵向裂缝是指跟路线走向平行或基本平行的裂缝。
③交叉裂缝。
两条或两条以上相互交叉的裂缝称为交叉裂缝。
2.车辙:是车辆在路面上行驶后留下的车轮永久压痕。
3.沉陷:指的是路基压实度不够或构造物地基土质不良,在水、荷载等因素作用下产生的不均匀的竖向变形4.坑槽:路面坑槽指的是在行车作用下,路面骨料局部脱落而产生的坑洼。
5.泛油和油斑:一般指因表面活性剂破乳后在织物表面沾附的油污,如消泡剂、柔软剂等含有有机硅的阴离子表面活性剂比较容易出现破乳的现象.去除的话需要专门的去硅剂.6.路面推移:主要是指混合料在道路的纵向发生位移,它可能是在施工期间发生或者是在道路通车一段时间后产生,尤其在高温天气下。
二.病害形成的原因1.裂缝:(1)横向裂缝:裂缝与路中心线基本垂直,缝宽不一,缝长贯穿部分路幅或整个路幅。
裂缝一般比较规则,每隔一定的距离产生一道裂缝,裂缝间距的大小取决于当地的气温和沥青面层与半刚性基层材料的抗裂性能。
(2)纵向裂缝:裂缝走向基本与行车方向平行,裂缝长度和宽度不一。
主要集中在行车道轮迹分布密集处,因为高速公路交通渠化分明,轮迹位置及轮迹分布范围较小,大车、慢车、重型车辆全部集中在行车道上,快车、小型车,轻型车行驶于超车道机会明显增多,超车道上荷载较小,交通量相对较小,纵向裂缝也较小,纵缝缝宽一般在5~10mm,靠近标线或位于车道中央,且绵延几十米,甚至数百米。
常以单条裂缝形式出现。
产生的原因有两种可能性,一种情况是沥青面层分路幅摊铺时,两幅接茬处未处理好,在车辆荷载及大气因素作用下逐渐开裂;另一种情况是由于路基压实度不均匀或由于路基边缘受水侵蚀产生不均匀沉陷而引起。
沥青路面病害类型及防治措施(车辙、低温开裂)解读

坑槽
裂缝
波浪 松散
车辙
车辙
车辙是沥青路面在汽车荷载反复作用下产 生竖直方向永久变形的累积。车辙一般发 生在高温季节,在行车荷载的作用下,沥 青面层进一步被压密、挤压使轮迹带下沉。 沥青混合料也可能在剪切力的作用下横向 流动,在两侧隆起。
一.车辙形成机理
根据车辙的形成原因,可将车辙分为四种 类型:失稳型车辙、结构性车辙、磨耗性 车辙、压密性车辙。
• 沥青混合料的内摩擦力影响因素 I.矿料最大粒径 II.碎石强度,表面粗糙度和颗粒形状 III.沥青用量 IV.沥青混合料的级配和密实度
(2)路面结构种类 基层类型、沥青路面厚度等因素也影响着 沥青路面的抗车辙能力。 基层类型: 对于刚性和半刚性基层沥青路面,90%的路 面车辙源自沥青混合料面层。 对于柔性基层沥青路面(如沥青稳定碎石 基层),基层也会产生一定的永久变形。
二. 车辙的影响因素
• 1.内因 (1)沥青混合料
沥青路面车辙主要是由于沥青混合料的塑 性剪切变形不断累积形成的,而沥青混合 料的抗剪强度主要由粘结力、内摩擦力提 供。 τ= c+ σ·tanψ
• 沥青混合料的粘结力影响因素 I. 沥青标号和高温粘度 II. 沥青的感温性 III. 沥青与矿料的粘结力 IV. 沥青矿粉比和矿粉种类 V. 沥青用量 VI. 沥青混合料的级配和密实度 VII. 外掺剂的种类和用量
