山东省济宁市梁山县2020届九年级上学期期末考试数学试题(图片版,无答案)
2022-2023学年山东省济宁市梁山县九年级(上)期末数学试卷+答案解析(附后)

2022-2023学年山东省济宁市梁山县九年级(上)期末数学试卷1. 下列关于x的方程中,一定有实数根的是( )A. B. C. D.2. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 如图是一个质地均匀的转盘,转盘中四个扇形的面积都相等,小明随意转动转盘1次,转盘停止转动后,指针指向的数字为偶数的概率为若指针指在分割线上,需重新转动,直到指针指向某一扇形为止( )A. B. C. D.4. 如图,点A是函数图象上一点,AB垂直x轴于点B,若,则k的值为( )A. 4B. 8C.D.5. 下列事件中,属于随机事件的是( )A. 等腰三角形有两条边相等B. 三角形的三条边为3,4,5,则该三角形为直角三角形C. 任选一个实数x,使得有意义D. 在装有10个红球的口袋内,摸出一个白球6. 将函数的图象先向右平移3个单位,再向上平移4个单位,所得抛物线是( )A. B.C. D.7. 如图,AB是的直径,C、D是圆上两点,且,则的度数为( )A.B.C.D.8. 如图,将绕点旋转得到,设点A的坐标为,则点的坐标为( )A.B.C.D.9. 如图,中,,,将沿图中的DE剪开.剪下的阴影三角形与原三角形不相似的是( )A.B.C.D.10. 若一次函数与反比例函数的图象在第二象限内有两个交点,且其中一个交点的横坐标为,则二次函数的图象可能是( )A. B.C. D.11. 如图,点P在y轴正半轴上,交x轴于A,B两点,连接BP并延长交于C,且的半径为,若函数的图象过C点,则k的值是( )A.B.C.D. 412. 如图,,曲线BC是双曲线的一部分.曲线AB与BC组成图形由点C开始不断重复图形G形成一条“波浪线“.若点,在该“波浪线上,则m的值及n的最大值为( )A. ,B. ,C. ,D. ,13. 若关于x的方程的一个根为2,则k的值为______ .14. 如图,AB为的直径,点C在上,,则的度数为______ .15. 如图,已知直线,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则______.16. 二次函数中x,y的部分对应值如表:x…012…y…0…则该二次函数图象的对称轴为______ .17. 如图,将矩形ABCD绕点A顺时针旋转后,得到矩形,如果,那么______.18. 对于一切不小于2的自然数n,关于x的一元二次方程的两个根为,,则______.19. 如图方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,三角形ABC的顶点都在格点上,且三个顶点的坐标分别为,,画出关于原点O的中心对称图形,并写出点B的对应点的坐标.画出将绕原点O逆时针方向旋转90度后的图形20.已知m是方程的解,求式子的值.21. 已知蓄电池的电压为定值,使用蓄电池时,电流单位:与电阻单位:是反比例函数关系,它的图象如图所示.求电流I与电阻R之间的函数表达式;如果以此蓄电池为电源的用电器的限制电流不能超过6A,那么用电器可变阻应控制在什么范围?22. 如图,在中,AE是直径,AB是弦,连接BE,若,于点D,,则BE的长是多少?23. 某校以“我最喜爱的冰雪运动”为主题对全校学生进行随机抽样调查,调查的运动项目有短道速滑,花样滑冰,速度滑冰,冰壶以及其他项目每个同学必须选择且只能选择一个项目,并根据调查结果绘制出如图所示的两幅不完整的统计图:本次调查共抽取了多少名同学?将条形统计图补充完整;在学校举办的“共筑冰雪中国梦”的主题演讲比赛中,小明获得了一等奖,他可以在包装完全相同的A,B,C,D四枚冬奥纪念章中选取两枚,请用列表或画树状图法求出小明选到的纪念章恰好是“A”和“C”图案的概率.24. 随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.求一台A型空气净化器和一台B型空气净化器的进价各为多少元?在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?25. 如图,AB是的直径,C、D是上两点,且D为弧BC中点,过点D的直线交AC的延长线于点E,交AB的延长线于点F,连接求证:DE是的切线;若,的半径为2,求阴影部分的面积.26. 如图,在直角坐标系xOy中,二次函数的图象与x轴相交于O,A两点.求这个二次函数的解析式;在这条抛物线的对称轴右边的图象上有一点B,使的面积等于3,求点B的坐标;对于中的点B,在此抛物线轴右侧上是否存在点P,使?若存在,求出点P的坐标,若不存在,请说明理由.注:平面直角坐标系中的两点,之间的距离公式:答案和解析1.【答案】A【解析】解:A、,,故该选项符合题意;B、,,则此方程无实数根,故该选项不正确,符合题意;C、,此方程无解,故该选项不正确,符合题意;D、,,此方程无实数根,故该选项不正确,符合题意.故选:根据题意逐项分析判断即可即可求解.本题考查了一元一次方程的解,一元二次方程根的判别式,分式方程、无理方程的根,掌握以上知识是解题的关键.2.【答案】B【解析】解:A、此图形旋转后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形旋转后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形旋转后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【答案】A【解析】解:转盘共有四个面积相等的扇形,其中偶数有2个扇形面,转盘停止转动后,指针指向的数字为偶数的概率为故选:根据题意先得出偶数的个数,再根据概率公式即可得出答案.本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【解析】解:由题意得:,解得:;故选:根据k的几何意义和三角形的面积进行计算即可.本题考查反比例函数k的几何意义.熟练掌握反比例函数k的几何意义是解题的关键.5.【答案】C【解析】解:等腰三角形有两条边相等,是必然事件,故此选项不合题意;B.三角形的三条边为3,4,5,则该三角形为直角三角形,是必然事件,故此选项不合题意;C.任选一个实数x,使得有意义,是随机事件,故此选项符合题意;D.在装有10个红球的口袋内,摸出一个白球,是不可能事件,故此选项不合题意.故选:直接利用随机事件、必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件、必然事件、不可能事件,正确掌握相关定义是解题关键.6.【答案】B【解析】解:把抛物线先向右平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为,故选:直接利用平移规律求新抛物线的解析式.主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7.【答案】D【解析】解:和都对,,故选:先根据圆周角定理得到,然后利用邻补角的定义计算的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】D【解析】【分析】此题通过平移把问题转化为学过的知识,从而解决问题,体现了数学的化归思想.我们已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;还知道平移规律:上加下减;左加右减.在此基础上转化求解.把向上平移1个单位得A的对应点坐标和对应点坐标后求解.【解答】解:把向上平移1个单位得A的对应点坐标为因、关于原点对称,所以对应点故选:9.【答案】D【解析】解:A、,,∽,故A不符合题意;B、,,∽,故B不符合题意;C、由图形可知,,,,,,又,∽,故C不符合题意;D、由已知条件无法证明与相似,故D符合题意,故选:根据相似三角形的判定逐一判断即可.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.10.【答案】A【解析】解:一次函数与反比例函数图象在第二象限内有一个交点的横坐标为,,,一次函数与反比例函数的图象在第二象限内有两个交点,,二次函数的图象开口向上,当时,,抛物线过点,故选:依据直线与反比例函数图象在第二象限内有一个交点的横坐标为,即可得,,进而得出结论.本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数a决定抛物线的开口方向和大小:当时,抛物线向上开口,当时,抛物线向下;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点.11.【答案】D【解析】解:连接AC,是圆P的直径,,在直角三角形ABC中,,,,,,,,,,的坐标为,将C的坐标代入中,可得故选:本题的关键是求出C点的坐标,由于BC是圆P的直径,那么连接AC后三角形ACB就是直角三角形,已知了BC,AB的长,可通过勾股定理求出AC的值,那么即可得出C点的坐标,将C 的坐标代入反比例函数的解析式中即可求出k的值.本题主要考查了用待定系数法求反比例函数的方法,用数形结合的思想求出C点的坐标是解题的关键.12.【答案】C【解析】解:在的图象上.当时,又因为在该“波浪线”上.的最大值是故选:利用点在函数图象上及图象的规律性求解.本题考查反比例函数的图象,求出函数表达式和相应点的坐标是求解本题的关键.13.【答案】【解析】解:把代入得,解得故答案为:根据一元二次方程的定义,把代入方程得到关于k的一次方程,然后解一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【答案】【解析】解:为的直径,,而,故答案为由AB为的直径,根据圆周角定理的推论得到,利用三角形内角和定理得到,然后把,代入计算即可得到的度数.本题考查了圆周角定理的推论:直径所对的圆周角为直角.也考查了三角形内角和定理.15.【答案】【解析】解:,故答案为根据平行线分线段成比例定理和比例的性质求解.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.16.【答案】【解析】解:由图表可知:时,,时,,二次函数的对称轴为,故答案为:根据图表找出函数值相等时对应的自变量即可求出对称轴.本题考查二次函数的性质,解题的关键是熟练掌握对应点的函数值关于对称轴对称.17.【答案】【解析】解:由旋转的性质可知,,,中,由勾股定理得,,在中,由勾股定理得,矩形ABCD绕点A顺时针旋转得到矩形,可知旋转中心为点A,旋转角,根据对应点C、到旋转中心的距离相等可知,,先在中用勾股定理求AC,再在中,利用勾股定理求本题考查了旋转的性质,勾股定理的运用,属于基础题,需要熟练掌握.18.【答案】【解析】解:由根与系数的关系得,,所以,则,则…故答案为:由根与系数的关系得,,所以,则,然后代入即可求解.本题考查了根与系数的关系,难度较大,关键是根据根与系数的关系求出一般形式再进行代入求值.19.【答案】解:如图,即为所求,点的坐标;画如图,即为所求.【解析】本题考查作图-旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.利用中心对称变换的性质分别作出A,B,C的对应点,,即可;利用旋转变换的性质分别作出A,B,C的对应点,,即可.20.【答案】解:是方程的解,,,,式子的值为【解析】根据题意可得:,从而可得,然后代入式子中,进行计算即可解答.