对数与对数的运算习题(经典)
对数及对数运算(1)

知识探究(一):对数函数的概念
思考1:在上面的问题中,若要使残留的 1 污垢为原来的 ,则要漂洗几次? 64
4
思考2:在关系式 y log 1 x中,取 x a (a 0) 对应的y的值存在吗?怎样计算?
思考3:函数 y log 1 x 称为对数函数,
4
一般地,什么叫对数函数?
思考4:为什么在对数函数中要求a>0, 且a≠l?
理论迁移
例1
用logax,logay,logaz表示下列 各式: 2 xy x y (1) log a ; (2) log a 3 . z z
例2
求下列各式的值:
(1) log2(47×25); (2) lg5
31log3 2
100
;
(3) log318 -log32 ;
(4)
3
1 log 3 2
2.2.2 第一课时
对数函数及其性质 对数函数的概念与图象
问题提出
1 5730 p 2
t
1.用清水漂洗含1个单位质量污垢的 衣服,若每次能洗去污垢的四分之三, 试写出漂洗次数y与残留污垢x的关系式.
2. y log 1 x (x>0)是函数吗?若
4
是,这是什么类型的函数?
a N x 指数式ax=N 指数的底数 幂 幂指数 对数式x= 对数的底数 真数 对数 logaN
思考4:根据对数定义,logal和logaa和 logaan(a>0,a≠1)的值分别是多少?
设loga1=x, 则ax=1, 所以x=0,得loga1=0 设logaa=x, 则ax=a, 所以x=1,得logaa=1
作业: P68练习:1, 2,3. P74习题2.2A组:3,4,5.
(完整版)对数与对数的运算练习题及答案

对数与对数运算练习题及答案一.选择题1.2-3=18化为对数式为( )A .log 182=-3 B .log 18(-3)=2C .log 218=-3D .log 2(-3)=182.log 63+log 62等于( )A .6B .5C .1D .log 65 3.如果lg x =lg a +2lg b -3lg c ,则x 等于( )A .a +2b -3cB .a +b 2-c 3C.ab 2c 3 D.2ab 3c4.已知a =log 32,那么log 38-2log 36用a 表示为( )A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-15. 的值等于( )A .2+ 5B .2 5C .2+52 D .1+526.Log 22的值为( )A .- 2 B. 2C .-12 D.127.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <3或3<a <5C .2<a <5D .3<a <48.方程2log3x =14的解是( )A .x =19 B .x =x3C .x = 3D .x =99.若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为() A .9 B .8C .7D .610.若102x =25,则x 等于( )A .lg 15B .lg5C .2lg5D .2lg 1511.计算log 89·log 932的结果为( )A .4 B.53 C.14 D.3512.已知log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0且≠1),则log x (abc )=( ) A.47 B.27 C.72 D.74二.填空题1. 2log 510+log 50.25=____.2.方程log 3(2x -1)=1的解为x =_______.3.若lg(ln x )=0,则x =_ ______.4.方程9x -6·3x -7=0的解是_______5.若log 34·log 48·log 8m =log 416,则m =________.6.已知log a 2=m ,log a 3=n ,则log a 18=_______.(用m ,n 表示)7.log 6[log 4(log 381)]=_______.8.使对数式log (x -1)(3-x )有意义的x 的取值范围是_______三.计算题1.计算:(1)2log 210+log 20.04 (2)lg3+2lg2-1lg1.2(3)log 6112-2log 63+13log 627 (4)log 2(3+2)+log 2(2-3);2.已知log 34·log 48·log 8m =log 416,求m 的值.对数与对数运算练习题答案一.选择题1. C 2. C 3. C 4. A 5. B 6. D 7. B 8 A 9. A 10. B11.B 12.D二.填空题1. 22. 23. e4. x =log 375. 96. m +2n7. 08. 1<x <3且x ≠2三.计算题1.解: (1)2log 210+log 20.04=log 2(100×0.04)=log 24=2(2)lg3+2lg2-1lg1.2=lg(3×4÷10)lg1.2=lg1.2lg1.2=1 (3)log 6112-2log 63+13log 627=log 6112-log 69+log 63 =log 6(112×19×3)=log 6136=-2. (4)log 2(3+2)+log 2(2-3)=log 2(2+3)(2-3)=log 21=0.2. [解析] log 416=2,log 34·log 48·log 8m =log 3m =2,∴m =9.。
高一数学对数的概念与对数运算公式课后练习题

