不同树种的木材物理力学性能

合集下载

树木的收集资料..

树木的收集资料..

树木的收集资料姓名:学号:学院:职师专业:艺术设计赤杨赤杨刚砍伐下来时近乎白色,经空气接触后迅速变为浅棕色、带有黄色或者淡红色的色调。

高龄树才有心材形成,边材于心材之间无明显分界。

该木材颇直,纹理均匀。

加工性能:赤杨木加工性能良好,极适合车削及抛光加工,便于使用钉子、螺丝及胶水进行固定,可作砂磨、油漆或染色处理来获得良好表面。

干燥容易,干燥后质量降级很少,具有良好的稳定性。

物理性能:赤杨是一种木质相对较软的中密度硬木,具有较低的抗弯曲度、抗震力和钢行。

比重:0.41。

平均重量:449公斤/立方米。

弹性模量:9515兆帕硬度:2625牛顿主要用途:家具、橱柜、门、室内装饰线条、车制品、雕刻品、厨具。

白杨可以当柴烧,打家具,做屋檩栋梁,制作农具目前,市面上白杨树原木价格每立方米一般在五百元至七百元之间椴木有油脂,耐磨、耐腐蚀,细胞间质结构均匀致密,但木性温和所以不易开裂变形,木纹细,易加工,韧性强。

可用来制作木线、细木工板、木制工艺品等装饰材料。

价格:3500元(大量采购价格面议)榉木美国榉木的白木质呈红色调白色,心材则为浅棕红至深棕红色。

与欧洲榉木比较,美国榉木颜色略为偏深,且一致性略差。

这种木材通常为直纹,纹理紧密均匀。

加工性能美国榉木易用大多数手工及机械工具加工,具有良好的钉子及胶水固定性能。

可经染色及抛光获得良好表面。

干燥尚算快速,但极易出现翘曲、开裂及表面裂纹。

收缩率大,性能变化适中。

物理性能美国榉木属沉重、坚硬、强度大、抗震能力强、极适合进行蒸汽弯曲的一类木材。

耐用性被评定为无心材抗腐力木材,易受常见家具甲蟲及天牛蛀食,但是可渗透防腐处理剂。

白桦木形态特征:落叶乔木,高达25m,胸径50cm;树冠卵圆形,树皮白色,纸状分层剥离,皮孔黄色。

小枝细,红褐色,无毛,外被白色蜡层。

叶三角状卵形或菱状卵形,先端渐尖,基部广楔形,缘有不规则重锯齿,侧脉5-8对,背面疏生油腺点,无毛或脉腋有毛。

果序单生,下垂,圆柱形。

不同树种的木材物理力学性能汇编

不同树种的木材物理力学性能汇编

不同树种的木材物理力学性能不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。

树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。

树木是木质多年生植物,通常把它分为乔木和灌木两种。

乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。

我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。

树木是人类繁衍延续到今天的必要条件。

它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。

“碳”是形成木材物理力基础。

树木在生长发育过程中,形成了高度发达的营养体。

水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。

树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。

前一年形成的树干部分到了次年不会再进行高生长。

树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。

由叶子制造养分,将养分向下输送,供给树木生长需要。

这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。

一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。

那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。

再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。

再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。

木材特性

木材特性

一、∥SPF简介∥云杉(Spruce)-松木(Pine)-杉木(Fir)SPF是一群木材物理特性相近的针叶树种的集合名称。

主要包括四种树木:白云杉White Spruce 恩格曼云杉Engelmann Spruce 黑松Lodge pole Pine 高冷杉Alpine Fir☆分布:这些树种主要生长在美加西半部,树种生长的习性及木材的木理特性十分相近。

SPF 树形中等、树高大约在30米左右,树的直径约80公分。

由于成长速度相对缓慢,因此木材质地较为密实,且结疤较小,清材率较高。

由于SPF 对不同的生长环境适应力强,因此在美加西部蕴藏量极丰富,供给不虞匮乏。

☆SPF 主要特性:强度佳/质轻/高度稳定性/容易干燥/尺寸稳定/油漆着色及胶合性俱佳/易于加工/着钉力强SPF 在经过窑干处理后,含水率在19%以下,使得木材强度及韧度达到最佳水准,不仅加强抗潮、抗虫能力,而且更为稳定,不易龟裂,长保美观。