本题考查了一元二次方程的解,熟练掌握一元二次方程的解的意义是解题的关键.21.【答案】解:设电流I与电阻R之间的函数表达式为函数图象过点,,解得电流I与电阻R之间的函数表达式为限制电流不能超过6A,,解得,用电器的可变电阻应大于或等于【解析】先由电流I是电阻R的反比例函数,可设,将点代入函数解析式,利用待定系数法即可求出这个反比例函数的解析式;将代入中所求的函数解析式即可确定电阻的取值范围.本题考查了反比例函数的应用,解题的关键是正确地从题干中整理出函数模型,并利用函数的知识解决实际问题.22.【答案】解:是的半径,,在中,设,则由勾股定理,得,解得,即是直径,在中,【解析】本题主要考查了垂径定理和勾股定理,掌握圆周角定理、垂径定理及勾股定理是解决本题的关键.利用垂径定理先求出AD,再利用勾股定理在中求出圆的半径,最后在中利用勾股定理求出BE的长.23.【答案】解:名,答:本次调查共抽取了120名同学.速度滑冰的人数为:人,补全条形统计图如图所示:A B C DABCD一共产生12种结果,每种结果发生的可能性相同,其中恰好选中A和C的结果有2种,分别是,,【解析】用花样滑冰的人数除以其所占百分比可以得解;由所得结论及已知条件可以得到速度滑冰的人数,从而可以补全条形统计图;通过列表把所有可能的结果表示出来,然后根据概率的意义即可得到解答.本题考查数据的整理和应用,熟练掌握条形统计图与扇形统计图的关联应用及列表法求概率的方法是解题关键.24.【答案】解:设每台B型空气净化器为x元,A型净化器为元,由题意得,,解得:,经检验是原方程的根,则,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;设B型空气净化器的售价为x元,根据题意得;,解得:,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.【解析】设每台B种空气净化器为x元,A种净化器为元,根据用6000元购进B 种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;根据总利润=单件利润销量列出一元二次方程求解即可.本题考查了一元二次方程及分式方程的应用,解题的关键是根据题意找到等量关系,注意分式方程应该检验,难度不大.25.【答案】证明:连接OD,,,为弧BC中点,,,,,,,,是的半径,是的切线;解:,,在中,,,阴影部分的面积的面积-扇形BOD的面积,阴影部分的面积为【解析】连接OD,根据垂直定义可得,再根据等弧所对的圆周角相等可得,从而利用角平分线和平行证明,然后利用平行线的性质求出,即可解答;根据圆周角定理可得,然后在中,利用锐角三角函数的定义求出DF的长,最后根据阴影部分的面积的面积-扇形BOD的面积,进行计算即可解答.本题考查了相似三角形的判定与性质,解直角三角形,圆周角定理,垂径定理,切线的判定与性质,扇形面积的计算,熟练掌握相似三角形的判定与性质,以及解直角三角形是解题的关键.26.【答案】解:函数的图象与x轴相交于O,,即,,这个二次函数的解析式为;过点B作轴于点D,的面积等于3,,当,即,解得:或1,,,即,解得:或舍去,,又顶点坐标为:,,轴下方不存在B点,点B的坐标为:;存在,设,点B的坐标为:,,,,,,,化简得,或舍去,点P的坐标为,在此抛物线轴右侧上是存在点P,使,点P的坐标为【解析】把代入二次函数中可得k的值,可得结论;根据得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B 点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可;设,根据勾股定理列方程可得结论.本题是二次函数的综合题,考查了二次函数解析式的确定、勾股定理、三角形面积求法等知识.利用数形结合的思想并与方程相结合求点的坐标是解题关键.第21页,共21页。
济宁市2020年九年级上学期数学期末考试试卷D卷

济宁市2020年九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)如图,A,B是双曲线上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为C,若△ODC 的面积为1,D为OB的中点,则k的值为()A .B . 2C . 4D . 82. (1分)若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A . 最小值2B . 最小值﹣3C . 最大值2D . 最大值﹣33. (1分) (2011七下·广东竞赛) 将点A(p, q)(p>0,q>0)向下平移p个单位,再向左平移q个单位得到点B,则点B的坐标为()A . (0, 0)B . (2p, 0)C . (0,2q)D . (p-q, q-p)4. (1分)已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A . a<b<cB . a<c<C . b<c<aD . c<b<a5. (1分) (2020九下·龙岗月考) 下列命题是假命题的是()A . 三角形的外心到三角形的三个顶点的距离相等B . 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C . 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D . 若关于x的一元一次不等式组无解,则m的取值范围是6. (1分) (2017九上·潜江期中) 下列说法正确的是()A . 将抛物线向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是y=(x-4)2-2B . 方程x2+2x+3=0有两个不相等的实数根C . 半圆是弧,但弧不一定是半圆.D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧7. (1分)下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A . 3个B . 2个C . 1个D . 0个8. (1分)抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A . 25%B . 50%C . 75%D . 100%9. (1分)如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A . 2条B . 3条C . 4条D . 5条10. (1分)下列图形中,即是中心对称又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 梯形D . 矩形二、填空题 (共8题;共8分)11. (1分)如图,已知,AD=6.4 cm,DB=4.8 cm,EC=4.2 cm,则AC=________ cm.12. (1分)若最简二次根式与是同类二次根式,则a=________.13. (1分)(2017·玉田模拟) 要使代数式有意义,则x的取值范围是________.14. (1分) (2018九上·濮阳期末) 反比例函数中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15. (1分) (2017九上·河东开学考) 二次函数y=x2﹣4x﹣3的顶点坐标是________.16. (1分)某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17. (1分)将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18. (1分) (2018九上·濮阳期末) 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB 于点E,以点O为圆心,OC为半径作弧CD交OB于点D,若OA=2,则阴影部分的面积为________.三、解答题 (共7题;共11分)19. (2分)(2011·内江) 如图,正比例函数y1=k1x与反比例函数y2= 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;(2)结合图象,求出当k3x+b>>k1x时x的取值范围.20. (1分)如图,已知圆的半径为r,求外接正六边形的边长.21. (2分) (2018九上·濮阳期末) 已知直线∥ ,点A,B,C在直线上,点E,F,G在直线上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线上的概率.22. (1分) (2018九上·濮阳期末) 一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该学校最终向园林公司支付了8800元.请问学校购买了多少棵树苗?23. (1分)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2 ,设金色纸边的宽为xcm,求满足x的方程.24. (1分) (2017九上·澄海期末) 已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.25. (3分) (2018九上·濮阳期末) 已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1) 当n=4,边长为2,∠α=90°时,如图(1),请直接写出S 的值;(2) 当n=5,∠α=72°时,如图(2),请问在旋转过程中,S 是否发生变化?并说明理由;(3) 当n=6,∠α=120°时,如图(3),请猜想S 是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC 边交于点P ,判断四边形OMPN 的形状,并说明理由.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共11分)19-1、19-2、20-1、21-1、21-2、22-1、23-1、24-1、25-1、25-2、25-3、。
济宁市2020版九年级上学期期末数学试卷C卷