对数与对数运算一、对数1.对数的概念一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ;②x N N a a x =⇔=log ;两个重要对数:①常用对数:以10为底的对数N lg ;②自然对数:以无理数 71828.2=e 为底的对数的对数N ln . ③对数的性质:(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ; (4)对数恒等式:N aN a =log ; (5)n a n a =log .注意:指数式与对数式的互化:x N a =log ⇔N a x = 对数式 ⇔ 指数式对数底数 ← a → 幂底数对数← x → 指数 真数← N → 幂二、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ① M a (log ·=)N M a log +N a log ;② =NM a log M a log -N a log ; ③ n a M log n =M a log )(R n ∈. 注意:换底公式ab bc c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).题型一、 对数概念例1求下列各式中x 的取值范围(1)()10log 2−x ; (2)()2log 1+−x x ; (3)()()211log −+x x例2把下列各等式化为相应的对数式或指数式(1)12553=; (2)16412=⎪⎭⎫ ⎝⎛−; (3)38log 21−=; (4)3271log 3−= (5)log 3a =b例3 求下列各式中的x (1)2327log =x ; (2)32log 2−=x ; (3)()2223log −=+x ; (4)()0log log 25=x .题型二、对数的运算性质例4 化简: (1)51lg 5lg 32lg 4−+; (2)2.1lg 1000lg 8lg 27lg −+; (3)3log 333558log 932log 2log 2−+−; (4)⎪⎭⎫ ⎝⎛−−+246246log 2; (5)()()321log 321log 22−++++; (6)⎪⎭⎫ ⎝⎛−++5353lg例5(1)4771.03lg ,3010.02lg ≈≈,求45lg ;(2)已知m =35log 5,试用m 表示4.1log 7.例6 计算(1)5log 177−;(2)⎪⎭⎫ ⎝⎛−2lg 9lg 21100;(3)7lg142lg lg 7lg183−+−(b a ,为不等于零的正数,0>c ).(4)12lg 25+lg 2+7log 73=(5)4log 23−log 2814−5log 53+log 9√3.题型三 、换底公式的应用例7(1)计算:()3lg 2lg 3log 3log 84+; (2) 已知518,9log 18==b a ,用b a ,表示45log 36的值.题型四 、对数运算性质的综合运算 例8 求下列各式的值:(1)2log 233−; (2)8.1log 7log 37log 235log 5555−+−.例9 (1)已知()()23lg lg 23lg 2++=−x x x ,求222log x 的值; (2)已知()n m n m lg lg 21lg 2+=⎥⎦⎤⎢⎣⎡−,求n m 的值.题型五、 综合类问题例10 设z y x ,,均为正整数,且z y x 643==.(1)试求z y x ,,之间的关系;(2)比较z y x 6,4,3的大小.课后作业1.设log 23=a ,log 215=b ,则log 275=__________(结果用a ,b 表示).2、已知a =log 32,用a 表示log 38-2log 36是( )A .a -2B .5a -2C .3a -(1+a)2D .3a -a 2-13、(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512 C.94 D .以上都不对4、已知2x =5y =10,则1x +1y =________.5、求下列各式的值:(1)(lg 5)2+lg 50·lg 2;(2)lg 14-2lg 73+lg 7-lg 18;(3)log 1327-log 139;(4)log 89×log 332.(5)lg25+lg2•lg50+lg22。
高中数学第二章对数函数2.2.1对数与对数运算第2课时对数的运算练习(含解析)新人教版

第二课时对数的运算1.下列等式成立的是( C )(A)log2(8-4)=log28-log24(B)=log2(C)log28=3log22(D)log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.2.对于a>0且a≠1,下列说法中正确的是( C )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.(A)①③ (B)②④ (C)② (D)①②③④解析:①中当M=N≤0时,log a M,log a N都没有意义,故不正确;②正确;③中当M,N互为相反数且不为0时,也有log a M2=log a N2,此时M≠N,不正确;④中当M=N=0时,log a M2,log a N2都没有意义,故不正确.综上知选C.3.若lg m=b-lg n,则m等于( D )(A)(B)10bm(C)b-10n (D)解析:由题知lg m+lg n=b,即lg(mn)=b,解得10b=mn,所以m=.故选D.4.