☆主要应用:隔间角材、室内线板、拼板、企口壁板、斜梁或结构用材、书架、层板、室内壁板等。

二、☆花旗松的结构特性花旗松以优异的强度重量比闻名世界,其较高的比重可提供良好的握钉力和固定力,适合制作民宅、小型商业建筑、多层建筑和工业建筑所使用的木制框架。

在北美软材树种中,花旗松不仅具有较高的弹性模量,它的最外弯曲纤维应力、顺纹拉力、横剪力、横纹压力及顺纹压力亦都极其良好。

正因为花旗松具有这些物理特性,并有心材的耐久性和杰出的形体稳定性,世界各地的许多建筑公司都将花旗松用作评断所有制框木材的标准。

花旗松以结构性能闻名,外观也很美丽。

当设计结构需要大型木梁、长跨度或特殊形状的拱架(如:教堂、桥梁和体育馆等)时,花旗松是最常选用的木材种类。

在民宅、商业建筑、公共建筑结构、塔式建筑和水上设施的建造中,花旗松制作的结构胶合层积梁常用做屋顶、地面和支柱的水平承重框架。

在建造工业厂房、仓库、车库,乃至于需要美丽外观的建筑结构时,胶合梁也是性能可靠的建筑材料☆外观等级花旗松木材的特点花旗松具有浅淡的玫瑰色泽和美观的通直纹理,经阳光晒过后颜色变暗。

木材的标准与规范

木材的标准与规范

防火涂料:用于木材表面的防火涂料,可以降低木材的燃烧性能 阻燃剂:添加到木材中的化学物质,可以降低木材的燃烧性能 防火处理工艺:包括浸泡、喷涂、浸渍等,可以改善木材的防火性能 防火标准:根据不同的使用环境和要求,制定相应的防火标准和规范
标准长度:通常为2.44米、3.05米、4.88米等 标准宽度:通常为0.1米、0.12米、0.15米等 标准厚度:通常为0.01米、0.015米、0.02米等 标准尺寸与规格:根据不同用途和需求,有不同的标准尺寸与规格
优化运输方式: 根据木材的数量、 尺寸和运输距离, 选择合适的运输 方式,如陆运、 海运、空运等, 以降低运输成本。
采用先进的储存 和运输技术:如 采用真空包装、 冷链运输等技术, 以延长木材的保 质期,降低储存 和运输过程中的 损耗。
加强管理:建立 健全木材的储存 和运输管理制度, 加强对员工的培 训和管理,提高 工作效率,降低 成本。
,
汇报人:
目录
CONTENTS
软木:质地轻软,易于加工,但强度较低,常 用于制作家具、装饰品等。
硬木:质地坚硬,耐磨损,但加工难度较大, 常用于制作地板、家具等。
红木:质地坚硬,色泽鲜艳,具有较高的观 赏价值和收藏价值,常用于制作高档家具、 工艺品等。
松木:质地松软,易于加工,但强度较低,常 用于制作家具、包装材料等。
包装材料:选择防潮、防蛀、防震的材料,如塑料薄膜、木箱等 包装方式:根据木材的尺寸、形状和重量,选择合适的包装方式,如单件包装、组合包装等 防护措施:在运输过程中,采取防潮、防蛀、防震等措施,如使用防潮剂、防蛀剂、减震垫等 标识:在包装上标明木材的种类、规格、数量等信息,以便于识别和管理
合理选择储存地 点:根据木材的 种类和特性,选 择合适的储存地 点,避免潮湿、 高温等不良环境 对木材的影响。

