云南昆明市2019年中考数学模拟试卷
【附2套中考卷】中考数学超常发挥的五个技巧

中考数学超常发挥的五个技巧数学考试要取得好成绩,首先要有扎实的基础知识、熟练的基本技能和在长年累月的刻苦钻研中培养起来的数学能力,同时,临场的发挥也是至关重要的。
下面结合数学科的特点,谈几条考试的建议,以便使同学们临场不慌,并能在紧张的考试中超水平发挥。
一、提前进入“角色”考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动,进入单一的数学情境。
如清点一下用具是否带全(笔、橡皮、作图工具、身分证、准考证等)。
2.把一些基本数据、常用公式、重要定理“过过电影”。
3.最后看一眼难记易忘的结论。
4.互问互答一些不太复杂的问题。
一些经验表明,“过电影”的成功顺利,互问互答的愉快轻松,不仅能够转移考前的恐惧,而且有利于把最佳竞技状态带进考场。
二、精神要放松,情绪要自控最易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到发卷时。
三、迅速摸透“题情”刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事。
顺利解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪立即稳定)。
2.对不能立即作答的题目,可一面通览,一面粗略分为A、B两类:A类指题型比较熟悉、估计上手比较容易的题目,B类是题型比较陌生、自我感觉比较困难的题目。
3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。
2019年云南省昆明市官渡区中考数学一模试卷

题意.
第 7 页(共 16 页)
故选:B. 11.【解答】解:A、一组对边平行且相等的四边形是平行四边形,是假命题;
B、三个角是直角的四边形是矩形,是真命题; C、四边相等的四边形是菱形,是真命题; D、有一个角是直角的菱形是正方形,是真命题; 故选:A. 12.【解答】解:多项式的第一项依次是 a,a2,a3,a4,…,an, 第二项依次是 b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1, 所以第 10 个式子即当 n=10 时, 代入到得到 an+(﹣1)n+1b2n﹣1=a10﹣b19. 故选:B. 13.【解答】解:∵一元二次方程 x2﹣3x+m=0 有实数根, ∴△=9﹣4m≥0, m≤ .
18.【解答】解:(1)因为共有 4 张牌,其中点数是偶数的有 3 张, 所以这张牌的点数是偶数的概率是 ; 故答案为: ;
(2)列表如下:
2
5
6
8
2
(2,5) (2,6) (2,8)
5
(5,2)
(3,6) (5,8)
6
(6,2) (6,5)
(6,8)
8
(8,2) (8,5) (8,6)
从上面的表格可以看出,总共有 12 种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有 6 种,
12.(4 分)一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第 10 个式子是( )
A.a10+b19
B.a10﹣b19
C.a10﹣b17
D.a10﹣b21
13.(4 分)若关于 x 的一元二次方程 x2﹣3x+m=0 有实数根,则 m 的取值范围是(是偶数的概率为 = .
2019年中考数学专题《等腰三角形》复习试卷含答案解析

2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠B AC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC 中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC 的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F 到直线BC的距离.12. 如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M 是直线l 上的动点,且△MAC 为等腰三角形,求出所有符合条件的点M 的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC.参考答案: 1. C2. D 【解析】∠BCA=12(180°-∠A)=75°,∠BCD =∠BCA-∠DCA=∠BCA-∠A=75°-30°=45°.3. C【解析】作PQ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN∴MQ=1.∠AOB=60°,OP =12,∴OQ =12OP =6,OM=OQ -MQ =6-1=5. 4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C. 6. 20° 【解析】过点A 作AD∥l 1,根据平行线的性质可得∠BAD=∠β.AD∥l 2,从而得到∠DAC=∠α=40°.再根据等边△ABC 可得到∠BAC=60°,∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.7. 12° 【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x.在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN=90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN=12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF=FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD -1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b 2a=1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC=90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE2019-2020学年数学中考模拟试卷一、选择题1.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:22.昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为( )A.B.C. D.3.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点P 在边AB 上,∠CPB 的平分线交边BC 于点D ,DE ⊥CP 于点E ,DF ⊥AB 于点F .当△PED 与△BFD 的面积相等时,BP 的值为( )A. B. C. D.4.下列计算的结果是a 6的为( ) A .a 12÷a 2B .a 7﹣aC .a 2•a 4D .(﹣a 2)35.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A .12πB .24πC .36πD .48π6.如图,抛物线()()142L y x t x t =---+:(常数0t >),双曲线6(0)y x x=>.设L 与双曲线有个交点的横坐标为0x ,且满足034x <<,在L 位置随t 变化的过程中,t 的取值范围是( )A .322t << B .34t << C .45t << D .57t <<7.如图所示的几何体的俯视图为( )A .B .C .D .8.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A .90°B .100°C .110°D .130°9.如图,一次函数y =kx+b 与y =x+2的图象相交于点P (m ,4),则关于x ,y 的二元一次方程组2kx y by x -=-⎧⎨-=⎩的解是( )A .34x y =⎧⎨=⎩B . 1.84x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D . 2.44x y =⎧⎨=⎩10.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④11.已知函数6y x -= 与y =﹣x+1的图象的交点坐标是(m ,n ),则11m n+的值为( ) A .﹣16B .16C .﹣6D .612.整数a 满足下列两个条件,使不等式﹣2≤352x +<12a+1恰好只有3个整数解,使得分式方程135-22ax x x x----=1的解为整数,则所有满足条件的a 的和为( )A .2B .3C .5D .6二、填空题13.任意写出一个3的倍数(例如:111),首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M ,它会掉入一个数字“黑洞”.那么最终掉入“黑洞”的那个数M 是______.14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.15.如图,已知在△ABC 中,AB=AC ,BC=8,D 、E 两点分别在边BC 、AB 上,将△ABC 沿着直线DE 翻折,点B 正好落在边AC 上的点M 处,并且AC=4AM ,设BD=m ,那么∠ACD 的正切值是______(用含m 的代数式表示)16.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在3x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.17 ______.18.如图,AB是圆O的弦,AB=,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.三、解答题19.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.21.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数解析式,并求出第几天时销售利润最大.22.已知二次函数y=ax2+4x+c,当x=﹣2时,y=﹣5;当x=1时,y=4(1)求这个二次函数表达式.(2)此函数图象与x轴交于点A,B(A在B的左边),与y轴交于点C,求点A,B,C点的坐标及△ABC的面积.(3)该函数值y能否取到﹣6?为什么?23.某高速铁路位于某省南部,是国家“八纵八横”高速铁路网的重要连接通道,也是某省“三横五纵”高速铁路网的重要组成部分.东起日照,向西贯穿临沂、曲阜、济宁、菏泽,与郑徐客运专线兰考南站接轨.工程有一段在一条河边,且刚好为东西走向.B处是一个高铁维护站,如图①,现在想过B处在河上修一座桥,需要知道河宽,一测量员在河对岸的A处测得B在它的东北方向,测量员从A点开始沿岸边向正东方向前进300米到达点C处,测得B在C的北偏西30度方向上.(1)求所测之处河的宽度;(结果保留的十分位)(2)除(1)的测量方案外,请你再设计一种测量河宽的方案,并在图②中画出图形.24.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD(1)求证:△ABC≌△ADC;(2)若∠BAC =30°,∠BCA =45°,BC =2; ①求∠BAD 所对的弧BD 的长;②直接写出AC 的长.25.解不等式组1531x x x +≤⎧⎨->⎩①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得_________; (Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.