设lg 2=a,lg 3=b,则log512等于( C )(A) (B) (C)(D)解析:log512=====.故选C.5.设a,b,c都是正数,且3a=4b=6c,则( B )(A)=+(B)=+(C)=+(D)=+解析:设3a=4b=6c=t,则a=log 3t,b=log 4t,c=log 6t.所以=log t 3,=log t 4,=log t 6.所以+=log t 9+log t 4=2log t 6=.选B. 6.已知log 32=a,3b=5,则log 3由a,b 表示为( A )(A)(a+b+1) (B)(a+b)+1(C)(a+b+1) (D)a+b+1 解析:由3b=5得b=log 35,所以log 3=log 330=(log 33+log 32+log 35)=(1+a+b).故选A.7.若x 1,x 2是方程(lg x)2+(lg 2+lg 3)·lg x+lg 2·lg 3=0的两根,则x 1x 2等于( C ) (A)lg 2+lg 3 (B)lg 2·lg 3(C) (D)-6解析:由题知lg x 1+lg x 2=-(lg 2+lg 3)=-lg 6,则lg(x 1x 2)=-lg 6=lg ,故x 1x 2=,选C.8.已知x,y,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m 的值为( B )(A) (B)60 (C) (D)解析:log m (xyz)=log m x+log m y+log m z=,而log m x=,log m y=,故log m z=-log m x-log m y=--=,即log z m=60.故选B.9.已知2lg(x+y)=lg 2x+lg 2y,则= .解析:因为2lg(x+y)=lg 2x+lg 2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,即(x-y)2=0.所以x=y,所以=1.答案:110.已知log34·log48·log8m=log416,则m= .解析:由题知··=log416=log442=2,所以=2,即lg m=2lg 3=lg 9,所以m=9.答案:911.已知=(a>0),则lo a= .解析:因为=(a>0),所以=,所以a=()3,故lo a=lo()3=3.答案:312.若lg a,lg b是方程2x2-4x+1=0的两根,则(lg)2= .解析:由题知则(lg)2=(lg a-lg b)2=(lg a+lg b)2-4lg a·lg b=22-4×=2.答案:213.求下列各式的值:(1)4lg 2+3lg 5-lg;(2)log220-log25+log23·log34;(3);(4)已知log189=a,18b=5,用a,b表示log3645的值.解:(1)原式=4lg 2+3lg 5+lg 5=4lg 2+4lg 5=4.(2)原式=log2+log23·=log24+log24=2log24=4.(3)原式====.(4)因为log189=a,18b=5,所以log185=b,于是log3645======.14.解下列关于x的方程:(1)lg=lg(x-1);(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).解:(1)原方程等价于解之得x=2.经检验x=2是原方程的解,所以原方程的解为x=2.(2)原方程可化为log4(3-x)-log4(3+x)=log4(1-x)-log4(2x+1).即log4=log4.整理得=,解之得x=7或x=0.当x=7时,3-x<0,不满足真数大于0的条件,故舍去.x=0满足,所以原方程的解为x=0.15.已知二次函数f(x)=(lg a)x2+2x+4lg a的最小值为3,求(log a5)2+log a2·log a50的值. 解:因为f(x)=(lg a)x2+2x+4lg a存在最小值3,所以lg a>0,f(x)min=f(-)=4lg a-=3,即4(lg a)2-3lg a-1=0,则lg a=1,所以a=10,所以(log a5)2+log a2·log a50=(lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+1)=(lg 5)2+lg 2lg 5+lg 2=lg 5(lg 2+lg 5)+lg 2=lg 5+lg 2=1.16.若2.5x=1 000,0.25y=1 000,则-等于( A )(A)(B)3(C)-(D)-3解析:因为x=log2.51 000,y=log0.251 000,所以==log1 0002.5,同理=log1 0000.25,所以-=log1 0002.5-log1 0000.25=log1 00010==.故选A.17.已知log2x=log3y=log5z<0,则,,的大小排序为( A )(A)<<(B)<<(C)<<(D)<<解析:x,y,z为正实数,且log2x=log3y=log5z<0,所以=2k-1,=3k-1,=5k-1,可得,=21-k>1,=31-k>1,=51-k>1.即1-k>0,因为函数f(x)=x1-k单调递增,所以<<.故选A.18.已知log a x=2,log b x=3,log c x=6,则log(abc)x的值为.解析:因为log a x=2,log b x=3,log c x=6,则a2=x,b3=x,c6=x,所以a=,b=,c=,所以abc==x,所以log(abc)x=log x x=1.答案:119.下列给出了x与10x的七组近似对应值:第组解析:由指数式与对数式的互化可知,10x=N⇔x=lg N,所以第一组、第三组对应值正确.