巴沙木得力学参数-概述说明以及解释

巴沙木得力学参数-概述说明以及解释

巴沙木得力学参数-概述说明以及解释1.引言1.1 概述巴沙木是一种重要的材料,具有特殊的力学参数。

本文将对巴沙木的力学参数进行详细介绍和分析。

力学参数是研究物质力学性能的重要指标,能够反映材料的强度、刚度、韧性等特性。

了解巴沙木的力学参数,有助于我们更好地理解和应用这一材料。

本文将首先对巴沙木的定义和来源进行介绍。

巴沙木是一种常见的树种,生长于热带地区,具有特殊的力学性能。

其次,我们将详细探讨巴沙木的两个重要力学参数。

第一个力学参数将着重考虑巴沙木的强度特性,包括抗拉强度、抗压强度等指标。

第二个力学参数将关注巴沙木的刚度特性,主要涉及弹性模量、剪切模量等参数。

在结论部分,我们将总结巴沙木的力学参数,并展望其在未来的应用前景。

巴沙木作为一种具备特殊力学性能的材料,有着广泛的应用潜力。

未来,我们可将巴沙木的力学参数应用于建筑、家具、车船制造等领域,进一步推动巴沙木的发展和应用。

最后,我们将给出本文的结论,总结巴沙木力学参数的重要性和研究意义。

通过对巴沙木力学参数的深入研究和分析,可以为巴沙木的应用提供科学的依据,并促进材料相关领域的发展。

本文将通过对巴沙木力学参数的系统介绍,为相关研究提供重要参考,同时也能帮助读者更好地理解和应用巴沙木这一材料。

1.2 文章结构文章结构部分的内容,可以包括以下内容:文章结构部分的目的是介绍整篇文章的结构和各个章节的内容安排,以便读者可以更好地理解文章的组织结构和内容概要。

本文主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个子部分。

在概述部分,将简要介绍巴沙木得力学参数的重要性和研究意义。

在文章结构部分,将详细阐述本文的章节划分和各个章节的内容安排,以帮助读者了解整个文章的逻辑结构。

在目的部分,将说明本文的写作目的和期望的阅读效果。

正文部分包括巴沙木的定义和来源以及其力学参数的介绍。

在巴沙木的定义和来源部分,将介绍巴沙木的植物学特征、分布范围以及其在工程建筑等领域的应用情况。

木材的机械性能

木材的机械性能

提高木材耐久性的方法包括防腐处 理、干燥处理、改性处理等
添加标题
添加标题
添加标题
添加标题
影响木材耐久性的因素包括树种、 木材的物理和化学性质、使用环境 等
耐久性是评价木材质量的重要指标, 对于建筑、家具等木制品尤为重要
耐腐蚀性
木材的耐腐蚀性主要取决于木材的化学成分和结构 木材中的酚类化合物和单宁等物质具有较强的抗氧化性和防腐性 木材的耐腐蚀性还与木材的含水率和温度有关 木材的耐腐蚀性可以通过化学处理和热处理等方式进行改善
耐磨性
木材的耐磨性是指木材抵抗磨损的能力 耐磨性与木材的硬度、密度和纹理有关 耐磨性差的木材容易磨损,影响使用寿命 提高木材耐磨性的方法包括涂饰、浸渍和热处理等
04 木材的加工性能
锯解加工
锯解方式:纵锯、 横锯、斜锯等
锯解设备:带锯机、 圆锯机、链锯等
锯解质量:锯解精 度、表面粗糙度、 木材损耗等
膨胀
干缩湿胀的影 响因素:木材 的种类、密度、 纹理、含水率

干缩湿胀的危 害:导致木材 变形、开裂、
翘曲等
干缩湿胀的预 防措施:合理 控制木材的含 水率,采用适 当的干燥和防
腐处理方法
硬度
木材的硬度与其密度、纤维长 度和细胞壁厚度有关
硬度是衡量木材强度的重要指 标之一
硬度高的木材耐磨、耐久性好, 但加工难度较大
硬度低的木材易于加工,但耐 磨、耐久性较差 力
影响因素:树种、木材的密度、 纹理、含水率等
测试方法:拉伸试验、剪切试 验等
应用:抗拉强度是评估木材力 学性能的重要指标,用于木材 分级、选材和结构设计等
抗压强度
木材的抗压强度是 指木材在受到垂直 于纤维方向的外力 作用下,抵抗变形 和破坏的能力。