【参考答案】*** 一、选择题二、填空题 13.153 14.1215.316. 17.18.20 三、解答题19.(1)y =﹣x 2+2x+3;(2)点P 的坐标为(97,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【解析】 【分析】(1)根据点B ,C 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A 的坐标,由点B ,C 的坐标可得出直线BC 的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+PA取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出OA OCCD CB=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【详解】(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:9303b cc-++=⎧⎨=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA=5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:-k0 33mk m+=⎧⎨+=⎩,解得:3k434m⎧=⎪⎪⎨⎪=⎪⎩,∴直线AO′的解析式为y =34x+34. 联立直线AO′和直线BC 的解析式成方程组,得:33y 443x y x ⎧=+⎪⎨⎪=-+⎩,解得:9x 7127y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 的坐标为(97,127). (3)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴点D 的坐标为(1,4).又∵点C 的坐标为(0,3),点B 的坐标为(3,0), ∴CD,BC,BD∴CD 2+BC 2=BD 2, ∴∠BCD =90°.∵点A 的坐标(﹣1,0),点C 的坐标为(0,3), ∴OA =1,OC =3, ∴OA OC CD CB ==. 又∵∠AOC =∠DCB =90°, ∴△AOC ∽△DCB ,∴当Q 的坐标为(0,0)时,△AQC ∽△DCB . 如图2,连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q . ∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC . 又∵△AOC ∽△DCB , ∴△ACQ ∽DCB ,∴AC AQDC DB =AQ=, ∴AQ =10,∴点Q 的坐标为(9,0).综上所述:当Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及相似三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短确定点P 的位置;(3)分两种情况,利用相似三角形的性质求出点Q 的坐标.20.(1)详见解析;(2)详见解析;(3)⊙O 的半径是2. 【解析】 【分析】(1)根据AC 为⊙O 直径,得到∠ADC =∠CBA =90°,通过全等三角形得到CD =AB ,推出四边形ABCD 是平行四边形,根据矩形的判定定理得到结论; (2)根据直角三角形的性质得到NB =12MF =NF ,根据等腰三角形的性质和余角的性质即可得到NB 是⊙O 的切线;(3)根据垂径定理得到DE =GE =6,根据四边形ABCD 是矩形,得到∠BAD =90°,根据余角的性质得到∠FAE =∠ADE ,推出△AEF ∽△DEA ,根据相似三角形的性质列比例式得到AE =,连接OD ,设⊙O 的半径为r ,根据勾股定理列方程即可得到结论. 【详解】解:(1)∵AC 为⊙O 直径, ∴∠ADC =∠CBA =90°,在Rt △ADC 与Rt △CBA 中,AC ACAD BC =⎧⎨=⎩,∴Rt △ADC ≌Rt △CBA , ∴CD =AB , ∵AD =BC ,∴四边形ABCD 是平行四边形, ∵∠CBA =90°, ∴四边形ABCD 是矩形; (2)连接OB ,∵∠MBF =∠ABC =90°, ∴NB =12MF =NF , ∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∵OB=OA,∴∠5=∠4,∵DG⊥AC,∴∠AEF=90°,∴∠3+∠4=90°,∴∠1+∠5=90°,∴OB⊥NB,∴NB是⊙O的切线;(3)∵AC为⊙O直径,AC⊥DG,∴DE=GE=6,∵F为GE中点,∴EF=GF=3,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠FAE+∠DAE=90°,∵∠ADE+∠DAE=90°,∴∠FAE=∠ADE,∵∠AEF=∠DEA=90°,∴△AEF∽△DEA,∴AE EF DE AE,∴AE=,连接OD,设⊙O的半径为r,∴OA=OD=r,OE=r﹣,∵OE2+DE2=OD2,∴(r﹣)2+62=r2,∴r,∴⊙O的半径是2.【点睛】本题考查了圆周角定理,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理,证得AEF∽△DEA是解决(3)的关键.21.(1)该种水果每次降价的百分率是10%;(2)第10天时销售利润最大;【解析】【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价-进价)×销量-费用列函数关系式,并根据增减性求最大值,作对比;【详解】(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,第10天时销售利润最大.【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.22.(1)y =x 2+4x ﹣1;(3)函数值y 不能取到﹣6;理由见解析. 【解析】 【分析】(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c ,求得a 、c 的值即可求得;(2)令y =0,解方程求得A 、B 点的坐标,令x =0,求得y =﹣1,得到C 点的坐标,然后根据三角形面积公式即可求得△ABC 的面积;(3)把(1)中求得的解析式化成顶点式,求得函数y 的最小值为﹣5,故函数值y 不能取到﹣6. 【详解】解:(1)把x =﹣2时,y =﹣5;x =1时,y =4代入y =ax 2+4x+c 得48544a c a c -+=-⎧⎨++=⎩,解得11a c =⎧⎨=-⎩,∴这个二次函数表达式为y =x 2+4x ﹣1; (2)令y =0,则x 2+4x ﹣1=0,解得x∴A(﹣20),B(﹣0), 令x =0,则y =﹣1, ∴C(0,﹣1),∴△ABC 的面积:12AB•OC=12(﹣ (3)∵y =x 2+4x ﹣1=(x+2)2﹣5, ∴函数y 的最小值为﹣5, ∴函数值y 不能取到﹣6. 【点睛】本题考查了抛物线和x 轴的交点,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,以及二次函数的性质,二次函数图象上点的坐标适合解析式是解题的关键. 23.(1)所测之处江的宽度为190.5m ;(2)见解析. 【解析】 【分析】解:(1)过点B 作BF ⊥AC 于F ,根据题意得到∠EAB =45°,∠GCB =30°,AC =300m ,求得∠FBA =45°,∠CBF =30°,得到BF =AF ,解直角三角形即可得到结论;(2)构造相似三角形,根据相似三角形的性质得到方程即可得到结论.. 【详解】(1)过点B 作BF ⊥AC 于F ,由题意得:∠EAB =45°,∠GCB =30°,AC =300m , ∴∠FBA =45°,∠CBF =30°,∴FC =300﹣AF =300﹣BF (m ), 在Rt △BFC 中,tan ∠CBF =FCFB, ∴tan30°=300BFBF-,300BFBF-=,解得:BF ﹣150(3m ), 答:所测之处江的宽度为190.5m ;(2)①在河岸取点A ,使B 垂直于河岸,延长BA 至C ,测得AC 做记录, ②从C 沿平行于河岸的方向走到D ,测得CD ,做记录, ③B0与河岸交于E ,测AE ,做记录.根据△BAE ~△BCD , 得到比例线段,从而求出河宽AB .【点睛】此题考查了方向角问题.此题难度适中,注意能构造直角三角形,并能借助于解直角三角形的知识求解是关键,注意数形结合思想与方程思想的应用.24.(1)见解析;(2)①BD ;②AC =【解析】 【分析】(1)由“SSS”可证△ABC ≌△ADC ;(2)①由题意可得AC 垂直平分BD ,可得BE=DE ,AC ⊥BD ,由直角三角形的性质可得,,由等腰三角形的性质可得∠BAD=2∠BAC=60°,由弧长公式可求弧BD 的长;②由AC=AE+CE 可求解. 【详解】证明:(1)由题意可得AB =AD ,BC =CD ,∴△ABC ≌△ADC (SSS ); (2)①∵AB =AD ,BC =CD ∴AC 垂直平分BD ∴BE =DE ,AC ⊥BD ∵∠BCA =45°,BC =2;∴BE =CE ,且∠BAC =30°,AC ⊥BD∴AB =2BE =,AE ∵AB =AD ,AC ⊥BD ∴∠BAD =2∠BAC =60°∴60BD 1803π︒︒⨯⨯==②∵AC =AE+CE∴AC +【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,弧长公式,灵活运用这些性质解决问题是本题的关键. 25.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】 【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可. 【详解】 (Ⅰ)15x +≤ 移项得:x≤4, 故答案为:x≤4 (Ⅱ) 31x x -> 移项得:2x>1,解得:x>12, 故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x<≤,故原不等式的解集为:142x<≤,故答案为:14 2x<≤【点睛】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A.0.96a 元B.0.972a 元C.1.08a 元D.a 元 2.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 3.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( )A.2B.3C.5D.12 4.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②①5.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( )A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)6.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58o7.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( )A .1269×108B .1.269×108C .1.269×1010D .1.269×10118.如图,在△ABC 中,AC =BC ,∠C =90°,AD 是∠BAC 的平分线且交BC 于点D ,DE ⊥AB ,垂足为点E ,若AB =8cm ,则△DBE 的周长( )A .B .cmC .8cmD .cm9.如图,在锐角ABC 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④ 10.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A. B. C. D.11.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为( )A.5B.6C.8D.1012.如果方程x 2﹣8x+15=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为( ) A.34 B.35 C.45 D.34或35二、填空题13.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为_______。