济宁市2020版九年级上学期期末数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如右图,锐角的高CD和BE相交于点O,则图中与相似的三角形有()A . 4个B . 3个C . 2个D . 1个2. (2分) (2017·丹江口模拟) 如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y= 的图象恰好经过斜边A′B的中点C,S△ABO=16,tan∠BAO=2,则k的值为()A . 20B . 22C . 24D . 263. (2分) (2020九下·江阴月考) 如图,在平而直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是()A . 2B . 3C . 4.D . 54. (2分)(2019·包头) 如图,在平面直角坐标系中,已知是线段上的一个动点,连接,过点作交轴于点,若点在直线上,则的最大值是()A .B .C .D .5. (2分) (2018九上·罗湖期末) 下列命题中,属于假命题的是()A . 有一个锐角相等的两个直角三角形一定相似B . 对角线相等的菱形是正方形C . 抛物线y=y2-20x+17的开口向上D . 在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/56. (2分) (2017九上·巫溪期末) 如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是()A . 60°B . 72°C . 90°D . 120°7. (2分) (2017九上·巫溪期末) 下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017九上·巫溪期末) 方程x2﹣12x+27=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A . 21B . 21或15C . 15D . 不能确定9. (2分) (2017九上·巫溪期末) 若ab<0,则正比例函数y=ax和反比例函数y= 在同一坐标系中的大致图象可能是()A .B .C .D .10. (2分) (2017九上·巫溪期末) 如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A . abc<0B . 4ac﹣b2<0C . a﹣b+c<0D . 2a+b<011. (2分) (2017九上·巫溪期末) 如图,下列图案均是长度相同的火柴按一定规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…依次规律,第12个图案需火柴棍的根数为()A . 169B . 178C . 183D . 19712. (2分)(2017·东平模拟) 如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)(2019·零陵模拟) 已知|k+6|+ =0,则一次函数y=kx+b的图象与x轴的交点坐标是________.14. (1分)(2019·容县模拟) 如图,点依次在的图像上,点依次在轴的正半轴上.若,均为等边三角形,则点的坐标为________.15. (2分) (2015八下·滦县期中) 如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让向右运动,最后A点与N点重合,则重叠部分面积ycm2与MA长度xcm之间关系式________;自变量的取值范围是________.16. (1分)(2020·中山模拟) 如图,在中,,,点在上,,的圆心在线段上,且⊙与边,都相切.若反比例函数()的图象经过圆心,则 ________.17. (1分)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.18. (1分) (2017八下·扬州期中) 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是________.三、解答题 (共8题;共79分)19. (10分)某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价48元,B种商品每件的售价31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过352元,问A种商品至少购进多少件?20. (5分) (2017九上·巫溪期末) 如图,PA与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于D 点,已知OP=4,∠OPA=30°.求OC和AB的长.21. (8分) (2019八上·萧山月考) 已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.(1)分别写出B、B'的坐标:B________;B′________;(2)若点P(a,b)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为________;(3)求△ABC的面积.22. (6分)(2019·盘龙模拟) 如图,的方格分为上中下三层,第一次有一枚黑色方块甲,可在方格、、中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方块、、中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________;(2)若甲、乙均可在本层移动,用画树状图法或列表法求出黑色方块所构成拼图是中心对称图形的概率.23. (10分) (2017九上·芜湖期末) 如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为;若存在,指出其中的一种平移方式;若不存在,请说明理由.24. (15分) (2017九上·巫溪期末) 如图,已知抛物线y=﹣x2+4x+5与x轴的两个交点为A、B,与y轴交于点C.(1)求A,B,C三点的坐标?(2)求该二次函数的对称轴和顶点坐标?(3)若坐标平面内的点M,使得以点M和三点A,B,C为顶点的四边形是平行四边形,求点M的坐标?(直接写出M的坐标)25. (10分)(2017·广元) 某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?26. (15分) (2017九上·巫溪期末) 如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线y=x2+bx+c经过A、C两点.(1)求抛物线的解析式及其顶点坐标;(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P,Q分别向x轴作垂线,垂足为点D,E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共79分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
九年级上册济宁数学期末试卷测试卷附答案

九年级上册济宁数学期末试卷测试卷附答案一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③C .①③D .①②③4.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°5.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+46.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .67.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个 A .1B .2C .3D .48.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°9.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月 D .1月,2月,3月,12月10.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2C .y =3()22x -D .y =3()22x +11.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3412.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).17.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 18.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.19.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)20.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.21..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.22.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.23.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若43AB =,8AD =,求DG 的长. 26.已知关于x 的方程x 2+ax +a ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为1,求a 的值及该方程的另一根.27.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.28.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.29.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.30.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率. 31.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.32.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b=+的表达式;()2若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.C解析:C【解析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C 【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .5.A解析:A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 6.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.7.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.8.A解析:A 【解析】 【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数. 【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径, ∴AB ⊥AC , ∴∠CAB=90°, 又∵∠C=70°, ∴∠CBA=20°, ∴∠AOD=40°. 故选:A . 【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.9.D解析:D 【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D10.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC 的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.15.