又显然第六组正确,因为lg 8=3lg 2=3×0.301 03=0.903 09,所以第五组对应值正确.因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,所以第四组、第七组对应值正确.所以只有第二组错误.答案:二20.若a,b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(log a b+log b a)的值.解:原方程可化为2(lg x)2-4lg x+1=0.设t=lg x,则方程化为2t2-4t+1=0,所以t1+t2=2,t1·t2=.又因为a,b是方程2(lg x)2-lg x4+1=0的两个实根,所以t1=lg a,t2=lg b,即lg a+lg b=2,lg a·lg b=.所以lg(ab)·(log a b+log b a)=(lg a+lg b)·(+)=(lg a+ lg b)·=(lg a+lg b)·=2×=12,即lg(ab)·(log a b+log b a)=12.。
对数计算练习题

对数计算练习题一、基础题1. 计算下列对数的值:(1) log₂8(2) log₅25(3) log₃1/27(4) log₁₀1002. 将下列指数式转换为对数式:(1) 2³ = 8(2) 5² = 25(3) 3⁻³ = 1/27(4) 10² = 1003. 将下列对数式转换为指数式:(1) log₂8 = 3(2) log₅25 = 2(3) log₃1/27 = 3(4) log₁₀100 = 2二、进阶题1. 计算下列对数的值:(1) log₂16 log₂2(2) log₅125 + log₅5(3) log₃9 / log₃3(4) log₁₀1000 ÷ log₁₀102. 化简下列对数表达式:(1) log₂(8×2)(2) log₅(25÷5)(3) log₃(27×1/3)(4) log₁₀(1000÷100)3. 计算下列对数的值:(1) log₂(1/16)(2) log₅(1/125)(3) log₃(1/81)(4) log₁₀(1/10000)三、综合题1. 已知log₂x = 3,求x的值。
2. 已知log₅x = 2,求x的值。
3. 已知log₃x = 2,求x的值。
4. 已知log₁₀x = 4,求x的值。
5. 已知log₂(x1) = 2,求x的值。
6. 已知log₅(x+3) = 1,求x的值。
7. 已知log₃(x/2) = 0,求x的值。
8. 已知log₁₀(x²) = 3,求x的值。
四、应用题1. 如果10的某个对数等于5,那么这个对数是多少?2. 某城市的人口每20年增长一倍,如果现在的人口是P,那么多少年前人口是P/4?3. 一种放射性物质的半衰期是5年,经过15年后,剩余的这种物质占原来总量的多少?4. 一个细菌群体每半小时增长一倍,经过2小时后,细菌的数量是初始数量的多少倍?五、难题1. 已知log₂(x+1) log₂(x1) = 3,求x的值。
对数与对数运算练习题

对数与对数运算练习题对数与对数运算练习题数学是一门既抽象又具有深度的学科,其中对数是数学中的一个重要概念。
对数可以帮助我们解决各种问题,从科学计算到金融投资都离不开它。
在本文中,我们将通过一些对数运算练习题来加深对对数的理解。
1. 计算下列对数的值:a) log2(8)b) log5(125)c) log10(1000)d) log3(1/9)解析:对数的定义是指数运算的逆运算。
例如,log2(8)表示以2为底,结果为8的对数。
因此,log2(8)的值是3,因为2的3次方等于8。
同样地,log5(125)的值是3,因为5的3次方等于125。
log10(1000)的值是3,因为10的3次方等于1000。
最后,log3(1/9)的值是-2,因为3的-2次方等于1/9。
2. 计算下列对数运算:a) log2(16) + log2(4)b) log3(27) - log3(9)c) log5(25) × log5(125)d) log6(36) ÷ log6(6)解析:对数运算的性质包括加法、减法、乘法和除法。
a) log2(16) + log2(4)可以化简为log2(16 × 4),即log2(64)。
log2(64)的值是6,因为2的6次方等于64。
同样地,b) log3(27) - log3(9)可以化简为log3(27 ÷ 9),即log3(3)。
log3(3)的值是1,因为3的1次方等于3。
c) log5(25) × log5(125)可以化简为log5(25× 125),即log5(3125)。
log5(3125)的值是5,因为5的5次方等于3125。
最后,d) log6(36) ÷ log6(6)可以化简为log6(36 ÷ 6),即log6(6)。
log6(6)的值是1,因为6的1次方等于6。
3. 解决下列方程:a) log2(x) = 4b) log3(x) = 2c) log5(x) + log5(2) = 3d) logx(64) = 2解析:解决对数方程的关键是将其转化为指数方程。
带标准答案对数与对数函数经典例题

经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
对数与对数的运算练习题(20200219210048)