2019年最新云南省中考数学模拟试卷含答案解析

九年级数学中考模拟试卷一、填空题:1.若|2x﹣1|=3,则x= .2.如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C= 度.3.分解因式:x2+2x-3=____________.4.正多边形的一个外角等于20°,则这个正多边形的边数是______.5.设x,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22= .16.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.二、选择题:7.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10128.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.9.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()10.计算÷=()A. B.5 C. D.11.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大概是( )12.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是713.下列图形中不是中心对称图形的是()14.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)三、解答题:15.解不等式组:,并把解集在数轴上表示出来.16.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.17.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?18.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?19.某校为了了解本校九年级女生体育项目跳绳的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟跳绳测试,同时统计每个人跳的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并将统计结果绘制成如下两幅不完整的统计图。
云南省2019年中考数学试题及答案(Word解析版)

2019年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2019年云南省)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年云南省)下列运算正确的是()A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)(2019年云南省)不等式组的解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)(2019年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)(2019年云南省)一元二次方程x2﹣x﹣2=0的解是()A. x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.(3分)(2019年云南省)据统计,2019年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2019年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.(3分)(2019年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数.分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2019年云南省)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3分)(2019年云南省)如图,直线a∥b,直线a,b被直线c所截,∠1=37°,则∠2= 143°.考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=37°(对顶角相等),∵a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.故答案为:143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2019年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.12.(3分)(2019•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.13.(3分)(2019年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)(2019年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)= .(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9个小题,满分60分)15.(5分)(2019年云南省)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(5分)(2019年云南省)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(6分)(2019年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.(9分)(2019年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2019年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:1 23 41 234 52 345 63 456 74 567 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6分)(2019年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6分)(2019年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB 的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7分)(2019年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC 的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.(9分)(2019年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.。
中考数学模拟题

2019年中考数学模拟试卷①考生领到条形码(条码)时,请检查条码上打印的是否是本人的“姓名”、“准考证号”、“科目”、“考场号”、“座位号”等信息,条形码数量和答题卡张数是否一致。
②考生领到答题卡时,请检查所领取的答题卡页(面)数和卡上所标的总页(面)数是否相符。
③答题前,考生务必用黑色字迹的钢笔或签字笔将自已的“准考证号”、“姓名”、“考场号”、“座位号”填写在答题卡的“准考证号”、“姓名”、“考场号”、“座位号”位置上,并将“条形码” 横贴在答题卡的“条码粘贴区”④ “选择题”答题时,必须用2B 铅笔在答题卡的“选择题区”各题目相应的正确选择项上进行“填涂”。
作答后如需修改,用橡皮擦干净原来的答案,然后重新“填涂”。
要特别注意看清楚答题卡上题号的排列顺序,在答题卡上作答(填涂)答案时要特别注意答题卡和试卷的“题号”要相对应。
考试时间120分钟,满分150分.⑤“非选择题”答题时,答案必须用黑色字迹钢笔或签字笔写在答题卡上“非选择题区”各题目的指定区域内相应位置上,不准使用铅笔作答;需要画图时,可先用铅笔画,再用黑色字迹钢笔或签字笔描一遍;作答后如需改动,先划掉原来的答案,然后再写上新的答案,不准使用涂改液、胶带纸和修正带。
不按以上要求作答的答案无效。
⑥考生必须保持答题卡的整洁,不要折叠和弄破答题卡。
一.选择题(每题3分,共30分) 1.已知关于x 的分式方程=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠22. 已知点A(a ,1)与点A ′(5,b)关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1 B .a =-5,b =1 C .a =5,b =-1 D .a =-5,b =-1 3.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2) 4. 下列各运算中,计算正确的是( ) A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a •3a=6a 25.将直线y=x 向上平移两个单位后的直线解析式是( ) A.y=x-2 B.y=x+2 C.y=2x D.y=2x+26. 反比例函数y =x3图象上三个点的坐标为(11,y x )、(22,y x )、(33,y x ).若3210x x x <<<,则 321,,y y y 的大小关系是( )A.321y y y <<B.312y y y <<C.132y y y <<D.231y y y << 7. 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x8.如右图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点, 连接AE 、BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 的延长线于点Q ,下列结论正确的个数( )①AE=BF ②AE ⊥BF ③sin ∠BQP=54④BGE ECFG S S ∆=2四边形A.4B.3C.2D.19.如图1,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是 ( ) A.2 B.32 C. 4 D.33810. 如图2, 在⊙O 中, 点 C 在优弧 AB 上, 将弧 BC 沿 BC 折叠后刚好经过 AB 的中点 D. 若⊙O 的半径为 5 ,AB=4,则 BC 的长是( ) A.23 B.32 C.4 D.25图 2二.填空题(每题3分,共30分)11.如图3,在平行四边形ABCD 中,分别以点 A 和点C 为圆心,大于12 AC 的长为半径作弧,两弧相交于 M,N 两点,作直线 MN,分别交 AD , BC 于点 E ,F ,连接 AF ,∠B=50°,∠DAC=30° , 则∠BAF 等于 _______。
昆明市中考数学模拟试卷