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 16.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:12 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 18.2【解析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 20.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.21.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.22.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 23.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)见解析;(283 3【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, 3AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴12434CG=,∴CG=3,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.26.(1)见解析;(2)a=12,x1=﹣32【解析】【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x1,则1×x1=ca=﹣32,∴另一根x1=﹣32.【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.27.(1)是,理由见解析;(2)125;(3)D(0,42)或D(0,6)【解析】【分析】(1)依据边长AC=AB=4,D是边AB的中点,得到AC2=AD AB,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由: ∵AB=4,点D 是△ABC 的边AB 的中点, ∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D 是△ABC 的“理想点”,∴∠ACD=∠B 或∠BCD=∠A,当∠ACD=∠B 时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A 时,同理可得CD ⊥AB ,在Rt △ABC 中,∵∠ACB=90︒,AB=5,AC=4, ∴222254AB AC -=-=3, ∵1122AB CD AC BC ⋅=⋅, ∴1153422CD , ∴125CD =. (3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD 2B 时,点A 是△BCD 2“理想点”,可知:∠CD 2O=45︒,∴OD 2=OC=6,∴D 2(0,6).综上,满足条件的点D 的坐标为D (0,42)或D (0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.28.(1)(3,0)m ,2(,4)m m ;(2)①213y x x =-++,②2955y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:3m =(3m =-舍去), ∴二次函数的关系式为:2231y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:155m =(155m =-舍去),∴二次函数的关系式为:2215955y x x=-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.29.(1)21234y x x=++;(2)(6,0)P-;(3)存在,116(,3)3Q-,2(4,3)Q【解析】【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,21234m m++),表示出PE=2134m m--,再用S四边形AECP=S△AEC+S△APC=12AC×PE,建立函数关系式,求出最值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【详解】(1)∵点(0,3)A,(12,15)-B在抛物线上,∴3115144124cb c=⎧⎪⎨=⨯-+⎪⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为21234y x x=++,(2)∵AC∥x轴,A(0,3)∴21234x x++=3,∴x 1=−6,x 2=0,∴点C 的坐标(−8,3),∵点(0,3)A ,(12,15)-B ,求得直线AB 的解析式为y =−x +3,设点P (m ,21234m m ++)∴E (m ,−m +3) ∴PE =−m +3−(21234m m ++)=2134m m --, ∵AC ⊥EP ,AC =8,∴S 四边形AECP=S △AEC +S △APC =12AC ×EF +12AC ×PF =12AC ×(EF +PF ) =12AC ×PE =12×8×(2134m m --) =−m 2−12m=−(m +6)2+36,∵−8<m <0∴当m =−6时,四边形AECP 的面积的最大,此时点P (−6,0);(3)∵21234y x x =++=21(4)14x +-, ∴P (−4,−1),∴PF =y F −y P =4,CF =x F −x C =4,∴PF =CF ,∴∠PCF =45°同理可得:∠EAF =45°,∴∠PCF =∠EAF ,∴在直线AC 上存在满足条件的Q ,设Q (t ,3)且AB ,AC =8,CP ==, ∵以C 、P 、Q 为顶点的三角形与△ABC 相似, ①当△CPQ ∽△ABC 时,∴CQ CP AC AB =,∴88t +=, ∴t =−163或t =−323(不符合题意,舍) ∴Q (−163,3) ②当△CQP ∽△ABC 时, ∴CQ CP AB AC =,=, ∴t =4或t =−20(不符合题意,舍)∴Q (4,3) 综上,存在点116(,3)3Q -2(4,3)Q . 【点睛】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.30.(1)14;(2)14. 【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P (E )=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.31.△ABC ∽△A 'B 'C ',理由见解析【解析】【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.【详解】△ABC ∽△A 'B 'C ', 理由:∵==''''''AB BD AD A B B D A D ∴△ABD ∽△A 'B 'D ',∴∠B =∠B ', ∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中 ∵=''''AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.【点睛】 本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.32.(1)120y x =-+;(2)销售单价定为87元时,商场可获得最大利润,最大利润是891元.【解析】【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.。
山东省济宁市2020版九年级上学期数学期末考试试卷(I)卷

山东省济宁市2020版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·广州模拟) 不解方程,判别方程5x2﹣7x+5=0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根2. (2分)(2017·营口模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)(2019·秦安模拟) 下列二次函数的图象通过平移能与二次函数的图象重合的是()A .B .C .D .4. (2分)(2019·嘉兴模拟) 对某校600名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,学生体重在60kg以上的人数为()A . 120B . 150C . 180D . 3305. (2分) (2018九上·杭州月考) 一辆新汽车原价万元,如果每年折旧率为,两年后这辆汽车的价钱为元,则关于的函数关系式为()A . y=20(1+x)2B . y=20(1-x)2C . y=20(1+x)D . y=20+x26. (2分) (2017八上·江海月考) 如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于()A . 15°B . 17.5°C . 20°D . 22.5°7. (2分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A . 40°B . 75°C . 85°D . 140°8. (2分)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A . 0个B . 1个C . 2个D . 不能确定9. (2分)(2017·海宁模拟) 如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2 ,则扇形圆心角的度数为()A . 120°B . 140°C . 150°D . 160°10. (2分)我校八年级的一个环境保护小组利用周末时间到距学校6千米的某工厂考察.一部分同学步行,另一部分同学骑自行车,沿相同的路线前往.如图所示,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用的时间x(分钟)之间的函数图象,则下列说法正确的共有()个.①骑车的同学比步行的同学晚30分钟出发;②步行的速度是6千米/小时;③骑车比步行每小时快9千米;④骑车的同学从出发到追上步行的同学用了50分钟;⑤步行的同学比骑车的同学早6分钟到达;A . 1B . 2C . 3D . 