线性代数讲义2
线性代数二次型讲义85页PPT

谢谢!
85
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨—罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
▪
线性代数二次型讲义
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
线性代数(同济大学第五版)二次型讲义、例题

第六章 二次型本章主要包括二次型的矩阵及其矩阵,化二次型为标准型和规范形,二次型及实对称矩阵的正定性问题,学习本章内容需要结合矩阵的特征值与特征向量的相关知识.§1 二次型及其矩阵一、二次型及其矩阵定义1 关于n 个变量n x x x ,,,21 的二次齐次函数+++= 2222211121),,,(x a x a x x x f n n n n n n nn x x a x x a x x a x a 1,1313121122222--++++ (1)若取ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成j i nj i ij n x x a x x x f ∑==1,21),,,( (2)称为n 元二次型,所有系数均为实数的二次型称为实二次型.记,212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x x21 则二次型),,,(21n x x x f 又表示为Ax x x x x f T n =),,,(21 ,其中A 为对称矩阵,叫做二次型 ),,,(21n x x x f 的矩阵,也把),,,(21n x x x f 叫做对称矩阵A 的二次型.对称矩阵A 的秩,叫做二次型Ax x x x x f T n =),,,(21 的秩. 例1 写出二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=的矩阵,并求出二次型的秩.解 写出二次型所对应的对称矩阵为A ,⎪⎪⎪⎭⎫ ⎝⎛----=242422221A因为二次型的秩就是对称矩阵A 的秩.⎪⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛----=14002202214~6808602212~224242222123321312r r r r r r r r A ∴二次型的秩为3.§2 化二次型为标准型一、二次型合同矩阵二次型),,,(21n x x x f 经过可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 即用(3)代入(1),还是变成二次型. 那么新二次型的矩阵与原二次型的矩阵A 的关系是什么?可逆线性变换 (3),记作Cy x =,其中矩阵)(ij c C =,把可逆的线性变换Cy x =代入二次型Ax x x x x f T n =),,,(21 ,得二次型ACy C y Cy A Cy Ax x x x x f T T T T n ===)()(),,,(21定义 1 两个同阶方阵A B 、,若存在可逆矩阵C ,使B AC C T=,则称矩阵A B 、合同.若A 为对称矩阵,C 为可逆矩阵,且B AC C T=.则B 亦为对称矩阵,且).()(A r B r =证 因为A 是对称矩阵, 即A A T=,所以B AC C C A C AC C B T T T T T T T T ====)()(即B 为对称矩阵. 因为AC C B T =,所以)()()(A r AC r B r ≤≤.因为11)(--=BC C A T ,所以)()()(1B r BC r A r ≤≤-, 故得).()(B r A r = 主要问题:求可逆的线性变换⎪⎩⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (3) 将二次型(1)化为只含平方项,即用(3)代入(1),能使222221121),,,(nn n y k y k y k x x x f +++= (4) 称(4)为二次型的标准形.也就是说,已知对称矩阵A ,求一个可逆矩阵C 使Λ=AC C T为对角矩阵.定理2 任意二次型j inj i ij x x af ∑==1,)(ji ij a a =,总有正交变换Py x =,使f 化为标准形2222211nn y y y f λλλ+++= ,其中n λλλ,,,21 是f 的矩阵)(ij a A =的特征值.推论 任给n 元二次型Ax x x f T=)(,总有可逆变换Cz x =使)(Cz f 为规范形.二、二次型的合同标准形1、拉格朗日配方法化二次型成标准型(1) 对有完全平方的二次型,每一次配方都应将某个变量的平方项以及涉及这一变量的所有混合项配成完全平方,而使得这个完全平方式的外面不再出现这个变量.然后对剩下的不是完全平方的部分再按照此处理,直到全部配成完全平方为止,这样做,是为了保证所得的线性变换是非异的.如果不这样做,最后就需要检验所得的线性变换是否非异.例2 用配方法化二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=为标准形.解 由于f 中含变量型1x 的平方项,故把含1x 的项归并起来,配方可得32312123222182292x x x x x x x x x f +++++=322322232168)(x x x x x x x +++++=上式右端除第一项外已不再含1x .继续配方,可得232322321)3()(x x x x x x f -++++= 令⎪⎩⎪⎨⎧=+=++=3332232113x y x x y x x x y 即⎪⎩⎪⎨⎧=-=+-=33322321132y x y y x y y y x 就把f 化成标准形(规范形),232221y y y f -+=所用的变换矩阵为).0(100310211≠⎪⎪⎪⎭⎫⎝⎛--=C C(2) 如果所给的二次型全由混合项组成,而没有平方项,例如133221321),,(x x x x x x x x x f ++=,则需要先做类似于⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x 之类的非异线性变换,使变换后的二次型由平方项,再按(1)处理.二次型经非异线性变换化为标准型后,还可以再作非异线性变换,化为标准形.例3化二次型3231212x x x x x x f -+=成标准型,并求所用的变换矩阵.