3. 磨耗性车辙
由于沥青路面结构顶层的材料在车轮磨耗 和自然环境因素作用下持续不断的损失。
这种车辙主要为汽车磨耗造成的。比如: 车辆在雨雪天气里,为防止轮胎打滑,在 车轮上加防滑链或使用镀钉轮胎,多发生 在我国北方寒冷地区。
4.压密性车辙
在沥青路面的铺筑过程中由于没用充分的 压实,或是因为混合料设计不当,在开放 交通后轮迹带下的沥青面层继续受到压实, 产生压密变形。
沥青路面常见的病害及其预防措施

网状裂缝可能会出现在路面的整个区域,呈现出不规则的形状。这种裂缝可能会使路面 的承载能力下降,缩短路面的使用寿命。
预防措施
总结词
针对不同类型的裂缝,采取相应的预防措施 ,以减少裂缝的产生和扩展。
详细描述
对于横向裂缝,应控制好地基和路基的施工 质量,并加强路面的防水设计。对于纵向裂 缝,应保证施工接缝的质量,并定期对路面 进行检查和维护。对于网状裂缝,应加强路 基和路面的结构强度,避免过度使用和超载 。同时,定期对路面进行检查和维护也是预
防裂缝扩展的重要措施。
03
沥青路面变形类病害及其预防 措施
车辙
车辙是沥青路面在车辆行驶过程中出现的沿轮迹的纵 向凹陷,是沥青路面最常见的病害之一。其产生原因 主要是由于路面材料强度不足、基层及面层施工质量 控制不严、车辆超载等因素导致的。
预防措施:加强沥青路面材料的选择和控制,优化沥 青混合料级配设计;加强施工质量控制,确保基层和 面层的压实度和厚度满足要求;限制车辆超载行为, 以减轻路面承受的荷载压力。
波浪与搓板
波浪与搓板是由于沥青路面材料不均匀或施工质量控 制不严格而引起的路面变形病害。它们会导致路面的 平整度下降,影响车辆行驶的舒适性和安全性。
预防措施:加强沥青路面材料的质量控制,确保材料的 一致性和均匀性;加强施工质量控制,确保各层沥青混 合料的级配、压实度和厚度满足要求;定期对沥青路面 进行检查和维护,发现波浪与搓板等变形病害及时进行 处理。
加强后期养护管理
总结词
及时进行预防性养护,保持路面良好状态
详细描述
沥青路面的后期养护管理对于延长其使用寿命和减少病害发生至关重要。应定期检查路 面的磨损程度、裂缝、坑洼等,并采取相应的养护措施,如修补裂缝、填补坑洼等。同
浅谈沥青砼路面车辙病害分析及防治措施

2 0 1 4年 3月 ( 中)
浅谈沥青砼路面车辙病害分析及防治措施
陈约荣
摘 要 :现在我 国广泛采用半 刚性基层 沥青路面 ,目 前主要表现 出来 的早期破坏形 式是路 面裂缝及水损坏 , 但 随着 经济建设 的 快速发展 , 公路 交通 量的不断增加 ,交通 渠化 以及 重型车辆 的出现 , 沥青层厚度 增加, 路 面车辙 问题逐渐 变得 突出, 必须 引起重视 。 文章 分析 车辙破 坏的类型以及产生的原 因,并提 出了具体 的预 防和 防治措施 。 关锭词 : 沥青路 面 病 害 产生原 因 防治措 施
.