4二、填空题 (共8题;共10分)11. (1分) (2017九上·宝坻月考) 已知A(a,1)与B(5,b)关于原点对称,则a﹣b=________.12. (1分) (2020九上·泰兴期末) 若x=0是关于x的方程x2﹣x﹣a2+9=0的一个根,则a的值为________.13. (2分)如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB上,且与点O 的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么________秒种后⊙P与直线CD相切.14. (2分) (2018九上·北京月考) 已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是________.15. (1分)(2019·平阳模拟) 在古埃及,人们把三边之比为3:4:5的三角形称为“埃及三角形”,古埃及人用一张正方形纸片,将一边中点和对边的两个端点连结,就能得到“埃及三角形”,如图所示,在正方形ABCD 中,点E、F、G分别是AB、BC、CD的中点,则图中为“埃及三角形”的是________(至少写出两个).16. (1分) (2019九下·绍兴期中) 已知直线y= x+2与y轴交于点A,与双曲线y= 有一个交点为B (2,3),将直线AB向下平移,与x轴.y轴分别交于点C,D,与双曲线的一个交点为P,若,则点D的坐标为________.17. (1分)(2018·孝感) 已知的半径为,,是的两条弦,,,,则弦和之间的距离是________ .18. (1分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为________ 用含n的代数式表示,n为正整数 .三、解答题 (共6题;共59分)19. (2分)(2017·马龙模拟) 在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面花色.当两张牌的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.20. (15分)(2018·枣庄) 如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ 的解集.21. (2分)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?22. (10分)(2013·常州) 在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为________;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.23. (15分) (2016七下·五莲期末) 某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)1435售价(元/件)2043(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24. (15分)(2017·黔东南) 如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣ x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共59分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
山东省济宁市 九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程为一元二次方程的是()A. 3x2−2xy−5y2=0B. x(x−3)=x2+5C. x−2x=8D. x(x−2)=32.将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A. y=(x+2)2+3B. y=(x−2)2+3C. y=(x+2)2−3D. y=(x−2)2−33.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=-2x的图象上,则()A. a<b<0B. b<a<0C. a<0<bD. b<0<a4.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在15,因此可以估算出m的值大约是()A. 8B. 12C. 16D. 205.方程x2+2x-4=0配方成(x+m)2=n的形式后,则()A. m=1,n=5B. m=−1,n=5C. m=2,n=5D. m=−2,n=36.若抛物线y=kx2-2x-1与x轴有两个不同的交点,则k的取值范围为()A. k>−1B. k≥−1C. k>−1且k≠0D. k≥−1且k≠07.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A. 点MB. 点NC. 点PD. 点Q8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A. ∠ABD=∠EB. ∠CBE=∠CC.AD//BC D. AD=BC9.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=ax与一次函数y=bx+c在同一坐标系中的大致图象是()A.B.C.D.10.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点、AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为()A. 4π3−2B. 4π3C. 2π3D. 2π3−2二、填空题(本大题共5小题,共15.0分)11.一元二次方程2x=x2-3化成一般形式为______.12.六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为______.13.如图,点A、点B分别在反比例函数y=5x和y=8x的图象上,且AB∥x轴,则△OAB的面积等于______.14.如图,⊙O是△ABC的外接圆,AO⊥BC于F,D为AC的中点,E是BA延长线上一点,若∠DAE=120°,则∠CAD=______.15.为响应“足球进校园”的号召,我县教体局在今年11月份组织了“县长杯”校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度h(m)可用公式h=-5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到20m,那么足球被踢出时的速度应达到______m/s.三、解答题(本大题共7小题,共55.0分)16.关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,求a的值及另一根.17.如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-3,4),B(-5,2),C(-2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A'______,B'______,C'______.(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)18.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是______;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).19.2018年,汶上县县委、县政府启动创建全国卫生县城和全国文明县城工作,各单位都积极投身创城工作某单位为进一步美化我县环境,在临街的围墙外靠墙摆设一长方形花圃景观,花圃一边靠墙,墙长18m,外围用40m的栅栏围成,如图所示,若设花圃的BC边长为x(m),花圃的面积为y(m2).(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)利用所学知识试着求出花圃的最大面积.20.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.21.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC 为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,试判断△AEF是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.22.在直角坐标系xOy中,已知点P是反比例函数y=23x(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,当⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由;(2)如图2,当⊙P运动到与x轴相交,设交点为点B、C.当四边形ABCP是菱形时,求出点A、B、C的坐标(3)在(2)的条件下,求出经过A、B、C三点的抛物线的解析式.答案和解析1.【答案】D【解析】解:A、3x2-2xy-5y2=0是二元二次方程;B、x(x-3)=x2+5是一元一次方程;C、x-=8是分式方程;D、x(x-2)=3是一元二次方程,故选:D.根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.逐一判断即可.本题主要考查一元二次方程的定义,一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.2.【答案】B【解析】【分析】此题主要考查了二次函数图象的平移变换,正确掌握平移规律是解题关键.直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出解析式.【解答】解:∵将抛物线y=x2向上平移3个单位再向右平移2个单位,∴平移后的抛物线的解析式为:y=(x-2)2+3.故选B.3.【答案】A【解析】【分析】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=-,∴反比例函数y=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=-的图象上,∴a<b<0,故选A.4.【答案】D【解析】解:根据题意得,=,解得,m=20.故选:D.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.【答案】A【解析】解:∵x2+2x-4=0,x2+2x=4,x2+2x+1=4+1,(x+1)2=5,∴程x2+2x-4=0配方成(x+m)2=n的形式后,m=1,n=5;故选:A.先把方程中的常数项移到等号的右边,再在方程的两边同时加1,再进行配方,即可得出答案.此题考查了配方法的应用,掌握配方法的步骤是本题的关键,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6.【答案】C【解析】解:∵二次函数y=kx2-2x-1的图象与x轴有两个交点∴b2-4ac=(-2)2-4×k×(-1)=4+4k>0∴k>-1∵抛物线y=kx2-2x-1为二次函数∴k≠0则k的取值范围为k>-1且k≠0.根据抛物线y=kx2-2x-1与x轴有两个不同的交点,得出b2-4ac>0,进而求出k的取值范围.考查二次函数y=ax2+bx+c的图象与x轴交点的个数的判断.7.【答案】C【解析】解:连接OM,ON,OQ,OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选:C.连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.本题考查的是点与圆的位置关系及线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.8.