解 由于所给二次型中无平方项,所以令 ⎪⎩⎪⎨⎧=+=-=33212211yx y y x y y x 即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100011011y y y x x x 代入3231212x x x x x x f -+=得323122213y y y y y y f ++-=在配方,得.2)23()21(23232231y y y y y f +--+= 令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=333223113332231123212321z y z z y z z y y z y y z y y z即.10023102101321321⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛z z z y y y得2322212z z z f +-= 所用变换矩阵为.10011121110023102101100011011⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=C )02(≠=C2、正交变换化二次型成标准型寻求正交变换,化二次型为标准型,其步骤如下: (1) 写出二次型的矩阵A ,求0-=A E λ的所有相异的根n λλλ,,,21 (n s ≤,n 为A 的阶数);(2) 对每个i λ(s ,,2,1 =i )求齐次线性方程组0)(=-x A E i λ的基础解系.如果i λ,基础解系只含1个解向量,则单位化.如果i λ,基础解系含有多于1个的解向量,则规范化,这样,总共得到n 个两两正交的单位向量.(3) 以所得的n 个两两正交的列向量得到矩阵P ,则P 为正交矩阵,正交变换Py x =化二次型Ax x T为标准形y y TΛ为对角阵,主对角线上第i ),,2,1(n i =个元素是P 的第i 个列向量所对应的特征值(k 重特征值出现k 次).经正交变换得到的标准形后,还可以再作非异的线性变换将标准后,还可以再作非异的线性变换将标准形化为规范形.但这一变换已不再是正交变换了.换言之,经正交变换,二次型一定可以化为标准型,但未必能化规范形.例4求一个正交变换Py x =,化二次型32312123222132184422),,(x x x x x x x x x x x x f ++---=为标准形.解 (1)写出二次型f 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=242422221A (2) 求矩阵A 的特征值,写出特征多项式λλλλλλλλλλ------=-------=-------204622412204222212424222212)2)(7(6241)2(λλλλλ-+-=------=故特征值为2,7321==-=λλλ(3) 求矩阵A 的特征值所对应的特征向量 ①当71-=λ时, 解方程0)7(=+x E A ,由⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=+0001102101~5424522287r E A 得基础解系⎪⎪⎪⎭⎫ ⎝⎛-=2211ξ.②当232==λλ时, 解方程0)2(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=-000000221~4424422212r E A得基础解系⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=102,01232ξξ.(4) 将32,ξξ正交化:取22ξη=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=-=5425101254102],[],[2223233ηηηξηξη(5) 将321,,ηηξ单位化,得,22131111⎪⎪⎪⎭⎫ ⎝⎛-==ξξp ,01251222⎪⎪⎪⎭⎫ ⎝⎛-==ηηp .542531333⎪⎪⎪⎭⎫ ⎝⎛==ηηp(5) 可得正交矩阵P.53503253451325325231),,(321⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==p p p P 若令Py x =则Ax x x x x x x x x x x x x x f T =++---=32312123222132184422),,(233222211y y y APy P y T T λλλ++== 2322212271y y y ++-= 注 用正交变换法化二次型成标准型后,其平方项的系数就是矩阵A的特征值.而变换矩阵的各列,分别是这些特征值对应的规范正交的特征向量.例 5 已知,1001110101⎪⎪⎪⎭⎫⎝⎛--=a a A 二次型x A A x x x x f T T )(),,(321=的秩为2.(1) 求实数a 的值.(2) 求正交变换Qy x =将f 化为标准型. 解(1),3111101021001110101111010010122⎪⎪⎪⎭⎫⎝⎛+---+-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=a a a a a a a a a a A A T x A A x T T )( 秩为22)()(==∴A r A A r T可得 1-=a .(2) 令⎪⎪⎪⎭⎫⎝⎛==422220202B A A T由0)6)(2(422220202=--=-------=-λλλλλλλE B解之得.6,2,0321===λλλ① 当01=λ时,由0)0(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=11-1-1ξ.②当22=λ时,由0)2(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=011-2ξ.③当63=λ时,由0)6(=⋅-x E B ,可解得特征值为⎪⎪⎭⎫⎝⎛=2113ξ.将321,,ξξξ单位化,得⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛==211613,011-212,11-1-313322111ξξξξξξr r r令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--==6203161210612131),,(321r r r Q . 则Qy x =时,可得标准型232262y y Bx x f T +==. 例6 设二次型2221231231323(,,)(1)22f x x x ax ax a x x x x x =++-+-,若二次型f 的规范形为2212y y +,求a 的值. 解 若二次型f 的规范形为2212y y +,说明f 两个特征值为正,一个为0.