对数与对数运算练习题一.选择题1.2-3=18化为对数式为()A .log 182=-3B .log 18(-3)=2C .log 218=-3D .log 2(-3)=182.log 63+log 62等于()A .6B .5C .1D .log 653.如果lgx =lga +2lg b -3lg c ,则x 等于() A .a +2b -3c B .a +b 2-c 3C.ab 2c3D.2ab 3c4.已知a =log 32,那么log 38-2log 36用a 表示为()A .a -2B .5a -2C .3a -(1+a)2D .3a -a 2-15.的值等于()A .2+ 5B .2 5C .2+52D .1+526.Log 22的值为()A .- 2B. 2 C .-12D.127.在b =log (a -2)(5-a)中,实数a 的取值范围是()A .a >5或a<2B .2<a <3或3<a <5C .2<a<5D .3<a <48.方程2log3x=14的解是()A .x =19B .x =x3C .x = 3D .x =99.若log 2(log 3x)=log 3(log 4y)=log 4(log 2z)=0,则x +y +z 的值为()A .9B .8C .7D .610.若102x=25,则x等于()A.lg 15B.lg5 C.2lg5 D.2lg1511.计算log89·log932的结果为()A.4 B.53C.14D.3512.已知log a x=2,log b x=1,log c x=4(a,b,c,x>0且≠1),则log x(abc)=()A.47B.27C.72D.74二.填空题1.2log510+log50.25=____.2.方程log3(2x-1)=1的解为x=_______.3.若lg(ln x)=0,则x=_ ______.4.方程9x-6·3x-7=0的解是_______5.若log34·log48·log8m=log416,则m=________.6.已知log a2=m,log a3=n,则log a18=_______.(用m,n表示) 7.log6[log4(log381)]=_______.8.使对数式log(x-1)(3-x)有意义的x的取值范围是_______三.计算题1.计算:(1)2log210+log20.04 (2)lg3+2lg2-1lg1.2(3)log6112-2log63+13log627 (4)log2(3+2)+log2(2-3);2.已知log34·log48·log8m=log416,求m的值.对数与对数运算练习题答案一.选择题1. C 2. C 3. C 4. A 5. B 6. D 7. B 8 A 9. A 10. B11.B 12.D二.填空题1. 22. 23. e4. x=log375. 96. m+2n7. 08. 1<x<3且x≠2三.计算题1.解:(1)2log210+log20.04=log2(100×0.04)=log24=2(2)lg3+2lg2-1lg1.2=lg(3×4÷10)lg1.2=lg1.2lg1.2=1(3)log6112-2log63+13log627=log6112-log69+log63=log6(112×19×3)=log6136=-2.(4)log2(3+2)+log2(2-3)=log2(2+3)(2-3)=log21=0.2. [解析]log416=2,log34·log48·log8m=log3m=2,∴m=9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 对数与对数的运算
练习一
一、选择题
1、 2
5)(log 5a -(a ≠0)化简得结果是( )
A 、-a
B 、a 2
C 、|a |
D 、a
2、 log 7[log 3(log 2x )]=0,则21-x
等于( ) A 、
31 B 、321 C 、221 D 、331
3、 n n ++1log (n n -+
1)等于( ) A 、1
B 、-1
C 、2
D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( )
A 、2a -
B 、52a -
C 、23(1)a a -+
D 、 23a a -
5、 2log (2)log log a a a M N M N -=+,则
N M 的值为( ) A 、
41 B 、4 C 、1 D 、4或1
6、 若log m 9<log n 9<0,那么m,n 满足的条件是( )
A 、m>n>1
B 、n>m>1
C 、0<n<m<1
D 、0<m<n<1
7、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )
A 、a<b<c
B 、 a<c<b
C 、c<b<a
D 、c<a<b
二、填空题
8、 若log a x =log b y =-
2
1log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________
9 、若lg2=a ,lg3=b ,则log 512=________
10、 3a =2,则log 38-2log 36=__________
11、 若2log 2,log 3,m n a a m n a +===___________________
12、 lg25+lg2lg50+(lg2)2=
三、解答题
13、 222522122(lg )lg lg (lg )lg +⋅+-+
14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2
)(lg )lg(b a ab ⋅的值。
15、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小.