昆明市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)五个数相乘,积为负数,则其中正因数的个数为()A . 0B . 2C . 4D . 0、2或42. (2分) (2019八上·洪泽期末) 如图图形中,不是轴对称图形的是A .B .C .D .3. (2分)一个不等式组的解集在数轴上的表示如下图,则这个不等式组的解集是()A . x<3B . x≥-1C . -1<x≤3D . -1≤x<34. (2分)(2016·黄石) 黄石农科所在相同条件下经试验发现蚕豆种子的发芽率为97.1%,请估计黄石地区1000斤蚕豆种子中不能发芽的大约有()A . 971斤B . 129斤C . 97.1斤D . 29斤5. (2分)(2017·西城模拟) 某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:组别身高(cm)A150≤x<155B155≤x<160C160≤x<165D165≤x<170E170≤x<175根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A . ①②B . ①④C . ②④D . ③④6. (2分) (2020八下·龙岗期中) 如图,在平面直角坐标系中,等边三角形的边长为4,点在第二象限内,将沿射线平移,平移后点的横坐标为,则点的坐标为()A .B .C .D .7. (2分)若关于x的方程 = ﹣的解为整数,且不等式组无解,则这样的非负整数a有()A . 2个B . 3个C . 4个D . 5个8. (2分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A . 3:4B . 4:3C . 7:9D . 9:79. (2分)二次函数y=mx2﹣nx﹣2过点(1,0),且函数图象的顶点在第三象限,当m+n为整数时,则mn 的值为()A . ﹣,﹣1B . ﹣,﹣2C . ﹣,,﹣2D . ,﹣210. (2分)下列命题正确的是()A . 正方形既是矩形,又是菱形B . 一组对边平行,另一组对边相等的四边形是等腰梯形C . 一个多边形的内角相等,则它的边一定都相等D . 矩形的对角线一定互相垂直.二、填空题 (共6题;共6分)11. (1分) (2016九上·越秀期末) 一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是________.12. (1分)(2019·金台模拟) 不等式组的解集为________.13. (1分)如图,⊙O的半径是1,A、B、C是圆周上的三点,∠BAC=36°,则弦BC所对的弧长是________ .14. (1分)(2020·港南模拟) 分解因式:a3﹣4ab2=________.15. (1分)(2013·河池) 如图,在△ABC中,AC=6,BC=5,sinA= ,则tanB=________.16. (1分) (2020七下·无锡期中) 如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为4、5、7,四边形DHOG面积为________.三、解答题 (共8题;共85分)17. (5分)计算:18. (10分) (2016九上·北京期中) 已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取何值时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.19. (10分) (2019九上·临洮期末) 一个不透明的袋子中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由转动的转盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小亮和小丽想通过游戏来决定谁代表学校参加歌咏比赛.游戏规则为:一人从袋子中摸出一个小球,另一个人转动转盘,如果从袋中所摸球上的数字与转盘上转出数字之和小于4,那么小丽去,否则小亮去.(1)请用适当的方法求小丽参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.20. (15分)(2018·绍兴模拟) 如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.(1)求证:CQ=QP(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;21. (10分)(2017·淮安模拟) 如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.22. (10分) (2017七下·枝江期中) 西北某地区为改造沙漠,决定从2012年起进行“治沙种草”,把沙漠地变为草地,并出台了一项激励措施:在“治沙种草”的过程中,每一年新增草地面积达到10亩的农户,当年都可得到生活补贴费1500元,且每超出一亩,政府还给予每亩a元的奖励.另外,经治沙种草后的土地从下一年起,平均每亩每年可有b元的种草收入.下表是某农户在头两年通过“治沙种草”每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+种草收入)年份新增草地的亩数年总收入2012年20亩2600元2013年26亩5060元(1)试根据提供的资料确定a、b的值;(2)观察数据,2013的新增草地的亩数在2012年新增草地的亩数上增加了一个百分数,若从2013年起,该农户每年新增草地的亩数均能比前一年按这个百分数增长,那么2015年该农户通过“治沙种草”获得的年总收入将达到多少元?23. (10分) (2020·嘉兴·舟山) 在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF 拼在一起,使点A与点F重合,点C与点D重合(如图1) ,其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动。
17.中考数学专题“探索规律型”相关的探索性问题数学母题题源系列(解析版)
专题03 中考中与“探索规律型”相关的探索性问题【母题来源一】【2019•武汉】观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是A.2a2–2a B.2a2–2a–2C.2a2–a D.2a2+a【答案】C【解析】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2·2=2a2,∴原式=2a2-a.故选C.【名师点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.【母题来源二】【2019•枣庄】如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A .B .C .D .【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D .【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10. 【母题来源三】【2019•济宁】已知有理数a ≠1,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-1的差倒数是()11112=--.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是 A .-7.5 B .7.5 C .5.5 D .-5.5【答案】A 【解析】∵a 1=–2,∴a 2()11123==--,a 3131213==-,412312a ==--,……∴这个数列以-2,13,32依次循环,且-2131326++=-,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(16-)-2152=-=-7.5, 故选A .【名师点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.【母题来源四】【2019•雅安】如图,在平面直角坐标系中,直线l 1:y 3=x +1与直线l 2:y =交于点A 1,过A 1作x 轴的垂线,垂足为B 1,过B 1作l 2的平行线交l 1于A 2,过A 2作x 轴的垂线,垂足为B 2,过B 2作l 2的平行线交l 1于A 3,过A 3作x 轴的垂线,垂足为B 3…按此规律,则点A n 的纵坐标为A .(32)n B .(12)n +1 C .(32)n -112+D .312n -【答案】A【解析】联立直线l 1与直线l 2的表达式并解得:x =y 32=,故A 132),则点B 10),则直线B 1A 2的表达式为:y =+b ,将点B 1坐标代入上式并解得:直线B 1A 2的表达式为:y 332=-,将表达式y 3与直线l 1的表达式联立并解得:x =,y 94=,即点A 2的纵坐标为94,同理可得A 3的纵坐标为278, …按此规律,则点A n 的纵坐标为(32)n , 故选A .【名师点睛】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.【母题来源五】【2019•广元】如图,过点A 0(0,1)作y 轴的垂线交直线l :y 3=于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2,△A 2A 3A 4,△A 4A 546,…,其面积分别记为S 1,S 2,S 3,…,则S 100为A.(2)100B .(100 C .4199 D .2395【答案】D【解析】∵点A 0的坐标是(0,1),∴OA 0=1, ∵点A 1在直线y =上,∴OA 1=2,A 0A1= ∴OA 2=4,∴OA 3=8,∴OA 4=16, 得出OA n =2n , ∴A n A n +1=2n∴OA 198=2198,A 198A 199=2198, ∵S 112=(4-1= ∵A 2A 1∥A 200A 199,∴△A 0A 1A 2∽△A 198A 199A 200,∴1001S S =1982, ∴S =2396=2395, 故选D .【名师点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.【母题来源六】【2019•淄博】如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y 4x=(x >0)的图象上.则y 1+y 2+…+y 10的值为A .B .6C .D .【答案】A【解析】过C 1、C 2、C 3…分别作x 轴的垂线,垂足分别为D 1、D 2、D 3…其斜边的中点C 1在反比例函数y 4x=,∴C (2,2)即y 1=2,∴OD 1=D 1A 1=2, 设A 1D 2=a ,则C 2D 2=a 此时C 2(4+a ,a ),代入y 4x=得:a (4+a )=4,解得:a 2=,即:y 22=,同理:y 3=y 4=∴y 1+y 2+…+y 10=22+++=…A .【名师点睛】考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.【母题来源七】【2019•大庆】归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为__________.【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.【母题来源八】【2019•天水】观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.【母题来源九】【2019•甘肃】如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2–1=3个.第3幅图中有2×3–1=5个.