当2=a 时,三个特征值为 0,2,3,这时,二次型的规范形为2212y y +.§3 二次型及实对称矩阵的正定性二次型的标准形不是唯一的.标准形中所含项数是确定的(即是二次型的秩).限定变换为实变换时,标准形中正系数的个数是不变的.一、惯性定理定理3(惯性定理) 设有实二次型Ax x f T =它的秩是r ,有两个实的可逆变换Cy x =与Pz x =.使)0(,2222211≠+++i r r k y k y k y k 及,2222211r r y z z z +++ λλ)0(≠i λ则r k k k ,,,21 中正数的个数与r λλλ,,,21 中正数的个数相等. 正数的个数称为正惯性指数,负数的个数称为负惯性指数.例7 二次型,2223),,(323121232221321x x x x x x x x x x x x f +++++=求f 的正惯性指数.解:方法一:3231212322213212223),,(x x x x x x x x x x x x f +++++= 2223212)(x x x x +++= 令⎪⎩⎪⎨⎧==++=33223211xy x y x x x y , 则22212y y f +=.故f 的正惯性指数为2.方法二:f 的正惯性指数为所对应矩阵特征值正数的个数,由于二次型f 对应矩阵.111131111⎪⎪⎪⎭⎫ ⎝⎛=A所以λλλλλλλλλλλ---=---=---=-211231001111310111131111E A λλλ---=2112310)4)(1(2123---=---=λλλλλλ=0 故4,1,0321===λλλ.故f 的正惯性指数为2. 二、正定性的判别定义10 设有实二次型Ax x f T=如果对于任何0≠x ,都有0)(>x f ,(显然0)0(=f ),则称f 为正定二次型,并称对称阵A 是正定的.记作0>A ;如果对任何0≠x ,都有0)(<x f ,则称f 为负定二次型,并称对称阵A 是负定的,记作0<A .定理4 实二次型Ax x f T=为正定的充分必要条件是:它的标准形的n 个系数全为正,即f 的正惯性指数为n .证 设可逆变换Cy x =使21)()(ini i yk Cy f x f ∑===.先证充分性:设0>i k ),,2,1(n i =,任给0≠x ,故.0)(21>=∑=i ni i y k x f再证必要性: 用反证法,假设有0≤s k ,则当s e y =(单位坐标向量)时,0)(≤=s s k Ce f ,显然0≠s Ce 这与假设f 正定矛盾,故.0>i k推论 对称阵A 为正定的充分必要条件是: A 的特征值全为正.定理5 对称阵A 为正定的充分必要条件是:A 的各阶主子式都为正.即011>a ,022211211>a a a a,01111>nnn na a a a ; 对称阵A 为负定的充分必要条件是:奇数阶主子式为负,而偶数阶主子式为正.即,0)1(1111>-nrn rra a a a ),,2,1(n r =.这个定理称为霍尔维兹定理.注:对于二次型,除了有正定和负定以外,还有半正定和半负定及不定二次型等概念.例8设实二次型312322212x cx ax bx ax f +++=,当该二次型为正定二次型,c b a ,,应满足的条件?解 写出f 的矩阵 ⎪⎪⎪⎭⎫⎝⎛=a c b c a A 0000因为该二次型为正定二次型,所以0)(,0,022>-=>>∴b c a A ab ac b a ,,∴应满足0,>>b c a .定理6实二次型Ax x f T =为正定的充分必要条件是:存在可逆矩阵C ,使C C A T =,即矩阵A 与单位矩阵合同.证明 先证充分性:若存在可逆矩阵C ,使C C A T=,任取非零向量x ,则0≠Cx (如果0=Cx ,由C 可逆,则0=x 矛盾),对任取的0≠x ,有0)()()(T >====Cx Cx Cx Cx C x Ax x x f T T T,从而矩阵A 正定.再证必要性:设对称矩阵A 为正定矩阵,因为A 为对称矩阵,则存在正交矩阵Q ,使A 对角化,即),,,(21n T diag AQ Q λλλ =Λ=,其中n λλλ,,,21 为A 的特征值,而A 是正定矩阵,所以0>i λ,记),,,(211n diag λλλ =Λ.则Λ=Λ21,从而T T T Q Q Q Q Q Q A ))((1111ΛΛ=ΛΛ=Λ=令T Q C )(1Λ=,则C 可逆,而且得到C C A T=. 所以可得EC C A T=,故矩阵A 与单位矩阵合同.定理7实二次型Ax x f T =为正定的充分必要条件是:存在正定矩阵B ,使2B A =.证明 因为A 是正定矩阵,所以矩阵A 可以正交相似对角化。
北京邮电大学国际学院线性代数讲义Lecture 02

1 0 0 0 0
and we end up with
1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 2 0 1 3 pivotal row 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 2 0 1 3. 0 4 0 3
in row k 1 is greater that the number of leading zero entries in row k . nonzero entries.
Row Echelon Form
Definition: The process of using row operation I, II and III to transform a linear system into one whose augmented matrix is in row echelon form is called Gaussian elimination. Remark: Row operation II is necessary in order to scale the rows so that lead coefficients are all 1. Remark: If the row echelon form of the augmented matrix contains a row of the form 0 0 0 1 The system has no solution set. Otherwise, the system will have solution set. Definition: If a system has solution set, we will be referred as consistent and if a system has no solution, we will be referred as inconsistent.