【答案】C【解析】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C .由旋转的性质得到∠ABD=∠CBE=60°,AB=BD ,推出△ABD 是等边三角形,得到∠DAB=∠CBE ,于是得到结论.本题考查了旋转的性质,等边三角形的判定和性质,平行线的判定,熟练掌握旋转的性质是解题的关键. 9.【答案】D【解析】解:∵二次函数的图象开口向下, ∴反比例函数y=的图象必在二、四象限,故A 、C 错误;∵二次函数的图象经过原点, ∴c=0,∴一次函数y=bx+c 的图象必经过原点,故B 错误. 故选:D .先根据二次函数的图象开口向下可知a <0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案.本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键. 10.【答案】C【解析】解:∵∠ACB=90°,AC=BC , ∴△ABC 是等腰直角三角形,∴AB=2OA=2OB=AC=2, ∵△ABC 绕点B 顺时针旋转点A 在A′处, ∴BA′=AB ,∴BA′=2OB , ∴∠OA′B=30°, ∴∠A′BA=60°, 即旋转角为60°,S 阴影=S 扇形ABA′+S △A′BC′-S △ABC -S 扇形CBC′, =S 扇形ABA′-S 扇形CBC′,=-,=π-π,=π.故选:C.根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′-S△ABC-S扇形CBC′=S扇形ABA′-S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.11.【答案】x2-2x-3=0【解析】解:方程去括号得:x2-2x-3=0.故答案为:x2-2x-3=0.移项合并即可得到结果.考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【答案】23【解析】解:等边三角形是轴对称图形,不是中心对称图形,正方形是轴对称图形,也是中心对称图形,矩形是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形,圆是轴对称图形,也是中心对称图形,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为=,故答案为:.根据中心对称图形与轴对称图形的概念进行判断,根据概率的公式计算.本题考查的是概率的计算、中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.【答案】32【解析】解:延长BA交y轴于点C.S△OAC=×5=,S△OCB=×8=4,则S△OAB=S△OCB-S△OAC=4-=.故答案为:.延长AB交y轴于点C,根据反比例函数系数的几何意义求出△BOC的面积与△AOC的面积,然后相减即可得解.本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点,本题作辅助线把△OAB 的面积转化为两个三角形的面积的差是解题的关键.14.【答案】40°【解析】解:∵AO⊥BC,∴=,∴∠ABC=∠ACB,∵D为的中点,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=120°,∴∠ACD=×120°=40°,∴∠CAD=40°.故答案为40°.根据垂径定理由AO⊥BC得=,根据圆周角定理得∠ABC=∠ACB,而由=得∠CAD=∠ACD,所以=2,∠ACB=2∠ACD,再根据圆内接四边形的性质得到∠BCD=120°,于是∠ACD=×120°=40°,从而得到∠CAD的度数.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆心角、弧、弦的关系和圆周角定理.15.【答案】20【解析】解:h=-5t2+v0•t,其对称轴为t=,=-5×()2+v0•=20,当t=时,h最大解得:v0=20,v0=-20(不合题意舍去),答:足球被踢出时的速度应达到20m/s.因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.本题考查的是二次函数的应用,关键是利用当对称轴为t=时h将取到最大值.16.【答案】解:当x=0时,a2+a=0,解得:a1=-1,a2=0.又∵原方程为一元二次方程,∴a=-1,∴原方程为-x2-5x=0,∴方程的另一根为-−5−1-0=-5.故a的值为-1,方程的另一根为x=-5.【解析】代入x=0可求出a值,由一元二次方程的定义可确定a值,将其代入原方程利用根与系数的关系结合方程的一根,可求出方程的另一根,此题得解.本题考查了根与系数的关系、一元二次方程的定义以及一元二次方程的解,代入x=0求出a值是解题的关键.17.【答案】(-4,-3)(-2,-5)(-1,-2)【解析】解:(1)如图所示,△A'B'C'即为所求.由图知,A′(-4,-3),B′(-2,-5),C′(-1,-2),故答案为:(-4,-3),(-2,-5),(-1,-2);(2)连接OA,则OA==5,所以点A所走的路径长为=π.(1)将三顶点分别绕原点O逆时针方向旋转90°得到对应点,再顺次连接即可得;(2)利用弧长公式求解可得.本题考查了利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.18.【答案】12【解析】解:(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数为8,所以两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率==.(1)直接根据概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的结果数,然后根据概率公式求解.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.【答案】解:(1)根据题意,得y=x(40-2x),∴y与x之间的函数关系式为:y=-2x2+40x,∵墙长18m,∴0<40-2x≤18,∴自变量x的取值范围为:11≤x<20;(2)由(1)得:y=-2x2+40x,(11≤x<20),当x=-b2a=-404=10,二次函数y=-2x2+40x有最大值,但11≤x<20,所以当x=11时,二次函数有最大值为y=-2×112+40×11=198,即当BC=11m时,花圃的面积最大为198m2.【解析】(1)根据题意即可得到y与x之间的函数关系式y=-2x2+40x,列不等式得到自变量x的取值范围;(2)根据一次函数的性质即可得到结论.此题主要考查了二次函数的应用,正确得出花圃的长和宽是解题关键.20.【答案】(1)证明:连接AP,OP,∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∵以AB为直径的⊙O交BC于点P,∴PD是⊙O的切线.(2)解:∵AB是直径,∴∠APB=90°;∵AB=AC=2,∠CAB=120°,∴∠BAP=60°,∴BP=3,∴BC=23.【解析】(1)连接OP,要证明PD是⊙O的切线只要证明∠DPO=90°即可;(2)连接AP,根据已知可求得BP的长,从而可求得BC的长.本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.21.【答案】解:(1)如图1所示:(2)△AEF是“智慧三角形”,理由如下:设正方形的边长为4a,∵E是BC的中点,∴BE=EC=2a,∵CD:FC=4:1,∴FC=a,DF=4a-a=3a,在Rt△ABE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ADF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边OP=1,∴PQ最小时,△POQ的面积最小,即OQ最小,由垂线段最短可得斜边最小为3,由勾股定理可得PQ=32−12=22,根据面积得,12OQ×PM=12OP×PQ,∴PM=1×22÷3=223,由勾股定理可求得OM=12−(223)2=13,故点P的坐标(-223,13),(223,13).(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF、CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.22.【答案】解:(1)四边形OKPA是正方形,理由:∵⊙P分别与两坐标轴相切,∴PA⊥OA,PK⊥OK,∴∠PAO=∠OKP=90°.又∵∠AOK=90°,∴∠PAO=∠OKP=∠AOK=90°.∴四边形OKPA是矩形.又∵PA=PK,∴四边形OKPA是正方形;(2)连接PB,过点P作PG⊥BC于G.∵四边形ABCP为菱形,∴BC=PA=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=PA=a,BG=a2由勾股定理得:PG=32a,所以P(a,3a2),将P点坐标代入y=23x,解得:a=2或-2(舍去负值),∴PG=3,PA=BC=2.又四边形OGPA是矩形,PA=OG=2,BG=CG=1,∴OB=OG-BG=1,OC=OG+GC=3.∴A(0,3),B(1,0),C(3,0);(3)设:二次函数的解析式为:y=ax2+bx+c,解得:a=33,b=-433,c=3,∴二次函数的解析式为:y=33x2-433x+3.【解析】(1)先证明四边形OKPA是矩形,又PA=PK,故:四边形OKPA是正方形;(2)证明△PBC为等边三角形;在Rt△PBG中,∠PBG=60°,设PB=PA=a,BG=,由勾股定理得:PG=a,所以P(a,),将P点坐标代入y=,求出PG=,PA=BC=2,又四边形OGPA是矩形,PA=OG=2,BG=CG=1,故OB=OG-BG=1,OC=OG+GC=3,即可求解;(3)设二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c=,即可求解.本题为二次函数综合运用,涉及到圆的性质、平行四边形性质等,是代数与几何的综合题,难度较大.。
2019-2020学年山东济宁九年级上数学期末试卷