第4幅图中有2×4–1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n–1)个.当图中有2019个菱形时,2n–1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.【母题来源十】【2019•衡阳】在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为__________.【答案】(–1010,10102) 【解析】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(–1,1), ∵A 1A 2∥OA , ∴直线A 1A 2为y =x +2, 解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4), ∴A 3(–2,4), ∵A 3A 4∥OA , ∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9), ∴A 5(–3,9) …,∴A 2019(–1010,10102), 故答案为:(–1010,10102).【名师点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.【母题来源十一】【2019•北京】小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 x 1 x 1 x 1 第2组 x 2 x 2 x 2 第3组 第4组x 4x 4x 4③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为__________;(3)7天后,小云背诵的诗词最多为__________首.【解析】(1)第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组x3x3x3第4组x4x4x4(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6.(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4=14③,x2+x4≤14④,①+②+④–③得,3x2≤28,∴x2283≤,∴x1+x2+x3+x4283≤+14703=,∴x1+x2+x3+x4≤2313,∴7天后,小云背诵的诗词最多为23首,故答案为:23.【名师点睛】本题考查了规律型:数字的变化类,不等式的应用,正确的理解题意是解题的关键.【母题来源十二】【2019•安徽】观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,第3个等式:2115315=+,第4个等式:2117428=+,第5个等式:2119545=+,……按照以上规律,解决下列问题: (1)写出第6个等式:21111666=+; (2)写出你猜想的第n 个等式:()2112121n n n n =+--(用含n 的等式表示),并证明. 【解析】(1)第6个等式为:21111666=+,故答案为:21111666=+. (2)()2112121n n n n =+--. 证明:∵右边()()112112212121n n n n n n n -+=+===---左边.∴等式成立, 故答案为:()2112121n n n n =+--. 【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出()2112121n n n n =+--的规律,并熟练加以运用.【命题意图】这类试题主要考查探索规律在中考中的应用,包括图形类的规律、数字类的规律、图表的规律、一次函数、反比例函数和二次函数中有关点的坐标规律的探索等. 【方法总结】根据一系列数式关系或一组相关图形的变化规律,从中总结其所反映的规律.其中,以图形为载体的数字规律最为常见.猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行观察对比,仿照数式规律的方法猜想得到最终结论. 1.解数字或数式规律探索题的方法 第一步:标序号;第二步:找规律,分别比较各部分与序号数(1,2,3,4,…,n )之间的关系,把其蕴含的规律用含序号数的式子表示出来;第三步:根据找出的规律表示出第n 个数式. 2.几何图形中的规律探究题图形规律问题主要是观察图形的组成、拆分等过程中的特点,分析其联系和区别,用相应的式子描述图形的变化所反映的规律. 3.点的坐标变化规律探究题图形在直角坐标系中的变化而引起点的坐标的变化,解决此类型题应先分析图形的变化规律,求出一些点的坐标,再结合点在直角坐标系中的位置变化找出坐标的变化规律,仿照猜想数式规律的方法得到最终结论.1.【安徽省池州市贵池区三级教研网络中片2019届中考数学二模试卷】已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199= A .7500 B .10000 C .12500 D .2500【答案】A【解析】101+103+105+107+…+195+197+199 =221199199()()22++- =1002-502, =10000-2500, =7500, 故选A .【名师点睛】本题考查了规律型–––数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.2.【2019年福建省南平市六校联考中考数学模拟试卷(4月份)】已知一列数:a 1=1,a 2=3,a 3=6,a 4=10,…则122017111a a a +++=A .20162017 B .40322017 C .20172018D .40342018【答案】D【解析】∵a 1=1,a 2=3,a 3=6,a 4=10,…∴122017111a a a +++1121320172018=+++⨯ 111112[(1)()()]22320172018=-+-+-12(1)2018=-201722018=⨯40342018=. 故选D .【名师点睛】本题考查了规律型的数字变化类,解题的关键是找到拆项的方法. 3.【2019年广西贺州市昭平县中考数学一模试卷】若x 是不等于1的实数,我们把11x-称为x 的差倒数,如2的差倒数是11x -=-1,-1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为 A .-13B .-2C .3D .4【答案】B【解析】根据差倒数的定义可得出:x 1=13,x 2=1113-=32,x 3=1312-=-2,x 4=11(2)--=13,… 由此发现该组数每3个一循环.∵2019÷3=673,∴x2019=x3=-2.故选B.【名师点睛】本题考查了数字的变化以及求倒数,解题的关键是发现“该组数每3个一循环”这个规律.本题属于基础题,难度不大,根据差倒数的定义式列出前4个数据即可找出规律得以解决.4.【云南省昆明市五华区2019届九年级中考数学二模试卷】仔细观察下列数字排列规律,则a=A.206 B.216C.226 D.236【答案】C【解析】观察发现:2=1×2-0;10=3×4-2;26=5×6-4;50=7×8-6…a=15×16-14=226,故选C.【名师点睛】考查了数字的变化类问题,解题的关键是找到各个图形中数字规律,难度不大.5.【重庆市巴蜀中学2019年初三第二次模拟考试数学试题】如图,将一些形状相同的小五角星按图中所规放,据此规律,第10个图形中五角星的个数为A.120 B.121C.99 D.100【答案】A【解析】第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为n(n+1)+n.故第10个图形中小五角星的个数为10×11+10=120个,故选A.【名师点睛】本题主要考查图形规律探究,解决本题的关键是要从已知的特殊个体推理得出一般规律.6.【2019年山东省日照市中考数学二模试卷】如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;按B3此规律作下去,则点B n的坐标为A.(2n,2n-1)B.(2n,2n+1)C.(2n+1,2n)D.(2n-1,2n)【答案】D【解析】由题意可得,B1(1,2),B2(2,4),B3(4,8),B4(8,16)…∴点B n的坐标为(2n-1,2n),故选D.【名师点睛】此题重点考查学生对一次函数的拓展应用,找出其中的规律是解题的关键.7.【天津市河西区2019年中考二模数学试卷】如图,第一个图形是用3根一样长度的木棍拼接而成的等边三角形ABC,第二个图形是用5根同样木棍拼接成的;那么按图中所示的规律,在第n个图形中,需要这样的木棍的根数为__________.n【答案】21【解析】第1个图形有2+1=3根,第2个图形有1+2+2=5根,第3个图形有1+2+2+2=7根…第n 个图形有2n +1根, 故答案为:2n +1.【名师点睛】本题考查了图形的变化类问题,仔细观察图形发现图形的变化规律是解答本题的关键. 8.【江苏省徐州市2019届九年级第二次模拟考试数学试题】如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123101111a a a a ++++的值为__________.【答案】175264【解析】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2), ∴12310111111111324351012a a a a +++⋯+=++++⨯⨯⨯⨯ (111111)133591124461012=+++++++⨯⨯⨯⨯⨯⨯…… 11111(1)()2112212=-+- 175264=, 故答案为:175264.【名师点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题. 9.【2019年贵州省黔南州中考数学一模试卷】已知函数1()(1)=+f x x x ,其中f (a )表示当x =a 时对应的函数值,如1(1)12f =⨯,11(2)()23(1)f f a a a ==⨯+,,则f (1)+(2)+f (3)+f (2019)=__________. 【答案】20192020【解析】∵1(1)12f =⨯,11(2),()23(1)f f a a a ==⨯+, ∴f (1)+f (2)+f (3)+f (2019)=112⨯+123⨯+…+120192020⨯=1-12+12-13+…+12019-12020=1-1 2020=2019 2020.故答案为:2019 2020.【名师点睛】此题主要考查代数式的求值,解题的关键是发现规律,进行简便求解.10.【2019年安徽省淮北市濉溪县中考数学二模试卷】观察下列式子:0×2+1=12①;1×3+1=22②;2×4+1=32③;3×5+1=42④;…(1)第⑤个式子__________,第⑩个式子__________;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.【解析】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102,故答案为:4×6+1=52,9×11+1=102.(2)第n个式子为(n-1)(n+1)+1=n2,证明:左边=n2-1+1=n2,右边=n2,∴左边=右边,即(n-1)(n+1)+1=n2.【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n-1)(n+1)+1=n2的规律,并熟练加以运用.。
最新2019年初中数学100题练习试卷 中考模拟试卷501347