129598814399375000[线性代数电子讲义] [2] 行列式的性质
![129598814399375000[线性代数电子讲义] [2] 行列式的性质](https://img.taocdn.com/s3/m/280cead6360cba1aa811da84.png)
[线性代数]第一章行列式1 二阶与三阶行列式的引入2n阶行列式的定义3行列式的性质4余子式与代数余子式5行列式的展开定理6线性方程组的Gramer 法则7典型例题回顾[说明]●不证明这些性质, 重点是熟练使用●行列地位平等: 对行成立的性质对列也成立[符号说明])(row i r i 行第)(column j c j列第两行交换j i r r ji ,↔ki kr i 行提公因子第/行倍加到第行第i k j kr r ji +3. 行列式的性质行列式称为行列式D 的转置行列式.TD nna a a 2211nn a a a 2112 2121n n a a a =D 2121n n a a an n a a a 2112=TD nna a a 2211[性质1]转置相等.说明这表明行与列地位平等.[定义1].825825=361567567361,571571=266853266853推论两行(列)相同,则行列式为零.--[性质2]换行反号.nn n n in i i n a a a ka ka ka a a a 212111211nnn n ini i n a a a a a a a a a k 212111211 推论两行(列)元素成比例, 则行列式为零.[性质3]按行提公因子.[性质2]换行反号.nnni ni n n n i i n i i a a a a a a a a a a a a a a a D )()()(2122222211111211'+'+'+=nn nin n i n i nn ni n n i n i a a a a a a a a a a a a a a a a a a'''+=122211111122211111[性质4]按行拆和.[性质3]按行提公因子.[性质2]换行反号.njnj nin jj i nji a a a a a a a a a a a a 12222111111njnjnj ni n j j j i nj j i kr r a a ka a a a a ka a a a a ka a a ji )()()(1222221111111++++=⨯k [性质5]倍加不变.[性质4]按行拆和.[性质3]按行提公因子.[性质2]换行反号.[例1].2,d xz z y y x p r r q q p ac c b b a D z y x r q p c b ad =+++++++++==证明设证xz z y y x pr r q q p a c c b b a D +++++++++=x z z y x p r r q p a c c b a ++++++=,xz z y y p r r q q a c c b b +++++++x z z y x p r r q p a c c b a ++++++=,x z z y y p r r q q a c c b b +++++++xz z y x p r r q p ac c b a ++++++z z y x r r q p c c b a c c +++=-13zy x r q p cb ac c 32-=,d =x z z y y p r r q q a c c b b ++++++xz z y p r r q ac c b c c +++=-12xz y p r q ac b c c 23-=zx y rp q c a b c c -=↔23zy x r q p cb ac c 21↔=,d =.2d D =从而,[例2]计算行列式2101044614753132115973312402----------=D 2101044614753132115973312402----------=D 解210104461475312402597331321131-----------=↔r r3⨯2101044614753124022010013211123----------=+r r 210104461475312402597331321131-----------=↔r r )2(-⨯2101044614753140202010013211132----------=-r r )3(-⨯210104435120140202010013211143----------=-rr )4(-⨯2220035120140202010013211154---------=-r r 222002110020100140201321124-------=+r r 222003512020100140201321132--------=↔r r 210104435120140202010013211143----------=-rr )4(-⨯222000100020100140201321134-------=+r r 2⨯6200001000201001402013211352-------=+r r 2⨯6000001000201001402013211452-------=+r r )6()1()1(21-⋅-⋅-⋅⋅=.12-=222002110020100140201321124-------=+r r[例2的简化表达]2101044614753132115973312402----------=D 2101044614753132115973312402----------=D 解210104461475312402597331321131-----------=↔r r2220035120140202010013211---------222003512020100140201321132--------=↔r r =-+--131215142343r r r r r r r r 2101044614753132115973312402----------=D 210104461475312402597331321131-----------=↔r r222002110020100140201321124-------=+r r 6200001000201001402013211-------=++34352r r rr 2220035120140202010013211---------222003512020100140201321132--------=↔r r =-+--131215142343r r r r r r r r6000001000201001402013211452-------=+r r )6()1()1(21-⋅-⋅-⋅⋅=.12-=222002110020100140201321124-------=+r r 6200001000201001402013211-------=++34352r r rr[定理1]行倍加运算化成上三角任何行列式都可以只用.行列式够实现换行只需证明行倍加运算能j i r rj j i r r r r r ji+=+i j i r r r r r ij-+=-证i j r r r r j i-=+i j r r -=[例3]计算n 阶行列式.)(n abb bb a b bb b a b b b b a D=解abb b n a b ab b n a b b a b n a b b b b n a D )1()1()1()1(-+-+-+-+=列得列加到第将第1,,3,2n[]abb b a b b b a b b b b n a1111)1(-+=ab b b n a b ab b n a b b a b n a b b b b n a D )1()1()1()1(-+-+-+-+=[]ba ba b a bb b b n a ----+= 0000000001)1([]abb b a b b b a b b b b n a1111)1(-+=[].)