2019-2020学年山东济宁九年级上数学期末试卷一、选择题1. 点P(−2,4)关于坐标原点对称的点的坐标为()A.(4,−2)B.(−4,2)C.(2,4)D.(2,−4)2. 下列图形中,可以看作是中心对称图形的是( )A. B.C. D.3. 抛物线y=2(x−1)2−6的对称轴是( )A.x=−6B.x=−1C.x=12D.x=14. 如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25∘,则∠C的大小等于()A.20∘B.25∘C.40∘D.50∘5. 如图,AD,BC相交于点O,AB//CD.若AB=1,CD=2,则△ABO与△DCO的面积之比为( ) A.1:2 B.1:4 C.2:1 D.4:16. 已知关于x的方程x2+ax−6=0的一个根是2,则a的值是()A.−1B.0C.1D.27. 已知反比例函数y=kx的图象经过点A(2,−3),B(x,y),当1<x<3时,y的取值范围是()A.−32<y<−23B.−6<y<−2C.2<y<6D.−32<y<−98. 下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9. 由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉售价由原来每千克23元,连续两次上涨a%后,售价上升到每千克60元,则下列方程中正确的是( )A.23(1+a%)2=60B.23(1−a%)2=60C.23(1+2a%)=60D.23(1+a2%)=6010. 如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是()①ac>0;②方程ax2+bx+c=0的根是x1=−1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大.A.①③B.②④C.①②④D.②③④二、填空题二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,当y1<y2时,x的取值范围是________.三、解答题如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC∼△ACD;(2)若AD=2,AB=5,求AC的长.已知关于x的一元二次方程x2+x+m−1=0.(1)当m=0时,求方程的实数根;(2)若方程有两个不相等的实数根,求实数m的取值范围.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(1)请用列表法(或画树状图法)列出所有可能的结果;(2)求两次取出的小球标号相同的概率;(3)求两次取出的小球标号的和大于6的概率. 如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出△ABC绕点A逆时针旋转90∘的△AB2C2;直接写出点C2的坐标为________;(3)求在△ABC旋转到△AB2C2的过程中,点C所经过的路径长.如图,一次函数y=−x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1, a)和B两点,与x轴交于点C.(1)求反比例函数的表达式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.阅读以下材料,并按要求完成相应的任务:莱昂哈德⋅欧拉(LeonℎardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2−2Rr.如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2−2Rr .延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN . ∵ ∠D =∠N ,∠DMI =∠NAI (同弧所对的圆周角相等). ∴ △MDI ∼△ANI .∴IMIA=IDIN,∴ IA ⋅ID =IM ⋅IN ,①如图2,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF . ∵ DE 是⊙O 的直径,所以∠DBE =90∘. ∵ ⊙I 与AB 相切于点F ,所以∠AFI =90∘, ∴ ∠DBE =∠IFA .∵ ∠BAD =∠E (同弧所对的圆周角相等), ∴ △AIF ∼△EDB , ∴IA DE=IF BD.∴ IA ⋅BD =DE ⋅IF ② 任务:(1)观察发现:IM =R +d ,IN =________(用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为________cm .已知,抛物线y =−x 2+bx +c 经过点A(−1, 0),C(0, 3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标;如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.参考答案与试题解析2019-2020学年山东济宁九年级上数学期末试卷一、选择题1.【答案】D【考点】关于原点对称的点的坐标【解析】此题暂无解析【解答】解:点P(−2,4)关于坐标原点对称的点的坐标为(2,−4).故选D.2.【答案】A【考点】中心对称图形【解析】此题暂无解析【解答】解:根据中心对称的定义可知,只有A为中心对称图形.故选A.3.【答案】D【考点】二次函数的三种形式【解析】此题暂无解析【解答】解:根据题干信息可知,抛物线y=2(x−1)2−6的对称轴是x=1.故选D.4.【答案】C【考点】切线的性质【解析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90∘,∵OA=OB,∴∠B=∠OAB=25∘,∴∠AOC=50∘,∴∠C=40∘.故选C.5.【答案】B【考点】相似三角形的判定与性质【解析】此题暂无解析【解答】解:由AB//CD可知,△ABO∼△DCO,由ABCD=12可知,△ABO与△DCO的面积之比为1:4.故选B.6.【答案】C【考点】一元二次方程的解【解析】此题暂无解析【解答】解:∵x2+ax−6=0的一个根是2,∴4+2a−6=0,解得,a=1.故选C.7.【答案】B【考点】待定系数法求反比例函数解析式反比例函数的性质【解析】此题暂无解析【解答】解:∵反比例函数的图象经过A(2,−3),∴−3=k2,则k=−6,∴反比例函数的解析式为:y=−6x,当x=1时,y=−6;当x=3时,y=−2,∴当1<x<3时,−6<y<−2.故选B.8.【答案】C【考点】必然事件概率的意义随机事件利用频率估计概率【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、必然事件发生的概率是1,故选项正确;B、通过大量重复试验,可以用频率估计概率,故选项正确;C、概率很小的事件也有可能发生,故选项错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,故选项正确.故选C.9.【答案】A【考点】由实际问题抽象出一元二次方程【解析】本题可先用a%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程.【解答】解:当猪肉第一次提价a%时,其售价为23+23a%=23(1+a%);当猪肉第二次提价a%后,其售价为23(1+a%)+23(1+a%)a%=23(1+a%)2.∴23(1+a%)2=60.故选A. 10.【答案】D【考点】二次函数图象与系数的关系【解析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①错误,抛物线开口向上,a>0,抛物线与y轴的交点在y轴的负半轴,c<0,因此ac<0;②正确,抛物线与x轴的两交点为(−1, 0),(3, 0),方程ax2+bx+c=0的根是x1=−1,x2=3;③正确,当x=1时,抛物线在x轴的下方,y<0,即a+b+c<0;④正确,由图象可知抛物线的对称轴为x=−1+32=1,当x>1时为增函数,故y随x的增大而增大.故选D.二、填空题【答案】0<x<1【考点】二次函数与不等式(组)【解析】此题暂无解析【解答】解:由题意可得,x2+c=x+c时,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为:0<x<1.三、解答题【答案】(1)证明:在△ABC与△ACD中,∵∠ABC=∠ACD,∠A=∠A,∴△ABC∼△ACD;(2)解:∵△ABC∼△ACD,∴AC:AB=AD:AC,∴AC2=AB⋅AD,∵AD=2,AB=5,∴AC2=5×2=10,∴AC=√10.【考点】相似三角形的性质与判定相似三角形的性质【解析】此题暂无解析【解答】(1)证明:在△ABC与△ACD中,∵∠ABC=∠ACD,∠A=∠A,∴△ABC∼△ACD;(2)解:∵△ABC∼△ACD,∴AC:AB=AD:AC,∴AC2=AB⋅AD,∵AD=2,AB=5,∴AC2=5×2=10,∴AC=√10.【答案】解:(1)当m=0时,方程为x2+x−1=0. Δ=12−4×1×(−1)=5>0,∴ x=−1±√52×1,∴x1=−1+√52,x2=−1−√52.(2)∵方程有两个不相等的实数根,∴Δ>0,即1−4×1×(m−1)=1−4m+4=5−4m>0,∵ 5−4m>0,∴ m<54.【考点】根的判别式解一元二次方程-公式法【解析】此题暂无解析【解答】解:(1)当m=0时,方程为x2+x−1=0. Δ=12−4×1×(−1)=5>0,∴ x=−1±√52×1,∴x1=−1+√52,x2=−1−√52.(2)∵方程有两个不相等的实数根,∴Δ>0,即1−4×1×(m−1)=1−4m+4=5−4m>0,∵ 5−4m>0,∴ m<54.【答案】解:(1)画树状图得:则共有16种等可能的结果;(2)共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14.(3)共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为316.【考点】列表法与树状图法概率公式【解析】(1)根据题意可画出树状图,根据树状图即可求得所有可能的结果;【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14.(3)共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为316.【答案】解:(1)如图,△A1B1C1即为所作,(−2,2)(3)∠CAC2=90∘,AC=√12+22=√5,点C所经过的路径长为90⋅π⋅√5180=√52π.【考点】弧长的计算作图-旋转变换中心对称图形旋转的性质点的坐标【解析】此题暂无解析【解答】解:(1)如图,△A1B1C1即为所作,(2)如图,△AB2C2即为所作,其中点C2的坐标为(−2,2).故答案为:(−2,2).(3)∠CAC2=90∘,AC=√12+22=√5,点C所经过的路径长为90⋅π⋅√5180=√52π.【答案】解:(1)把点A(1, a)代入y=−x+3,得a=2,∴A(1, 2),把A(1, 2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为y=2x;(2)∵一次函数y=−x+3的图象与x轴交于点C,∴C(3, 0),设P(x, 0),∴PC=|3−x|,∴S△APC=12|3−x|×2=5,∴x=−2或x=8,∴P的坐标为(−2, 0)或(8, 0).【考点】一次函数图象上点的坐标特点反比例函数与一次函数的综合待定系数法求反比例函数解析式【解析】(1)利用点A在y=−x+3上求a,进而代入反比例函数y=kx(k≠0)求k即可;(2)设P(x, 0),求得C点的坐标,则PC=|3−x|,然后根据三角形面积公式列出方程,解方程即可.【解答】解:(1)把点A(1, a)代入y=−x+3,得a=2,∴A(1, 2),把A(1, 2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为y=2x;(2)∵一次函数y=−x+3的图象与x轴交于点C,∴C(3, 0),设P(x, 0),∴PC=|3−x|,∴S△APC=12|3−x|×2=5,∴x=−2或x=8,∴P的坐标为(−2, 0)或(8, 0).