**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列不等式中一定成立的是( )A .32x x >B .2x x ->-C .34x x -<-D .43y y > 2. 已知多项式22x bx c ++分解因式为2(3)(1)x x -+,则b ,c 的值为( )A .3b =,1c =-B .6b =-,2c =-C .6b =-,4c =-D .4b =-,6c =-3.若△ABC ≌△DEF ,AB=DE ,∠A=35°,∠B=75°,则F 的度数是( )A . 35°B . 70°C .75°D .70°或75°4.观察下面图案,在 A .B 、C 、D 四幅图案中,能通过图1平移得到的是( )图1 A . B . C . D .5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现摸到红色、黑色球的频率分别为 15%和 45%,则口袋中白色球的数目很可能是( )A .6个B . 16个C .18个D .24个6.如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左传80°C .右转100°D .左传100°7.如图,∠A =15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A .90°B .75°C .60°D .45°8.下列图形中,一定是轴对称图形的是( )A .直角三角形B .平行四边形C .梯形D .等腰三角形9.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°10.已知数据:-1,O ,4,x ,6,15,且这组数据的中位数为5,则这组数据的众数为( )A .4B .5C .5.5D .611.如图,用一个平面去截长方体,则截面形状为( )12.校七年级有 13名同学参加百米竞赛,预赛成绩各不相同,要取前 6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A . 中位数B .众数C .平均数D .方差13.下列运算正确的是( )。
相似形综合测试题
相似形综合测试题(时间:_______ 满分:120分)(班级:_______ 姓名:_______ 得分:_______)一、选择题(每小题3分,共30分) 1.如果a cb d=(a ,b ,c ,d 都不为0)成立,那么下列各式一定成立的是( ) A.a d cb = B.ac c bd d= C.11a c b d ++= D.22a b c db d ++= 2.在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对3.如图,在△ABC中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE∥BC,EF∥AB .若AD=2BD,则CFBF的值为( )A.12B.13C.14 D. 234.如图,线段CD 两个端点的坐标分别为C (1,2),D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 的坐标为(5,0),则点A 的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE∶EC=3∶1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A. 3∶4B.9∶16C. 9∶1D. 3∶16.如图,点P 是平行四边形ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( )A.0对B.1对C.2对D.3对B 第3题图 第7题图第8题图第5题图 第4题图第6题图7.如图,在△ABC 中,D ,E 分别是AB ,BC 上的点,且DE∥AC,若S △BDE ∶S △CDE =1:4,则S △BDE ∶S △ADC =( ) A. 1∶16 B. 1∶18 C. 1∶20 D. 1∶248.如图是跷跷板示意图,横板AB 绕中点O 上下转动,立柱OC 与地面垂直,设B 点的最大高度为h 1.若将横板AB 换成横板A′B′,且A′B′=2AB ,O 仍为A′B′的中点,设B′点的最大高度为h 2,则下列结论正确的是( )A.h 2=2h 1B.h 2=1.5h 1C.h 2=h 1D.h 2=12h 1 9.如图,△ABC 中,AE 交BC 于点D ,∠C=∠E,AD ∶DE=3∶5,AE=8,BD=4,则D C 的长等于( ) A.154 B.125 C.203D.17410.如图,在△ABC 中,AB=BC ,∠ABC= 90°,BM 是AC 边上的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF⊥AC 于点F ,以下结论:①∠DBM=∠CDE;②S △BDE <S 四边形BMFE ;③CD·EN=BN·BD;④AC =2DF. 其中正确的个数是( ) A.1 B.2 C.3 D.4 二、填空题(每小题4分,共32分)11.如果两个相似多边形面积的比为1∶5,则它们的周长比为 . 12.已知a∶b∶c=4∶3∶2,则2a b cc+-= . 13.如图,AD∥BE∥CF,直线l 1 ,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,AB BC =23,DE=6,则EF= .14.如图是小明设计用手电来测量南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是___________米(平面镜的厚度忽略不计).15.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,∠AED=∠B,如果AE=2,△ADE 的面积为4,四边形BCED 的面积为5,那么边AB 的长为 .第13题图第10题图第9题图yA y=OD EFCBAB第14题图第19题图16.如图,△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E,AB 交EF 于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是 (填写所有正确结论的序号).17.将三角形纸片(△ABC)按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF.已知AB=AC=3,BC=4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度为 .18.在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A=36°,AB=AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有__________条.三、解答题(共58分)19.(10分)如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形格中,每个小正方形的边长是1个单位长度) (1)将△ABC 向下平移4个单位得到△A 1B 1C 1,在格中画出△A 1B 1C 1并 写出C 1点的坐标;(2)以点B 为位似中心,在格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2︰1,并写出点C 2的坐标及△A 2BC 2的面积. 20.(10分)如图,为测量学校围墙外直立电线杆AB 的高度,小亮在操场上点C 处直立高3 m 的竹竿CD ,然后退到点E 处,此时恰好看到竹竿顶端D 与电线杆顶端B 重合;小亮又在点C 1处直立高3m 的竹竿C 1D 1,然后退到点E 1处,恰好看到竹竿顶端D 1与电线杆顶端B 重合.小亮的眼睛离地面高度EF=1.5 m ,量得CE=2 m ,EC 1=6m ,C 1E 1=3m .(1)△FDM∽ , △F 1D 1N∽ ; (2)求电线杆AB 的高度.F 111第20题图AD E B C 第15题图A B C P 第18题图A E DB FC 第16题图E 第17题图 A B ′ C F21.(12分)如图,在正方形ABCD 中,E 是BC 上的一点,连接AE ,作BF⊥AE,垂足为H ,交CD 于F ,作CG∥AE,交BF 于G. 求证:(1)CG=BH ;(2)CF 2=BF·GF;(3)22FC AB =GF BG.22.(12分)如图,在四边形ABCD 中,AB=AD ,AC 与BD 交于点E ,∠ADB=∠ACB.(1)求证:AB ACAE AD; (2)若A B⊥AC,AE∶EC=1∶2,F 是BC 的中点.求证:四边形ABFD 是菱形.23.(14分)如图①,在四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG ,BG ,CG ,DG ,且∠AGD =∠BGC. (1)求证:AD=BC ;(2)求证:△AGD∽△EGF; (3)如图②,若AD ,BC 所在直线互相垂直,求 ADEF的值.相似形综合测试题参考答案第22题图第21题图①②第23题图一、1. D 2. A 3. A 4. B 5. B 6. D 7. C 8. C 9. A 10. C二、12. 4 13. 9 14. 8 15. 316.①③④ 17.127或2 18. 3三、 19.解:(1)如图,C 1(2,-2). (2)如图,C 2(1,0),△A 2BC 2的面积为10. 20.解:(1)△FBG △F 1BG(2)由图易得△F 1D 1N∽△F 1BG ,△FD M ∽△FBG. ∴1D N BG =11F N F G ,DM BG =FM FG .∵D 1N=DM ,∴11F N F G =FM FG ,即311GM +=22GM +,解得GM=16. ∵1D N BG =11F N F G, ∴1.5BG =327,解得BG=13.5. ∴AB=BG+GA=15(m ).答:电线杆AB 的高度为15m . 21.提示:(1)证明△BCG≌△ABH . (2)证明△CFG∽△BFC.(3)由△BCG ∽△BFC,可得BC 2=BF ·B G. 所以22FC AB =22FC BC =BF GF BF BG ⋅⋅=GF BG .22.(1)证明:∵AB=AD, ∴∠ADB=∠ABE. 又∵∠ADB=∠ACB, ∴∠ABE=∠ACB. 又∵∠BAE=∠CAB, ∴△ABE∽△ACB.∴AB ACAE AB =. 又∵AB=AD, ∴AB ACAE AD=. (2)证明:设AE=x ,则EC=2x ,AC=3x. 由(1)得2AB AE AC =⋅, ∴23AB x x =⋅,∴AB =.∴AD AB ==.∵AB⊥AC,∴△ABE、△ABC 都是直角三角形. 在Rt△ABE中,2BE x ===.在Rt△ABC 中,BC ==.∵F 是BC 的中点,∴BF=12. ∴BE=EC,AD=BF. ∴∠DBC=∠ACB.由(1)知∠ADB=∠ACB, ∴∠ADB=∠DBC. ∴AD//BF.∴四边形ABFD 是平行四边形. 又∵AD=AB,∴四边形ABFD 是菱形.23.(1)提示:证明△AGD≌△BGC. (2)证明:∵∠AGD=∠BGC, ∴∠AGB=∠DGC. 在△AGB 和△DGC 中,GA GBGD GC=, ∴△AGB∽△DGC. ∴EG GAFG GD=. ∵∠AGE=12∠AGB,∠D GF=12∠DGC, ∴∠AGE=∠DGF. ∴∠AGD=∠EGF. ∴△AGD∽△EGF.(3)解:如图,延长AD ,交BG 于点M ,交BC 的延长线于点H ,则AH⊥BH. ∵△AGD≌△BGC, ∴∠GAD=∠GBC.∴在△GAM 和△HBM 中,∠GAD=∠GBC,∠GMA=∠HMB, ∴∠AGB=∠AHB=90°. ∴∠AGE=12∠AGB=45°.∴AD GAEF GE==.2019-2020学年数学中考模拟试卷一、选择题1.新中国成立70年以来,中国铁路营业里程由52000公里增长到131000公里,将数据131000用科学记数法表示为( ) A .13.1×105B .13.1×104C .1.31×106D .1.31×1052.昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为( )A.B.C. D.3.今年春节,我区某主题公园共接待游客77800人次,将77800用科学记数法表示为( )A.B.C.D.4.在2015-2016CBA 常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( ) A .易建联罚球投篮2次,一定全部命中 B .易建联罚球投篮2次,不一定全部命中 C .易建联罚球投篮1次,命中的可能性较大 D .易建联罚球投篮1次,不命中的可能性较小5.如图,在矩形ABCD 中,点E 、F 、G 、H 分别是边AD 、AB 、BC 、CD 的中点,连接EF 、FG 、GH 和HE .若2=AD AB ,用下列结论正确的是( )A .EF AB = B .EF AB =C .EF =D .EF AB =6.如图,正方形ABCD 中,E 为CD 的中点,F 为BC 边上一点,且EF ⊥AE ,AF 的延长线与DC 的延长线交于点G ,连接BE ,与AF 交于点H ,则下列结论中不正确的是( )A.AF =CF+BCB.AE 平分∠DAFC.tan ∠CGF =34D.BE ⊥AG7.如图,矩形ABCD 的边AB =1,BC =2,以点B 为圆心,BC 为半径画弧,交AD 于点E ,则图中阴影部分的面积是( )A 3π-B .23πC 6π-D .26π8.顺次连接矩形ABCD 各边的中点,所得四边形必定是( ) A .菱形 B .矩形C .正方形D .邻边不等的平行四边形9.如图,在直角坐标系中,O 为坐标原点,点A (4,0),以OA 为对角线作正方形ABOC ,若将抛物线y=x2沿射线OC 平移得到新抛物线y=(x-m )2+k (m >0).则当新抛物线与正方形的边AB 有公共点时,m 的值一定是( )A .2,6,8B .0<m≤6C .0<m≤8D .0<m≤2或 6 ≤ m≤810.如图所示,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE 、CE 的长分别是( )A .2和3B .3和2C .4和1D .1和411.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°12的正方形ABCD 中,点E 是边AD 上的一点,连结BE ,将△ABE 绕着点B 顺时针旋转一定的角度,使得点A落在线段BE上,记为点F,此时点E恰好落在边CD上记为点G,则AE的长为()A B C D.1二、填空题13.如图,在边长都是1的小正方形组成的网格中,、、、均为格点,线段相交于点.(Ⅰ)线段的长等于______;(Ⅱ)请你借助网格,使用无刻度...的直尺画出以为一个顶点的矩形,满足点为其对角线的交点,并简要说明这个矩形是怎么画的(不要求证明)______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15.已知x2+y2=10,xy=3,则x+y=_____.16.某图书馆有A、B、C三类图书,它们的数量用如图所示的扇形统计图表示,若B类图书有37. 5万册,则C类图书有_______万册.17.18.如图,在平面直角坐标系中,弧ABC所在圆的圆心P的坐标为(3,4),弧ABC与x轴交于点(1,0),则⊙P与x轴的另一交点坐标是_____.三、解答题19.由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .20.某学校开展名著阅读活动,现老师推荐2部不同的名著A 、B ,甲、乙、丙3人分别从中任意选择1部阅读.(1) 甲选择名著A 的概率为 ;(2) 求甲、乙、丙3人选择同一部名著的概率.(请用画树状图的方法给出分析过程,并求出结果)21.计算:2163()(-+⨯--.22.某人为了测量瞭美塔的高度,小张在山下与山脚B 在同一水平面的A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进45米到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,并画出了如图所示的示意图.请你根据相关数据求出塔ED 的高度.23.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥BD ,AC 平分∠BAD .(1)给出下列四个条件:①AB =AD ,②OB =OD ,③∠ACB =∠ACD ,④AD ∥BC ,上述四个条件中,选择一个合适的条件,使四边形ABCD 是菱形,这个条件是(填写序号); (2)根据所选择的条件,证明四边形ABCD 是菱形.24.幸福村在推进美丽乡村建设中,决定建设幸福广场,计划铺设相同大小、规格的红色和蓝色地砖,经过调查,获取信息如下表:若购买红色地砖400块,蓝色地砖600块,需付款8600元;若购买红色地砖1000块,蓝色地砖350块,需付款9900元.(1)红色地砖和蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖1200块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过600块,如何购买付款最少?最少是多少元?请说明理由.25.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查发现:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A类玩具多少个?【参考答案】***一、选择题二、填空题13.;作图见解析.14.2 715.±4 16.45 17.-1.18.(5,0) 三、解答题19.山高CD为米.【解析】【分析】首先根据题意分析图形;过点B作CD,AC的垂线,垂足分别为E,F,构造两个直角三角形△ABF与△DAC,分别求解可得AF与FC的值,再利用图形关系,进而可求出答案【详解】解:过点B作CD,AC的垂线,垂足分别为E,F,∵∠BAC=30°,AB=1500米,∴BF=EC=750米.AF=AB•cos∠BAC=1500×2=设FC=x米,∵∠DBE=60°,∴DE米.又∵∠DAC=45°,∴AC=CD.即:=米,解得x=750.∴CD=)米.答:山高CD为米.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(1)12;(2)14【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出甲、乙、丙3人选择同1部电影的结果数,然后利用概率公式求解.【详解】解:(1)甲选择名著A的概率=12;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部名著的结果数为2,所以甲、乙、丙3人选择同1部名著的概率=28=14.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.【解析】【分析】直接利用负指数幂的性质以及绝对值的性质和二次根式的性质分别化简得出答案.【详解】解:原式=9(6-,96=-3=-【点睛】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.22.71m.【解析】【分析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xm,DE=2xm,DC=3xm,BC,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.【详解】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC+DE=x+2x=3xm,BC,由题知,∠DAC=45°,∠DCA=90°,AB=45,∴△ACD为等腰直角三角形,∴AC=DC.=3x,,解得:x=22x=1.答:塔高约为71m.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.23.(1)④(2)见解析【解析】【分析】(1)根据平行四边形的判定选择的条件能使四边形ABCD是平行四边形,然后即可证明四边形ABCD是菱形;(2)首先证明△AOB≌△AOD,然后结合AD∥BC可得到AB=AD= BC,根据平行四边形的判定可得四边形ABCD是平行四边形,再由AC⊥BD可证□ABCD是菱形.【详解】解:(1)选择④可以使四边形ABCD是菱形.(2)证明:∵AC ⊥BD ,∴∠AOB =∠AOD =90°. ∵AC 平分∠BAD ,∴∠BAO =∠DAO . 又∵AO =AO ,∴△AOB ≌△AOD . ∴AB =AD .∵AD ∥BC ,∴∠DAO =∠BCO . 又∵∠BAO =∠DAO ,∴∠BAO =∠BCO . ∴BA =BC . ∴AD =BC .又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 又∵AC ⊥BD ,∴□ABCD 是菱形. 【点睛】本题考查平行四边形的判定和性质以及菱形的判定和性质,灵活运用性质定理进行推理论证是解题关键. 24.(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元. 【解析】 【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案; (2)利用已知得出x 的取值范围,再利用一次函数增减性得出答案. 【详解】(1)设红色地砖每块x 元,蓝色地砖每块y 元,由题意可得:4006000.9860010000.83509900x y x y +⨯=⎧⎨⨯+=⎩, 解得810x y =⎧⎨=⎩,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖a 块,则购置红色地砖(1200﹣a )块,所需的总费用为y 元,由题意可得:a 1200a 21200a 600⎧-⎪⎨⎪-⎩……,解得:600≤a≤800, 当600≤a<700时,y =8a×0.8+0.9×10(1200﹣a )=10800﹣2.6a , 当a =700时y 有最小值为:10800﹣2.6×700=8980,当700<x≤800时,y =8a×0.8+10(1200﹣a )=﹣3.6a+12000, 当a =800时,y 有最小值为:﹣3.6×800+12000=9120, ∵9120<9180,∴购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元. 【点睛】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键. 25.(1)A 类玩具的进价是18元,B 类玩具的进价是15元; (2)该淘宝专卖店至少购进A 类玩具40个. 【解析】 【分析】(1)设B 类玩具的进价为 x 元,则A 类玩具的进价是()3x + 元,根据 900元购进A 类玩具的数量=750元购进B 类玩具的数量,建立方程,解出并检验即可.(2)设购进A 类玩具 a 个,则购进B 类玩具 ()100-a 个 ,根据A 类玩具利润+B 类玩具利润≥1080,列出关于a 的不等式,解出即得. 【详解】(1)解:设B 类玩具的进价为 x 元,则A 类玩具的进价是 ()3x +元,由题意得:9007503x x=+ 解得: 15x =经检验: 15x =是原方程的解. 所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)解:设购进 A 类玩具 a 个,则购进 B 类玩具 ()100-a 个,由题意得:1210(100)1080a a +-≥解得: 40a ≥答:该淘宝专卖店至少购进A 类玩具40个. 【点睛】此题考查分式方程的应用和一元一次不等式的应用,解题关键在于列出方程2019-2020学年数学中考模拟试卷一、选择题1.