答案:
一、选择题
1、C ;
2、C ;
3、B ;
4、A ;
5、B ;
6、C ;
7、D
二、填空题 8、
2
1 9、a b a -+1
2 10、a -2
11、12
12、2
二、解答题
13、解:原式2
)12(lg )5lg 2lg 2(2lg -++=
=++-=+-=lg (lg lg )|lg |
lg lg 225212121
14、解: ⎪⎩
⎪⎨⎧=⋅=+21lg lg 2lg lg b a b a , 2)(lg )lg(b a ab ⋅=(lga+lgb)(lga -lgb)2=2[(lga+lgb)-4lgalgb]2 =2(4-4×2
1)=4
15、解: f(x)-g(x)=log x (4
3x). (1) ⎪⎪⎩
⎪⎪⎨⎧>--≠>0)143)(1(10x x x x , 即0<x<1或x>34时, f(x)>g(x) (2) ⎪⎪⎩
⎪⎪⎨⎧<--≠>0)143)(1(10x x x x , 即1<x<34时, f(x)<g(x) (3) x=3
4时, f(x)=g(x). 2.1 对数与对数的运算
练习二
一、选择题
1、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
2、 若log [log (log )]4320x =,则x
-12等于( ) A 、
142 B 、 122 C 、 8 D 、 4
3、334log 的值是( )
A 、 16
B 、 2
C 、 3
D 、 4
4、 已知b a ==4log 3log 55,
,则log 2512是( ) A 、 a b +
B 、 )(21b a +
C 、 ab
D 、 12ab
5、 已知21366log log x =-,则x 的值是( )
A 、 3
B 、 2
C 、 2或-2
D 、 3或2
6、 计算=++5lg 2lg 35lg 2lg 33( )
A 、 1
B 、 3
C 、 2
D 、 0
7、 已知23834
x y ==,log ,则x y +2的值为( ) A 、 3
B 、 8
C 、 4
D 、 log 48
8、 设a 、b 、c 都是正数,且c b a 643==,则( )
A 、
111c a b =+ B 、 221c a b =+ C 、 122c a b =+ D 、 212c a b =+
二、填空题
9、 若1)12(log -=+x ,则x=________,若log
28=y ,则y=___________。
10、 若f x x ()log ()=-31,且f a ()=2,则a=_____________
11、 已知log log log a b c x x x ===214,,,则log abc x =_________
12、 2
342923232log ()log ()+-+=___________
三、解答题
13、计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258)
14、已知b a ==5log 7log 1414,
,用a 、b 表示log 3528。
15、设M N a a a a ==-{}{lg }01112,,,,,,是否存在实数a ,使得M N ={}1?
答案:
一、选择题
1、 C ;
2、A ;
3、A ;
4、B ;
5、B ;
6、A ;
7、A ;
8、B
二、填空题
9、216-,
10、10
11、47
12、4
三、解答题
13、解:原式=)125
log 8log 25log 4log 2)(log 8log 5log 4log 25log 5(log 55555222232++++ =)5
log 32log 35log 22log 22)(log 2log 35log 2log 25log 25log 3(5555522222++++ = 2log 35log )3113(52⋅++
=2log 2
log 5log 13555⋅⋅=13、
14、解:log log log 351414282835
= =++=++=
++=+-+=+-+=-+log log log log log log (log )()141414141414147475222147217212a a b
a a
b a a b a a a b a a b
15、解: M N a a a a ==-{}{lg }01112,,,,,
要使M N ={}1,只需1∈N 且0∉N
若111-=a ,则a =10,这时lg a =1,这与集合中元素的互异性矛盾,∴≠a 10 若lg a =1,则a =10,与a ≠10矛盾
若21a =,则a =0,这时lg a 无意义,∴≠a 0
若a =1,则1110-=a ,lg lg a a ===1022,
此时}10{}12010{,,,,,==N M N ,这与已知条件矛盾
因此不存在a 的值,使M N ={}1。