()1(1---+=n b a b n a[例4]nnn nnk n k kkk kb b b bc c c c a a a a D 1111111111110=,)det(11111kkk kij a a a a a D ==,)det(11112nnn nij b b b b b D ==.21D D D =:证明[以后作为定理使用]设证明;0111111kk kkk p p p p p D ==:,11化为下三角形行列式把作运算对D kr r D j i +:,22化为下三角形行列式把作运算对D kc c D j i +.0111112nn nkn q q p q q D ==将列作运算后行作运算的前对,,j i j i kc c n kr r k D ++:化为下三角形行列式D ,11111kkk ka a a a D=,11112nnn nb b b b D=nnn nnk n k kkk kb b b bc c c c a a a a D 1111111111110=,01111111111nnn nk n k kkk q q q c c c c p p p D =nnkk q q p p 1111=.21D D =下三角)()(1111nn kk q q p p ⋅=将列作运算后行作运算的前对,,j i j i kc c n kr r k D ++:化为下三角形行列式Dnnn nnk n k kkk kb b b bc c c c a a a a 1111111111110kk k k a a a a 1111=nnn nb b b b1111[以后作为定理使用]nnn nknk nkk k k b b b b c c c c a a a a1111111111110kk k k a a a a 1111=nnn nb b b b1111。
《线性代数》考点强化班 配套讲义 第二章 矩阵

( A2 )2
0
1
0
0
1
0
E
0
0
1
0
0
1
所以 B2 P1APP1AP P1A(PP1) AP P1A2P,,
B2020 P1A2020 P P1 A4 505 P P1EP P1P E
1 0 0 3 0 0
所以Leabharlann B2020 2 A2 E 2 0
1
0
,
AB A AE 1,33 A E 1,33 2E 1,33
1 0 3
AB
1
2E
1, 3 3
1
1 2
0 0
1 0
0
1
1 0 0
【例
12】设
A
为
3
阶矩阵,
P
为
3
阶可逆矩阵,且
P 1
AP
0
1
0
.若
0
0
2
P 1,2 ,3 , Q (1 2 ,2 ,3 ) ,则 Q1AQ ( )
行(3)-3行(1)
3 4 6 0 0 1
0 -2 -3 -3 0 1
1 0 0 -2 0 1
1 0 0 -2 0 1
行(1)行(3)
行(3)-2行(2)
0 -1 -1 -1 1 -1 0 1 1 1 -1 1
行(2)-行(3)
(-1)行(2)
0 -2 -3 -3 0 1
0 0 -1 -1 -2 3
0
0 a2
0
【例 2】设 A 其中 ai 0 ;求 Ak1 Ak 2 Akn .
0 0 0 an1
an 0 0 0
1
0 A 0
线性代数第二讲共59页

线ቤተ መጻሕፍቲ ባይዱ代数第二讲
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
线性代数讲义正式版

3:行列式——由 n2 个数组成的下列记号
a11 a12 ... a1n
D
a21
a22
...
a2 n
,称为 n 阶行列式,规定
an1 an2 ... an2
D 1 a a a j1 j2 jn
( j1 j2 jn )
1 j1 2 j2
njn
4:余子式与代数余子式——把行列式
1
郑老师线代核心讲义 第五节:线性方程组的性质........................................................................................................ 29 第六节:典型例题:.................................................................................................................... 31 第五章 特征值与特征向量................................................................................................................ 39 第一节:基本概念........................................................................................................................ 39 第二节:特征值与特征向量的性质............................................................................................... 40 第三节:矩阵相似........................................................................................................................ 43 第四节:相似及对角化性质........................................................................................................ 43 第五节:非实对称阵对角化步骤................................................................................................ 43 第六节:求特征值的方法............................................................................................................ 44 第七节:典型例题........................................................................................................................ 46 第六章 二次型.................................................................................................................................... 56 第一节 二次型及其标准型.......................................................................................................... 56 第二节:如何化二次型为标准二次型........................................................................................ 58 第三节 矩阵之间的三大关系.................................................................................................... 59 第四节 正定矩阵与正定二次型.................................................................................................. 63
辅导讲义(线性代数第二讲)

178第二章 矩阵矩阵本质上就是一个数表,它是线性代数中一个非常重要而且应用十分广泛的概念,贯穿了线性代数的始终,复习时要高度重视,概念要清晰,符号要习惯,运算要准确、迅速、简捷。
1. 理解矩阵的概念,熟练几种特殊的矩阵;2. 了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质;3. 掌握矩阵的线性运算, 乘法, 转置及其运算规则;4. 理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆;5. 了解分块矩阵的概念, 了解分块矩阵的运算法则。