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣162.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=3:4,连接AE交对角线BD于点F,则S△DEF:S△ADF:S△ABF等于()A.3:4:7B.9:16:49C.9:21:49D.3:7:493.下列计算正确的是()A.2a+b=2ab B.a3÷a=a2C.(a﹣1)2=a2﹣1 D.(2a)3=6a34.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是( )A.x1=1,x2=﹣1 B.x1=1,x2=3 C.x1=1,x2=2 D.x1=1,x2=35.已知反比例函数y=与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则△ACD的面积为()A.12B.9C.6D.56.如图,在△ABC中,CA=CB,∠C=90°,点D是BC的中点,将△ABC沿着直线EF折叠,使点A与点D 重合,折痕交AB于点E,交AC于点F,那么sin∠BED的值为().A.35B.53C.512D.127.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为( )A .20°B .30°C .60°D .120°8.扇子是引风用品,夏令必备之物,中国传统扇文化有深厚的文化底蕴,它与竹文化,道教文化,儒家文化有密切的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南昆明市2019届中考数学二模试卷一.选择题(每题4分,满分32分)1.中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为44亿人,数据44亿用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.44×10102.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列运算正确的是()A.a2⋅a3=a6B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b24.下表是皖西某中学八年级(1)、(2)两班学生同一次单元测试的成绩统计表.从表中的数据知,成绩较为稳定的班级是()A.八(1)班B.八(2)班C.两班成绩一样稳定D.无法比较5.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±16.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.247.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根8.如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是()A.2B.C.4 D.6二.填空题(满分24分,每小题4分)9.相反数是它本身的数是;绝对值是它本身的数是;倒数是它本身的数是.10.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.11.分式方程的解为.12.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.13.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组.14.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.三.解答题15.已知不等式组,并求此不等式组的整数解.16.为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.17.一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x 的值可以取7吗?请用列表或画树状图的方法说明理由.18.(5分)一艘轮船由南向北航行,如图,在A 处测得小岛P 在北偏西15°方向上,两个小时后,轮船在B 处测得小岛P 在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?19.(5分)观察下列式子: 0×2+1=12……① 1×3+1=22……② 2×4+1=32……③ 3×5+1=42……④ ……(1)第⑤个式子 ,第⑩个式子 ;(2)请用含n (n 为正整数)的式子表示上述的规律,并证明: (3)求值:(1+)(1+)(1+)(1+) (1)).20.(5分)如图,一次函数y =kx +b (k ≠0)与反比例函数y =(a ≠0)的图象在第一象限交于A 、B 两点,A 点的坐标为(m ,4),B 点的坐标为(3,2),连接OA 、OB ,过B 作BD ⊥y 轴,垂足为D ,交OA 于C .若OC =CA ,(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)在直线BD 上是否存在一点E ,使得△AOE 是直角三角形,求出所有可能的E 点坐标.21.(5分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC =CD ,∠ACD =120°. (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.22.(5分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?23.设关于x 的方程2x 2﹣kx ﹣2=0有两个不同的实根x 1,x 2(x 1<x 2).(1)若m =x 1+x 2,求证:2m 2﹣km ﹣2<0;(2)若x 1<a <b <x 2,求证:<.参考答案一.选择题1.解:44亿=4.4×109故选:B.2.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.3.解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.4.解:∵S2八(1)>5,S2八(2),∴成绩比较稳定的是八(2)班.故选:B.5.解:∵分式的值为零,∴,解得x=﹣1.故选:B.6.解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.7.解:方程整理得2x2﹣3x﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.8.解:连接CD,交OB于P.则CD就是PD+PA和的最小值.∵在直角△OCD中,∠COD=90°,OD=2,OC=6,∴CD==2,∴PD+PA=PD+PC=CD=2.∴PD+PA和的最小值是2.故选:A.二.填空题(共6小题,满分24分,每小题4分)9.解:∵0的相反数是0,∴相反数是它本身的数是0;∵非负数的绝对值是它本身,∴绝对值是它本身的数是非负数;∵±1的倒数是它本身,∴倒数是它本身的数是±1.故答案为:0,非负数,±1.10.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.11.解:去分母得:x+2=6,解得:x=4,经检验x=4是分式方程的解.故答案为:x=412.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.13.解:设租住三人间x间,租住两人间y间,由题意,得,故答案是:.14.解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为: m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.三.解答题(共9小题,满分39分)15.解:解不等式①得,x≥﹣;解不等式②得,x<1,∴不等式组的解集为﹣≤x<1,∴不等式组的整数解是0.16.(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.17.解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是,故出现“和为8”的概率是;故答案为:(2)假设x=7,则P(和为9)=≠,所以,x的值不能为7.18.解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.19.解:(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102,故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.(3)原式=×××…×=×××……×==.20.解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y =,∵点A 的纵坐标为4,∵点A 在反比例函数y =图象上,∴A (,4),∴,∴,∴一次函数的表达式为y =﹣x +6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G , ∵B (3,2),∴直线OB 的解析式为y =x ,∴G (,1),A (,4),∴AG =4﹣1=3,∴S △AOB =S △AOG +S △ABG =×3×3=.(3)如图2中,①当∠AOE 1=90°时,∵直线AC 的解析式为y =x ,∴直线OE 1的小时为y =﹣x ,当y =2时,x =﹣,∴E 1(﹣,2).②当∠OAE 2=90°时,可得直线AE 2的解析式为y =﹣x +,当y =2时,x =,∴E 2(,2).③当∠OEA =90°时,易知AC =OC =CE =, ∵C (,2),∴可得E 3(,2),E 4(,2),综上所述,满足条件的点E 坐标为(﹣,2)或(,2)或(,2)或(,2).21.证明:(1)连接OC ,∵CD =AC ,∴∠CAD =∠D ,又∵∠ACD =120°,∴∠C AD =(180°﹣∠ACD )=30°,∵OC =OA ,∴∠A =∠1=30°,∴∠COD =60°,又∵∠D =30°,∴∠OCD =180°﹣∠COD ﹣∠D =90°,∴CD 是⊙O 的切线;(2)∵∠A =30°,∴∴∠1=2∠A =60°∠1=2∠A =60°.∴∴,在Rt △OCD 中,.∴.∴图中阴影部分的面积为2﹣π.22.解:(1)y =(x ﹣50)[50+5(100﹣x )] =(x ﹣50)(﹣5x +550)=﹣5x 2+800x ﹣27500,∴y =﹣5x 2+800x ﹣27500(50≤x ≤100);(2)y =﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500, ∵a =﹣5<0,∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80,∴当x =80时,y 最大值=4500;(3)当y =4000时,﹣5(x ﹣80)2+4500=4000, 解得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4000元.23.解:(1)∵x 1<x 2,∴x 1+x 1<x 1+x 2<x 2+x 2,即x 1<m <x 2, ∵在函数y =2x 2﹣kx ﹣2中,即抛物线的开口向上, ∴当x =m 时,y =2m 2﹣km ﹣2<0;(2)﹣=(4ab ﹣ka ﹣kb ﹣4),∵a <b , ∴b ﹣a >0,又∵a 2+1>0、b 2+1>0,∴>0,由(1)知,∵x 1<a <b <x 2,∴,∴2a 2﹣ka ﹣2+2b 2﹣kb ﹣2<0,∵a 2+b 2>2ab ,∴4ab ﹣ka ﹣kb ﹣4<2a 2﹣ka ﹣2+2b 2﹣kb ﹣2<0,则﹣<0,即<.。