要受 以下几方面 因素 的影 响:道 路交通气 象路线线形等外部 因 素、路面结构材料组成及施工方法等 内部因素 。 ( 一 )气 象 条 件 路面温度对车辙 的产 生有很大的影响 。这 是因为长时间高 温致使沥青粘度降低 ,引发失稳性车辙的产生 。 ( 二 )路 线 线 形 条 件 在 山区、丘陵区连 续大纵坡上坡路段 ,由于许 多重载车 的 车况较差 ,车辆爬坡 能力差而影响车速 ,使荷载作用 时间成倍 延长 ,按照 时间变 形的累积原理 ,或者温度 时间换 算法则 ,车 速 降低与温度升高是等 同的 。 ( 三 )道路交通条件 由于 高等 级公路的修建及交通管制趋 于成熟,车辆速度 大 大提 高,而且大量重车行驶在道路上 ,交通 量的增加 ,重载车、 超载车 比例 的提 升 ,路面破损现状有逐步加重 的趋 势 。车辆荷 载越来越集 中地 分布于道路轮迹带处 ,引起交通 渠化。轮载越 重 ,轮 胎 气 压 越 大 ,行 驶 速 度 越 大 ,交 通 渠化 越 严 重 ,则 车 辙 就越容易产生 。 ( 四 )路 面 结 构 及 材 料 的组 成 目前 柔性 路面大多采用沥青混凝 土作 为路面材料 ,沥青 层 材料在路 面结构中厚度越大 ,发生永久变 形的变形量也愈大 。 我 国现 有 沥 青 路 面 设 计 规 范 中 ,虽 然 对 沥 青混 合 料 的 配 合 比 设 计及 厚度 计算均作 了较详细 的规定 。但在沥 青混合料组成设计 时所 用的马歇尔试验 ,其稳定度还难 于说明沥青混合料 的高温 抗车辙 能力,更重要的是沥青混凝土 的室 内动稳定度与 实际道 路上 的车槽深度之 间的关系 目前还缺 乏相 关资料 。如果面层 结 构采 用了不合理的结构组合形式或集 料的强度 、粒径大 小、级 配组成 等不合理 ,将会大大 降低沥青 面层 的抗车辙能力 。所 以 合理的面 层结构及 厚度 的设计对 车辙的产生具有直接的影响 。 三 、沥青路面 车辙 损害的防治措施 提 高 沥 青 混 合 料 的 高温 稳 定 性 是 防 止 沥 青 路 面 产 生 车 辙 最 有 效 的途 径 。 具 体 有 以 下 措 施 : ( 一 )使 用 具 有 棱 角 性 的集 料 , 合 理 调 整 级 配 , 增 加 粗 集
车辙的形成原因及预防措施

沥青路面车辙产生的原因及防治措施随着公路运输量日益增长和运输向重型化发展,尤其是高等级公路渠化交 通的运行,高等级公路沥青路面的车辙日趋严重。
由于路面上产生过大车辙, 会使:1)路表过量的变形影响路面的平整度;2)轮迹处沥青层厚度减薄,削 弱了路面整体强度,易于诱发其它病害; 3)雨天车辙内积水导致车辆出现水漂 ,影响高速行车的安全性;4)在冬季车辙槽内聚冰,降低路面的抗滑能力,导 致行车危险;5)使车辆在超车或变换车道时方向失控,影响车辆的操纵稳定性 。
由此可见,由于车辙的出现,会严重影响路面的使用和服务质量。
我国以前公路等级较低,交通量小,基本上未形成渠化交通,且沥青面层 较薄,因此车辙没有成为主要问题,路面设计规范也未考虑车辙设计。
现在我 国广泛采用半刚性基层沥青路面,目前主要表现出来的早期破坏形式是路面裂 缝及水损坏,但随着经济建设的快速发展,公路交通量的不断增加,交通渠化 以及重型车辆的出现,沥青层厚度增加,路面车辙问题逐渐变得突出,必须引 起重视。
1•车辙的类型沥青混合料是一种典型的流变性材料,它的强度和劲度模量随着温度的升高而降低。
所以沥青混凝土路面夏季高温时,在交通的作用下,由于交通的渠 化,在轮迹带逐渐形成变形下凹,两侧鼓起的所谓车辙”根据它形成的原因 ,可分为下列三种类型:(1)结构性车辙 :这种车辙是指土路基、(底)基层、沥青面层等结构 层的强度不沥青泯:垦土旖层下笳地墓 踣農面的凸绦永离蛮形. 谿面沥寺混凝土 轮迹酌两侧图15失稳型车辙一沥寺鹿屈土基用够引起的永久变形。
它的特点是宽度比较大,两侧没有隆起,横断面呈凹陷。