一、 考试内容 2.1 矩阵的定义由n m ⨯个数),,2,1;,,2,1(n j m i a ij ==排成如下m 行n 列的形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n mna a a a a a a a a A (2)12222111211称为一个n m ⨯矩阵,当n m =时,矩阵A 称为n 阶矩阵或者叫n 阶方阵。
只有一行的矩阵)(21n a a a A =称为行矩阵,又称为行向量;反之,只有一列的矩阵称为列矩阵,又称为列向量。
两个矩阵的行数和列数都相等时,就称它们为同型矩阵。
如果是同型矩阵,而且对应元素都相等,则称两矩阵为相等矩阵。
元素都是零的矩阵称为零矩阵,记作O 。
注意不同型的零矩阵是不同的。
2.2 矩阵的加法设有两个n m ⨯阶矩阵)(ij a A =和)(ij b B =,那么矩阵A 与B 的和记作B A +,规定为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A (2)21122222221211112121111 运算法则:(1)A B B A +=+ (2))()(C B A C B A ++=++ (3)A O A =+ (4))(B A B A -+=- 注意:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 矩阵矩阵是线性代数的重要组成部分,也是以后各章中计算的重要工具.在矩阵的理论中,矩阵的运算起着重要的作用.我们在这一章里,将要介绍矩阵的基本概念及其运算.§2.1 矩阵的定义一、矩阵的定义首先看几个例子.例1 设有线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x这个方程组未知量系数及常数项按方程组中的顺序组成一个矩形阵列如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------77391111833312111151这个阵列决定着给定方程组是否有解?以及如果有解,解是什么等问题.因此对这个阵列的研究很有必要.例2 某企业生产5种产品,各种产品的季度产值(单位:万元)如表2-1.表2-1这个排成4行5列的产值阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡7680827088809090759076848570986478755880具体描述了这家企业各种产品各季度的产值,同时也揭示了产值随季节变化规律的季增长率及年产量等情况.例3 生产m 种产品需用n 种材料,如果以ij a 表示生产第i 种产品(m i ,,Λ2,1=)耗用第j 种材料(n j ,,Λ2,1=)的定额,则消耗定额可以用一个矩形表表示,如表2-2.表2-2这个由m 行n 列构成的消耗定额阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211描述了生产过程中产出的产品与投入材料的数量关系.类似这样的数表,我们在自然科学、工程技术和经济管理等不同领域中经常遇到.这种数表在数学上就叫做矩阵.下面我们给出矩阵的定义.定义 由n m ⨯个数),,2,1;,,2,1(n j m i a ij ΛΛ==排成m 行n 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 (2-1-1) 叫做m 行n 列矩阵,简称n m ⨯矩阵.这n m ⨯个数叫做矩阵A 的元素,ij a 叫做矩阵A 的第i 行第j 列元素.一般情形下,用大写字母A ,B ,C ,…表示矩阵.为了标明矩阵的行数m 和列数n ,可用n m A ⨯表示,或记作()nm ija ⨯.二、几种特殊的矩阵1.n 阶方阵当n m =时,即A =()nn ija ⨯时,A 称为n 阶方阵.2.对角矩阵主对角线以外的元素都为零的方阵称为对角矩阵,即⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n OO A λλλO21 3.单位矩阵主对角线上的元素都是1的n 阶对角矩阵称为单位矩阵,记为E ,如⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111O O OE 4.三角矩阵主对角线一侧所有元素都为零的方阵称为三角矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a aa a a ΛM O M M ΛΛ00022211211 或 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a aa ΛM O M M ΛΛ21222111000 5.零矩阵所有元素都为零的矩阵称为零矩阵.记作n m O ⨯,简记O . 6.行矩阵、列矩阵m =1时的矩阵,即()n a a a A Λ21=称为行矩阵;n =1时的矩阵,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A M 21称为列矩阵.7.对称矩阵在矩阵n n ij a A ⨯=)(中,若),,2,1,(n j i a a jiij Λ==则矩阵A 称为对称矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡410781086076258051§2.2 矩阵的运算矩阵的意义不仅在于将一些数据排成数表形式,而且在于对它定义了一些有理论意义和实际意义的运算,从而使它成为进行理论研究或解决实际问题的有力工具.一、矩阵的加法、减法首先给出矩阵相等的概念. 定义1 在矩阵()nm ija A ⨯=和()nm ijb B ⨯=中,若它们的对应元素相等,即),,2,1;,,2,1(n j m i b a ijij ΛΛ===则称矩阵A 与B 相等,记为A=B .定义2 设()nm ija A ⨯=,()nm ijb B ⨯=,矩阵()nm ijij b a ⨯±称为矩阵A 与矩阵B 的和或差,记作A +B 或A -B ,即n m ij ij b a B A ⨯±=±)(注意,只有当两个矩阵的行数相同且列数也相同时,这两个矩阵才能进行加法、减法运算.例1 有两种物资(单位:吨)从3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=846075120231321034022753B A则从各产地运往各销地两次的物资调运量(单位:吨)为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+11670109142984834261007354102202273513 846075120231321034022753B A矩阵加法满足以下运算规律:(1)A B B A +=+(2))()(C B A C B A ++=++(3)A O A =+ 矩阵()nm ija ⨯-称为矩阵()nm ija A ⨯=的负矩阵,记为()nm ija A ⨯-=-.显然,有(4)O A A =-+)(二、数与矩阵的乘法定义3 以数k 乘矩阵A 的每一个元素所得到的矩阵,称为数k 与矩阵A 的积,记作kA .如果()nm ija A ⨯=,那么()()n m ij n m ij ka a k kA ⨯⨯==不难证明,数与矩阵乘法满足以下运算规律: (1) kB kA B A k +=+)( (2) lA kA A l k +=+)( (3) )()(lA k A kl =(4) A A A A -=-=⋅)1(1, (5) O O k =⋅ (O 为零矩阵) 例2 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=052110351234230412301321B A求3A -2B .