常用木材物理力学性能

常用木材物理力学性能
II,III
II,III
II
II,III
III
杯裂 香
15.0
IV,V
III,IV
IV
V
II,IV
IV
双翅 龙脑 香
15.0
III,IV
III,V
III,V
III,IV
III
IV,V
I,III
III,I
V
龙脑 香
15.0
IV
III
II
IV
IV
V
III,V
IV
低垂 坡垒
15.0
V
II
II,III
III,IV
抗弯 弹性 模量
/GPa
顺纹 抗剪 强度
/MPa
端 面 硬 度
/N
径向
弦 向
福建 柏
15.0
II
I
II
II
II
II
II
III
银杏
15.0
II
II
II
II
II
III
III
III
冷杉
15.0
I
III
IV
II
III
II
II
杉松 冷杉
15.0
II
II
II
II
II
II
I
I
云南 油松
15.0
II,III
II
III,I
II
I
II
II
I
人面 子
15.0
III
I
II
II
II,III
III
III,IV
II,III
卄田

木材的物理性质

木材的物理性质

木材的密度与 重量的关系: 木材的密度与 重量成正比, 即密度越大,
重量越重。
木材的密度与 树种的关系: 不同树种的密 度不同,因此 重量也不同。
密度和重量的影响因素
树种:不同树种的密度和 重量不同
年龄:树木年龄越大,密 度和重量越高
湿度:木材的湿度会影响 其密度和重量
温度:温度也会影响木材 的密度和重量
木材的吸湿性可 以吸收声音,降 低噪音
木材的吸湿性可 以吸收热量,保 持室内温度稳定
04
木材的力学性质
弹性模量
定义:木材在受力时抵抗变形 的能力
影响因素:树种、木材的密度、 含水率等
测试方法:拉伸试验、压缩试 验等
应用:木材的强度设计、加工 工艺选择等
抗拉强度
定义:木材抵抗拉伸破坏的能力
影响因素:树种、木材的密度、纹理、含水率等
纹理和花纹的影 响:对木材的强 度、硬度、美观 度等有影响
纹理和花纹的识 别:通过观察木 材的横截面、纵 截面等来识别
木材的缺陷和变异
缺陷:节子、裂纹、腐朽、 虫眼等
变异:颜色、纹理、硬度、 密度等
原因:生长环境、气候条 件、树种差异等
影响:美观度、强度、耐 用性等
THANK YOU
汇报人:
02
木材的导热和导电 性能
导热性能
木材的导热系数:描述木材导热 能力的参数
应用:木材的导热性能在室内设 计中的应用,如地板、家具等
添加标题
添加标题
添加标题
添加标题
影响因素:木材的种类、密度、 湿度等
与其他材料的比较:木材与其他 材料的导热性能比较,如金属、 塑料等
导电性能
木材的导电性能:木材是绝缘体, 导电性能较差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.木材密度是决定木材强度和刚度的物质基础,是判断木材强度的最佳指标。密度增大,木材强度和刚性增高;密度增大,木材的弹性模量呈线性增高;密度增大,木材韧性也成比例地增长。在通常的情况下,除去木材内含物,如树脂、树胶等,密度大的木材,其强度高,木材强度与木材密度二者存在着下列指数关系方程:σ=Kρn,式中:σ——木材强度;ρ——木材密度;K和n——常数,随强度的性质而不同。
树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。树木是木质多年生植物,通常把它分为乔木和灌木两种。乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。
树木所需的水分几乎全部由根系(吸水器官)吸取,并沿木质部(从根部到叶部)向上长距离移动。那么,水分是靠什么动力来提升的呢?研究结果表明,动力有两种:一种是根压,另一种是蒸腾拉力。这两种力,在积累过程中,转化成木材的力。
木材力学是涉及木材在外力作用下的机械性质或力学性质的科学,它是木材学的一个重要组成部分。木材力学性质是度量木材抵抗外力的能力,研究木材应力与变形有关的性质及影响因素。