【答案】R−d(2)BD=ID,理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,∴IA⋅ID=DE⋅IF,∵DE⋅IF=IM⋅IN,∴2R⋅r=(R+d)(R−d),∴R2−d2=2Rr,∴d2=R2−2Rr;√5【考点】圆与圆的综合与创新圆周角定理【解析】(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.【解答】解:(1)∵O,I,N三点共线,∴OI+IN=ON,∴IN=ON−OI=R−d.故答案为:R−d;(2)BD=ID,理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,∴IA⋅ID=DE⋅IF,∵DE⋅IF=IM⋅IN,∴2R⋅r=(R+d)(R−d),∴R2−d2=2Rr,∴d2=R2−2Rr;(4)由(3)知:d2=R2−2Rr;将R=5,r=2代入得:d2=52−2×5×2=5,∵d>0∴d=√5.故答案为:√5.【答案】解:(1)将A(−1, 0),C(0, 3)代入y=−x2+bx+c中,得{−1−b+c=0,c=3,解得{b=2,c=3,∴抛物线的解析式为y=−x2+2x+3.(2)连接BC交抛物线对称轴于点P,此时PA+PC取最小值,如图1所示.当y =0时,有−x 2+2x +3=0, 解得:x 1=−1,x 2=3, ∴ 点B 的坐标为(3, 0).∵ 抛物线的解析式为y =−x 2+2x +3=−(x −1)2+4, ∴ 抛物线的对称轴为直线x =1.设直线BC 的解析式为y =kx +d(k ≠0), 将B(3, 0)、C(0, 3)代入y =kx +d 中, 得{3k +d =0,d =3,解得{k =−1,d =3,∴ 直线BC 的解析式为y =−x +3. ∵ 当x =1时,y =−x +3=2,∴ 当PA +PC 的值最小时,点P 的坐标为(1, 2). (3)设点M 的坐标为(1, m),则CM =√(1−0)2+(m −3)2,AC =√[0−(−1)]2+(3−0)2=√10, AM =√[1−(−1)]2+(m −0)2. 如图2,分三种情况考虑:①当∠AMC =90∘时,有AC 2=AM 2+CM 2,即10=1+(m −3)2+4+m 2,解得:m 1=1,m 2=2,∴ 点M 的坐标为(1, 1)或(1, 2);②当∠ACM =90∘时,有AM 2=AC 2+CM 2,即4+m 2=10+1+(m −3)2, 解得:m =83,∴ 点M 的坐标为(1, 83);③当∠CAM =90∘时,有CM 2=AM 2+AC 2,即1+(m −3)2=4+m 2+10, 解得:m =−23,∴ 点M 的坐标为(1, −23).综上所述:当△MAC 是直角三角形时,点M 的坐标为(1, 1),(1, 2),(1, 83)或(1, −23). 【考点】二次函数综合题线段的性质:两点之间线段最短【解析】(1)由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)连接BC 交抛物线对称轴于点P ,此时PA +PC 取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;(3)设点M 的坐标为(1, m),则CM =√(1−0)2+(m −3)2,AC =√[0−(−1)]2+(3−0)2=√10,AM =√[1−(−1)]2+(m −0)2,分∠AMC =90∘、∠ACM =90∘和∠CAM =90∘三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【解答】解:(1)将A(−1, 0)、C(0, 3)代入y =−x 2+bx +c 中, 得{−1−b +c =0,c =3,解得{b =2,c =3,∴ 抛物线的解析式为y =−x 2+2x +3.(2)连接BC 交抛物线对称轴于点P ,此时PA +PC 取最小值,如图1所示.当y =0时,有−x 2+2x +3=0, 解得:x 1=−1,x 2=3, ∴ 点B 的坐标为(3, 0).∵ 抛物线的解析式为y =−x 2+2x +3=−(x −1)2+4, ∴ 抛物线的对称轴为直线x =1.设直线BC 的解析式为y =kx +d(k ≠0), 将B(3, 0)、C(0, 3)代入y =kx +d 中, 得{3k +d =0,d =3,解得{k =−1,d =3,∴ 直线BC 的解析式为y =−x +3. ∵ 当x =1时,y =−x +3=2,∴ 当PA +PC 的值最小时,点P 的坐标为(1, 2). (3)设点M 的坐标为(1, m),则CM =√(1−0)2+(m −3)2,AC =√[0−(−1)]2+(3−0)2=√10, AM =√[1−(−1)]2+(m −0)2. 如图2,分三种情况考虑:①当∠AMC =90∘时,有AC 2=AM 2+CM 2,即10=1+(m −3)2+4+m 2, 解得:m 1=1,m 2=2,∴ 点M 的坐标为(1, 1)或(1, 2);②当∠ACM =90∘时,有AM 2=AC 2+CM 2,即4+m 2=10+1+(m −3)2, 解得:m =83,∴ 点M 的坐标为(1, 83);③当∠CAM =90∘时,有CM 2=AM 2+AC 2,即1+(m −3)2=4+m 2+10, 解得:m =−23,∴ 点M 的坐标为(1, −23).综上所述:当△MAC 是直角三角形时,点M 的坐标为(1, 1),(1, 2),(1, 83)或(1, −23).。
济宁市数学九年级上册期末数学试卷

济宁市数学九年级上册期末数学试卷一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.一元二次方程x 2=-3x 的解是( ) A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 3.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .1 4.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++= 6.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .227.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数8.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A.16B.13C.12D.239.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定10.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α11.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=12.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25°B.40°C.45°D.50°13.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°14.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0)B.(6,3)C.(6,5)D.(4,2)15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-二、填空题16.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.17.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.18.若53x yx+=,则yx=______.19.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.20.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB =54°,则∠CBF =____°.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;22.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.23.如图,平行四边形ABCD 中,60A ∠=︒,32AD AB =.以A 为圆心,AB 为半径画弧,交AD 于点E ,以D 为圆心,DE 为半径画弧,交CD 于点F .若用扇形ABE 围成一个圆维的侧面,记这个圆锥的底面半径为1r ;若用扇形DEF 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12r r 的值为______.24.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.25.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .26.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.27.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.28.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)29.若点 M(-1, y1),N(1, y2),P(72, y3 )都在抛物线 y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).30.如图,一次函数y=x与反比例函数y=kx(k>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.32.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t ,使S △DOP =52S △PCQ ?若存在,请求出t 的值,若不存在,请说明理由; (4)当t 为何值时,△DPQ 是以DQ 为腰的等腰三角形?33.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.34.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标; (2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒.①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD=;(2)若O的半径为8,弧BD的度数为120︒,求四边形ABCD的面积;(3)如图2,作OM BC⊥于M,请猜测OM与AD的数量关系,并证明你的结论.37.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.38.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.39.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。