解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-----+-+----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-61941016151055011061094021223066910023496683052110351234223412301321323B A 例3 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=612379154257864297510213B A且B X A =+2,求X ..解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-=1271211122223227212244446421)(21A B X 三、矩阵与矩阵的乘法先看一个例子.例4 某工厂有321,,A A A 三个车间,某月各种原材料的消耗量如表2-3.又各种原材料每吨价格和加工费如表2-4.求各车间某月支出原料费及加工费各为多少元?解我们可以直接计算出各车间支出的原料费用和加工费用为A车间的原料费=21×12+15×14+16×8+10×20=790(元)1A车间的原料费=53×12+0×14+13×8+4×20=820(元)2A车间的原料费=24×12+32×14+10×8+0×20=816(元)3A车间的加工费=21×5+15×4+16×2.5+10×3=235(元)1A车间的加工费=53×5+0×4+13×2.5+4×3=309.5(元)2A车间的加工费=24×5+32×4+10×2.5+0×3=273(元)3上述结果列成表2-5如果用矩阵来表示,则表2-3、表2-4、表2-5分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2738165.309820235790,3205.28414512,010322441305310161521C B A 从上述分析可以看出,矩阵A 、B 与C 之间的关系是:C 中第i 行第j 列)2,1;3,2,1(==j i 元素恰好等于A 的第i 行各元素分别和矩阵B 第j 列对应元素的乘积之和.因此,我们将矩阵C 定义为矩阵A 与矩阵B 的乘积,记为C =AB , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==2738165.3098202357903205.28414512010322441305310161521AB C 我们将上面例题中矩阵之间的这种关系定义为矩阵的乘法. 定义4 设矩阵()l m ik a A ⨯=的列数与矩阵()nl kjb B ⨯=的行数相同,则由元素),,2,1;,,2,1(12211n j m i b a b a b a b a c lk kjik lj il j i j i ij ΛΛΛ===+++=∑=构成的m 行n 列矩阵n m lk kj ik n m ij b a c C ⨯=⨯∑==)()(1称为矩阵A 与矩阵B 的积,记为C =A ·B 或AB .这个定义说明,如果矩阵A 的列数等于矩阵B 的行数,则A 与B 的乘积C 中第i 行第j 列的元素,等于矩阵A 的第i 行元素与矩阵B 的第j 列对应元素乘积的和.并且矩阵C 的行数等于矩阵A 的行数,矩阵C 的列数等于矩阵B 的列数.例5 若,012321,132132⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=B A 求AB . 解⎥⎦⎤⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=012321132132AB⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯-⨯+-⨯⨯+⨯⨯-+-⨯-⨯-+-⨯⨯-+⨯⨯+-⨯-⨯+-⨯⨯+⨯=97530367801)3(3)1(1)2(321130)2()3(1)1()2()2(12)2(1103)3(2)1(3)2(22312我们还可以求一下BA .⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⨯+-⨯-+⨯⨯+⨯-+⨯⨯-+-⨯-+⨯⨯-+⨯-+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=834910)2()1(32301)1(221)3()2()2(313)3(1)2(21132132012321BA显然,BA AB ≠.例6 若()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==530412,013B A ,求AB . 解()()()32500113)3(0)4(123530412013=⨯+⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ABBA 没有意义,因为B 的列数不等于A 的行数,BA 不可进行运算.例7 若⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=6342,2142B A ,求AB 及BA .解⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=168321663422142AB .000021426342BA AB BA ≠⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=由例5,例6,例7可以看到矩阵的乘法一般不满足交换律.由例6可以看到AB 有意义,BA 不一定有意义.由例5、例7可以看到,即使AB 、BA 都有意义,AB 与BA 也不一定相等.但并不是任何两矩阵相乘都不可以交换,如下面的例8,两矩阵相乘可以交换,但作为统一的运算法则,矩阵乘法交换律是不成立的.由例7还可得出:两个非零矩阵相乘,可能是零矩阵,从而不能从AB =O 必然推出A =O 或B =O .例8 若⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1021,1011B A ,求AB 与BA . 解⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110211011AB⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110111021BA 显见,AB=BA .如果两矩阵A 与B 相乘,有AB=BA ,则称矩阵A 与矩阵B 可交换. 矩阵相乘时必须注意顺序,AX 称为用X 右乘A ,XA 称为用X 左乘A . 矩阵乘法具有下列性质:(1)(AB )C=A (BC )(2)k (AB )=(kA )B=A (kB ) (其中k 为数值)(3)A (B+C )=AB+AC (4)(B+C )A=BA+CA 设A 是n 阶方阵,规定:,,,,,1210A A A AA A A A E A k k ⋅====+Λ其中k 为正整数,k A 称为A 的k 次幂.例9 设⎥⎦⎤⎢⎣⎡-=4321A ,求E A A 5322+-. 解E A A 5322+-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-1001543213432122=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--6127181650051296344181214四、矩阵的转置定义5 把矩阵A 的所有行换成相应的列所得到的矩阵,称为矩阵A 的转置矩阵,记为TA ,即若()nm ija A ⨯=,则()mn jiT a A ⨯=.例10 若⎥⎦⎤⎢⎣⎡-=52134071A ,则 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=54201731T A 可见,若A 是对称矩阵,则有TA A =. 矩阵的转置具有下列性质: (1)A A TT=)((2)TTTB A B A +=+)( (3)T TA A λλ=)((4)TT T A B AB =)(五、方阵的行列式定义6 由n 阶方阵A 的元素所构成的行列式(各元素的位置不变),叫做方阵A 的行列式,记作A .应该注意,方阵与行列式是两个不同的概念,n 阶方阵是2n 个数按一定方式排列成的数表,而n 阶行列式是这些数(也就是数表A )按一定运算法则所确定的一个数.