5.木材抵抗剪切应力的最大能力,称为抗剪强度。木材抗剪强度视外力作用于木材纹理的方向,分为顺纹抗剪强度和横纹抗剪强度。在实际应用中发生横纹剪切的现象不仅罕见,而且横纹剪切总是要横向压坏纤维产生拉伸作用而并非单纯的横纹剪切,因此通常不作为材性指标进行测定。木材的横纹抗剪强度为顺纹抗剪强度的3-4倍。木材的顺纹抗剪强度视木材受剪面的不同,分为弦面抗剪强度和径面抗剪强度,如图。剪切面平行于年轮的弦面剪切,其破坏常出现于早材部分,在早材和晚材交界处滑行,破坏表面较光滑,但略有起伏,面上带有细丝状木毛。剪切面垂直于年轮的径面,剪切破坏时,其表面较为粗糙,不均匀而无明显木毛。在扩大镜下,早材的一些星散区域上带有细木毛。
木材作为一种非均质的、各向异性的天然高分子材料,许多性质都有别于其它材料,而其力学性质和更是与其它均质材料有着明显的差异。例如,木材所有力学性质指标参数因其含水率(纤维黏弹性,会发生蠕变现象,并且其力学性质还会受荷载时间和环境条件的影响。
2.木材的顺纹抗拉强度,是指木材沿纹理方向承受拉力荷载的最大能力。木材的顺纹抗拉强度较大,各种木材平均约为117.7-147.1MPa,为顺纹抗压强度的2-3倍。木材在使用中很少出现因被拉断而破坏。木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间的剪切。微纤丝纵向的C-C、C-O键结合非常牢固,所以顺拉破坏时的变形很小,通常应变值小于1%~3%,而强度值却很高。
压力流动模型实验证明,树木营养液的流动动力是流体静压力。即净生产细胞(如一片成熟叶)由于光合作用制造大量糖而保持较高的溶质浓度,水便通过渗透作用不断进入净生产细胞,使胞内的流体静压力增加,迫使营养液经过胞间连丝进入韧皮部。而净消费细胞(可以是一个根细胞、一个有代谢作用的细胞,或一个果实细胞)由于呼吸、生长和储藏保持着较低的溶质浓度,胞内流体静压力较低。这样,营养液便沿压力梯度向下运输到根部。韧度部转移营养液的最高速度在阔叶树中是0.4~0.7米/小时,在针叶树中是0.18~0.2米/小时。对于一株30米高的松树和杨树,营养液由树冠输送到树根的最短时间分别为7天和1.8天,而对于112米的红杉来说约需20多天的时间。
不同树种的木材物理力学性能
———————————————————————————————— 作者:
———————————————————————————————— 日期:
不同树种的木材物理力学性能
不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
4.木材抗弯强度是指木材承受逐渐施加弯曲荷载的最大能力,可以用曲率半径的大小来度量。它与树种、树龄、部位、含水率和温度等有关。木材抗弯强度亦称静曲强度,或弯曲强度,是重要的木材力学性质之一,主要用于家具中各种柜体的横梁、建筑物的桁架、地板和桥梁等易于弯曲构件的设计。静力荷载下,木材弯曲特性主要决定于顺纹抗拉和顺纹抗压强度之间的差异。因为木材承受静力抗弯荷载时,常常因为压缩而破坏,并因拉伸而产生明显的损伤。对于抗弯强度来说,控制着木材抗弯比例极限的是顺纹抗压比例极限时的应力,而不是顺纹抗拉比例极限时应力。
木材力学性质包括应力与应变、弹性、黏弹性(塑性、蠕变)、强度(抗拉强度、抗压强度、抗弯强度、抗剪强度、扭曲强度、冲击韧性等)、硬度、抗劈力以及耐磨耗性等。
1.木材受到外压力时,能抵抗外力压缩变形破坏的能力,称为抗压强度.当外部的压力与木材纤维方向平行时的抗压强度被称为顺纹抗压强度.木材顺纹抗压强度是指木材沿纹理方向承受压力荷载的最大能力,主要用于诱导结构材和建筑材的榫接合类似用途的容许工作应力计算和柱材的选择等,如木结构支柱、矿柱和家具中的腿构件所承受的压力。
树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。由叶子制造养分,将养分向下输送,供给树木生长需要。这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。
一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。这个过程,就是水分将土壤中的碳分子和空气中的碳分子,经过化学反应形成积累。
树木是人类繁衍延续到今天的必要条件。它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。
“碳”是形成木材物理力基础。树木在生长发育过程中,形成了高度发达的营养体。水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。前一年形成的树干部分到了次年不会再进行高生长。
相关文档
最新文档