(2)失稳性车辙:这种车辙是指沥青面层进一步被压实及侧向流动的变形,这种变形主要发生在重载车辆车轮经常作用的部位。
其特点是车轮作用的部位下陷,两侧向上隆起,看是一种槽沟。
(3)磨损性车辙:这种车辙是人为性因素造成的。
比如:有些车辆在雨雪天气里,为防止轮胎打滑,在车轮上加防滑链或使用镀钉轮胎,多发生在我国北方寒冷地区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青路面车辙病害的类型
及防治措施
Revised by Liu Jing on January 12, 2021
浅析沥青路面车辙病害的类型及防治措施摘要:沥青路面车辙已经成为我国沥青路面主要病害形式之一,严重影响了道路的使用性能,对道路行车安全十分不利,必须采取合理的处理措施。
本文首先简要介绍了沥青路面车辙的形成理论,进而分析了沥青路面的车辙类型,并提出了相关的预防及扯着处理措施,对道路工作者施工应用可以提供合理的参考。
关键词:路面车辙;类型;防治措施
0引言
随着我国社会经济发展水平的不断提高,公路交通量增长迅速,交通荷载往往超过设计预期值,导致路面产生了一系列病害。
车辙是我国沥青路面的主要病害之一,不仅严重影响公路行车舒适以及安全性,也降低了公路的使用寿命。
车辙主要是由于交通荷载长时间持续作用,导致沥青路面产生的永久性变形。
车辙作为评价沥青路面平整度的重要指标,直接关系到道路的路用性能,因此,研究沥青路面车辙类型及其成因,并提出合理的防治措施,对于保证交通运输事业的顺利发展具有重要的意义。
1路面车辙形成理论分析
沥青路面作为一种柔性路面,造成路面车辙的主要原因交通荷载或者高温条件下荷载持续作用,沥青混合料产生塑性流动变形,最终骨架结构破坏失稳。
根沥青混合料强度公式如下所示:
沥青混合料的抗剪强度主要取决于沥青与矿料相互作用产生的粘聚
力以及矿料嵌挤而产生的内磨阻角,当活动剪应力等于粘聚力C时,材料处于极限平衡状态。
当活动剪应力大于C时,则产生塑性变形,从而产生车辙破坏。
2沥青路面车辙分类
根据形成机理的不同,车辙可以分为以下几种类型:
(1)流动型车辙。
沥青路面的流动性车辙是指高温季节在交通荷载的反复碾压作用下,荷载应力超过沥青混合料所能承受的稳定性应力极限,产生的永久变形和塑性流动而逐渐形成的沥青混凝土侧向流动变形。
流动型车辙一般出现在车辆轮迹区域内,如果沥青混合料的强度不足以承受交通荷载所产生的应力,导致路面内部长期反复承受重载时,则容易导致流动型车辙。
流动型车辙的横断面一般呈W型,车辙深度一般较大,行车道轮迹带部位下凹,车轮两侧混合料隆起变形。
(2)结构性车辙。
结构型车辙主要是由于交通荷载在路表形成的剪应力仍超过路面各层的抗剪强度,沥青混合料产生剪切变形破坏,导致沥青面层甚至基层等结构层产生永久性变形。
结构型车辙相对较宽,两侧没有明显隆起,断面呈凹型。
(3)磨耗型车辙。
磨耗型车辙主要是由于沥青路面路表材料经过车轮长期磨耗以及自然条件下表层材料的不断磨损而产生的车辙,在重载大型车辆较多,或者气候寒冷轮胎采取埋钉以及防滑链等情况下,很容易产生磨耗型车辙。
其形成机理是由于车辆轮胎与路面表层的摩擦作用,主要是由于集料的抗磨耗性能较差,沥青混合料耐磨性能不足。
根
据大量的路面车辙调查数据显示,磨耗型车辙在我国路面的车辙中所占比例较小。
(4)水损害导致的车辙。
水损害型车辙主要是因为沥青路面面层结构下部在水分作用下,沥青混合料水损坏导致沥青混合料松散,路面丧失结构承载力,在车辆交通荷载的反复作用下累积变形从而形成车辙。
水损害型车辙主要发生在降雨量较多的我国南方地区,而且通常会伴随路面松散坑洞以及唧浆等病害发生。
(5)压密型车辙。
压密型车辙产生的主要原因是由于在施工阶段,路面压实不合格,没有达到规范要求的压实度,路面开放交通后在大量交通荷载的作用下,沥青混合料倍压密从而形成车辙。
压密型车辙特点十分明显,在轮迹带下呈明显的没有骨气的V字型或W型。
压密型车辙在道路使用初期形成,之后路面结构趋于稳定。