由A 确定的A 的这个运算满足下述运算规律(设A ,B 为n 阶方阵,k 为数值): (1)A A T = (2)A k kA n= (3)B A AB =由(3)可知,对于n 阶方阵A 、B ,一般说来BA AB ≠,但总有BA AB =例11 设⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=43522231B A ,,求AB . 解法1⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=22171143522231AB所以 56221711=-=AB解法256)7(843522231=-⨯-=⋅-==B A AB习题2.21. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150421321,111111111B A ,求 (1)3AB-2A (2)B A T2.已知011311232021132=⎥⎦⎤⎢⎣⎡-----⎥⎦⎤⎢⎣⎡--X ,求X .3.计算下列乘积.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-127075321134 (2)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123321 (3)()132211-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--131201********* (5)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11212221211211y x c b b b a a b a a y x 4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=321431422,531531531,431541532C B A证明:(1)AB=BA=0 (2)AC=A ,CA=C (3)ACB=CBA5.证明矩阵下列运算性质.(1))()(C B A C B A ++=++ (2)TTTB A B A +=+)( (3)A A nλλ= (4)AE =EA =A 6.求下列矩阵的幂. (1)设⎥⎦⎤⎢⎣⎡=101λA ,求kA A A ,,,Λ32 (2)求nO O⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλOO7.若矩阵AB =BA ,则称B 与A 可交换,设⎥⎦⎤⎢⎣⎡=1011A ,求所有与A 可交换的矩阵.§2.3 逆矩阵一、逆矩阵的定义矩阵与数相类似,有加、减、乘三种运算.于是,自然会提出矩阵的乘法是否也和数一样存在逆运算呢?解一元线性方程ax=b ,当0≠a 时,存在一个数1-a ,使b a x 1-=为方程组的解.那么在解矩阵方程AX =B 时,是否也存在一个矩阵,使这个矩阵乘以B 等于X .这就是我们要讨论的逆矩阵的问题.逆矩阵在矩阵理论和应用中都起着重要的作用.定义1 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得AB =BA=E那么矩阵A 称为可逆矩阵,而B 称为A 的逆矩阵. 如果A 可逆,A 的逆矩阵是唯一的.因为如果B 和1B 都是A 的逆矩阵,则有E A B AB E BA AB ====11,那么 1111)()(B EB B BA AB B BE B ===== 即 1B B =所以逆矩阵是唯一的.我们把矩阵A 唯一的逆矩阵记作1-A .定义2 若n 阶矩阵A 的行列式0≠A ,则称A 为非奇异的. 为了讨论逆矩阵存在的条件和逆矩阵的求法,先引进伴随矩阵的概念. 定义3 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 的行列式A 中的元素ij a 代数余子式,那么矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n A A A A A A A A A A ΛΛΛΛΛΛΛ212221212111*称为矩阵A 的伴随矩阵.定理1 矩阵A 存在逆矩阵的充分必要条件是0≠A ,即A 为非奇异矩阵时才有逆矩阵存在.证 必要性:因为A 可逆,则有1-A使E A A AA==--11.因此,01111≠====---E A A A A AA ,即0≠A .充分性:若0≠A ,作矩阵*1A AB =由§1.2定理1和定理2,可得E A A AA AA =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=00*O , 即得AB=E .同理,可证,BA=E .故*11A AA B ==- 二、逆矩阵的性质逆矩阵具有下列性质: (1)A A =--11)( (2)111)(---=A B AB(3)11)()(--=TTA A (4)AA11=- (5)111)(--=A kkA 下面仅证明性质2,其它性质请读者自己证明. 证(2) 因为E AA AEA A BB A A B AB ====------111111)())((, E B B EB B B A A B AB A B ====------111111)())((,所以 111)(---=A B AB证毕 由定理1,可得由矩阵A 的伴随矩阵*A 求逆矩阵1-A 的计算方法,求出矩阵A 的所有元素的代数余子式;写出伴随矩阵*A ;由*11A AA=-便得1-A .这种方法常用于三阶以下的方阵求逆矩阵的问题. 例1 求矩阵⎥⎦⎤⎢⎣⎡-=4312A 的逆矩阵. 解 因为011≠=A ,所以1-A 存在.由于213422211211=-===A A A A因此 ⎥⎦⎤⎢⎣⎡--=2314*A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--==-11211311111423141111*1A A A 例2 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=631321222A 的逆矩阵. 解 因为,02≠=A 所以1-A 存在,由于 131213613136332131211==-=-===A A A ,4312210612266322232221-=-===-=-=A A A221224312223222333231=-=-=-===A A A因此⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-122125231323241410326321211332313322212312111*1A A A A A A A A A A A A 例3 试用逆矩阵求解线性方程组.⎪⎩⎪⎨⎧=+=++=--353042231321321x x x x x x x x 解 令,302,,503411112321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B x x x X A 于是原方程组可写成AX=B (2-3-1)因为 ,0653411112≠=--=A 故1-A 存在,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-3339137355611*1A A A对(2-3-1)式两侧左乘1-A ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-63613613131613023339137355611B A X即线性方程组的解为21,613,61321=-==x x x .习题2.31. 验证矩阵B 是矩阵A 的逆矩阵.(1)⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=2123124321B A (2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012015120110141101510075504321B A 2.写出下列初等方阵的逆矩阵。