其形成原因主要是因为施工单位不负责任,片面追求平整度或者施工阶段沥青混合料温度过低,导致沥青混合料的压实度不足,路面混合料空隙率远大于设计值,在使用过程二次压密所致。
3沥青路面车辙预防措施
(1)路面材料的选用。
在路面摊铺施工中,为了预防车辙的产生,必须严格控制逐鹿材料的选择。
选用粗集料时,集料应尽量采用人工破碎的砾石,石料形状接近立方体、纹理较深、破碎完整容易形成嵌挤框架结构。
细集料的选择应尽可能的选用石质质地坚硬、与沥青粘附性能相对较好的碱性集料,尽可能的不选用天然河砂。
从为了提高粘附性,
可以适当增加矿粉的用量,使用粘度相对较大沥青,或者SBS以及胶粉等改性沥青提高沥青与集料的粘附性,也可以添加抗车辙剂等外掺剂提高沥青混合料的抗车辙能力
(2)合理的路面结构。
在路面结构层的设置上,必须科学合理。
可以选用具有骨架密实结构的SMA或者孔隙率较大的密级配混合料作为面层,尽可能使路面层内形成稳定的嵌挤结构,也可以增加大粒径透水性的柔性基层来抵抗路面由上到下较大的塑性以及剪切变形,提高沥青路面高温稳定性,提高路面的抗车辙能力。
(3)加强施工质量控制。
在沥青路面摊铺碾压施工中,严格按照施工规范要求,控制沥青混合料到场施工温度以及路面碾压压实度效果。
温度过低容易导致碾压困难,相反温度过高又会造成沥青老化,导致粘附性能的降低。
在碾压过程中,掌握好碾压时间,压路机在摊铺开始后要紧跟摊铺机作业,争取有足够的压实时间,及时有效的压实以保证现场压实度更是路面施工中防止和减轻路面车辙的一个重要环节。
4沥青路面车辙的处理措施
沥青路面车辙病害直接影响路面的使用功能以及寿命,较大的路表变形会导致路面平整度水平下降,降低面层及路面结构的整体强度,如不及时处理,容易产生其他病害以及影响路面的行车安全。
车辙的处理方法比较多,目前较为常用的主要有以下几种方式:
(1)路面车辙铣刨重铺。
首先利用铣刨机将有车辙病害对路面铣刨处理,铣刨的深度应根据车辙深度以及结构层实际情况确定铣刨完成
后,将工作面中的杂物以及铣刨废料清理干净,满足规范要求。
之后喷洒乳化沥青作为粘层,待乳化沥青破乳后,进行沥青混合料摊铺作业。
在沥青混合料拌合、运输、摊铺以及碾压等各个环节中,必须确保沥青混合料的施工温度,保证新铺筑路面的压实度要求。
(2)沥青混凝土路面复拌型热再生。
沥青路面现场热再生是指百分百的利用旧路表材料处理车辙,施工方便灵活,进度较快,特别适用于处理高速公路路面车辙。
其施工工艺为首先将原沥青路面加热软化,进而耙松铣刨,然后将铣刨出来的沥青混合料按照设计,添加再生剂或者新的沥青混合料拌合摊铺,最终碾压成型。
沥青路面现场热再生现在在我国开始应用,其列车式的处理方式极大地提高了处理效率,主要的施工机械有预热机、铣刨机、预热复拌机以及摊铺机等。
(3)路表微表处处理。
微表处处理就是采用具有V型摊铺槽的稀浆封层车,通过吧改性沥青稀浆混合料直接摊铺于车辙辙槽中,形成具有一定结构强度的路面薄层结构,实现对路面车辙的修复。
微表处适用于车辙深度较浅,一般不大于20mm,适用于路面整体强度较好,裂缝坑洞等其他路面病害较少的道路使用。
微表处施工迅速,能够达到快速开放交通的要求,施工便捷,成本较低,非常适用于交通量繁忙的高速公路。
结语
随着公路建设及养护维修事业的不断发展,沥青路面车辙的处理方法及处理工艺也在不断更新完善,在路面新建以及养护维修中,改良路面设计方法,使用新技术,新材料以及新工艺,加强施工质量控制,各对于减轻路面车辙危害,保证路路面行车舒适安全具有重要的意义。
参考文献:
[1]沈金安.公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004.12。
[2]董强,郑争. 沥青混合料的高温稳定性影响因素分析[J].山西建筑,2005 ,31 (6) :114-115.
[3]贾渝. 高性能沥青路面(Superpave)基础参考手册. 北京:人民交通出版社,2005.。