制作DNA双螺旋结构模型
《制作DNA分子双螺旋结构模型》教学设计与案例

《制作DNA分子双螺旋结构模型》教学设计与案例教学设计与案例:制作DNA分子双螺旋结构模型教学目标:1.了解DNA分子的双螺旋结构;2.了解DNA的构成原理和结构特点;3.能够手工制作DNA分子双螺旋结构模型。
教学步骤:引入(5分钟):老师可以使用图片或示意图展示DNA分子的双螺旋结构,激发学生对DNA分子的兴趣。
Step 1 背景知识介绍(10分钟):老师向学生简要介绍DNA分子的结构原理和构成要素,包括碱基对、磷酸二脱氧核苷酸以及双螺旋结构等。
同时,引入DNA分子双螺旋结构模型制作的目的和意义。
Step 2 材料准备(5分钟):让学生准备制作模型所需要的材料,包括彩色纸、剪刀、胶水、铅笔等。
Step 3 DNA双螺旋结构模型制作(30分钟):1.带领学生使用彩色纸切割成一定长度的条状物,每个条状物代表一个磷酸二脱氧核苷酸。
2.按照碱基对的规则,使用铅笔在条状物的一端上画上对应的碱基(腺嘌呤-胸腺嘧啶,鸟嘌呤-胞嘧啶)。
3.将画有碱基的两个条状物重叠在一起,使用胶水将其固定住。
4.继续制作其他磷酸二脱氧核苷酸,然后将它们一个接一个地连接起来,形成DNA分子双螺旋结构。
5.最后,将制作好的DNA模型展示给全班同学,并解释每个部分的含义和作用。
Step 4 模型展示与讲解(10分钟):让每个学生把自己制作的DNA模型展示给全班,并讲解自己制作模型的过程和遇到的困难。
同时,老师也可以对学生的模型给予评价和指导。
Step 5 总结与讨论(10分钟):让学生分享制作模型的心得和体会,讨论DNA分子的双螺旋结构模型在科学研究和生物学中的应用。
作业:1.复习DNA分子的组成结构和双螺旋结构模型制作过程;2.观察自己的DNA模型,思考如何改进和提升模型质量。
教学案例:小明是一个对生物学非常感兴趣的学生,他对DNA的双螺旋结构也充满了好奇。
他在老师的引导下制作了一个DNA分子的双螺旋结构模型。
首先,小明准备了制作模型所需的材料,包括彩色纸、剪刀、胶水和铅笔。
高考生物考前梳理必修2遗传与进化实验4制作DNA双螺旋结构模型(含答案)

高考生物考前梳理:
4.制作DNA双螺旋结构模型
目的要求
通过制作DNA双螺旋结构模型,加深对DNA结构特点的认识和理解。
材料用具
曲别针、泡沫塑料、纸片、扭扭棒、牙签、橡皮泥、铁丝等常用物品,都可用作模型制作的材料。
模型设计
制作模型前首先应该进行设计,并考虑以下问题。
1.分别用哪几种材料来代表组成DNA的磷酸、脱氧核糖和碱基?这3种物质是在什么部位相互连接的?怎样将这几种材料正确地连接起来?
2.DNA中每个脱氧核苷酸之间是在什么部位相互连接的?怎样将脱氧核苷酸正确
地连接起来?
3.在模型中,如何体现DNA的两条链反向平行的?又怎样体现两条链的碱基之间互补配对?讨论
1.DNA只含有4种脱氧核苷酸,它为什么能够储存足够量的遗传信息?
提示:DNA虽然只含有4种脱氧核苷酸,但是碱基的排列顺序却是千变万化的。
碱基排列顺序的千变万化,使 DNA 储存了大量的遗传信息。
1.DNA是如何维系它的遗传稳定性的?
提示:(1)靠DNA碱基对之间的氢键维系两条链的偶联;(2)在DNA双螺旋结构中,由于碱基对平面之间相互靠近,形成了与破基对平面垂直方向的相互作用力(该点可不作为对学生的要求,教师可进行补充说明)。
2.你能够根据DNA的结构特点,设想DNA的复制方式吗?
提示:不一定要求学生答出半保留复制,可以引导学生从 DNA 的结构来进行推测,如从碱基互补配对原则出发去思考。
制作dna双螺旋结构模型实验报告

制作dna双螺旋结构模型实验报告实验目的:制作DNA双螺旋结构模型,理解DNA的结构特点和组成。
实验材料:1. 彩色纸或饼干纸片2. 彩色胶带3. 剪刀4. 硬纸板5. 铅笔或铁丝6. 已准备好的DNA结构模板实验步骤:1. 制作硬纸板底座。
将硬纸板剪成合适大小的底座,用铅笔或铁丝固定在底座上,作为DNA支架。
2. 准备彩色纸条。
将彩色纸剪成长度相同的纸条,数量要足够覆盖整个DNA模型的长度。
3. 制作DNA链。
将纸条沿纵向对折,用彩色胶带固定两端,使其保持对称。
4. 提取模板。
从已准备好的DNA结构模板上提取两个纸条,一个红色代表脱氧核糖核酸(DNA)的糖基,一个蓝色代表DNA的磷酸基。
5. 先将蓝色DNA磷酸基附在纸板支架上,然后将红色DNA糖基一对一地附着在磷酸基上,并用彩色胶带固定在DNA链上。
6. 重复第5步,直到模型完成为止。
注意将红色和蓝色的糖基和磷酸基按照既定的顺序配对。
实验结果:制作完成后,我们可以看到一个具有双螺旋结构的DNA模型。
通过模型的观察,可以清晰地观察到DNA的双螺旋结构,以及DNA 的糖基和磷酸基之间的配对关系。
实验分析:DNA是生物体内的遗传物质,它由两条互补的链组成,呈双螺旋结构。
这个实验中制作的DNA模型可以帮助我们更好地理解DNA的结构特点和组成。
红色和蓝色的纸条代表了DNA的糖基和磷酸基,它们通过氢键相互配对,稳定地形成一个双螺旋结构。
这个模型不仅可以帮助我们观察到DNA的结构,还可以帮助我们理解DNA复制和遗传信息传递的过程。
实验总结:通过制作DNA双螺旋结构模型,我们更加直观地了解了DNA的结构特点和组成。
这个模型可以用来教学,帮助学生理解DNA的结构和功能,深入了解生物遗传学知识。
这个实验还培养了学生的动手能力和创造力。
需要注意的是,在制作模型的过程中,要小心使用剪刀和尖锐工具,以免造成伤害。
制作DNA双螺旋结构模型

制作DNA双螺旋结构模型一、实验背景资料本实验的来源是人教版高中生物第二册中的实验十二——《制作DNA双螺旋结构模型》,旧人教必修高中生物实验十《制作DNA双螺旋结构模型》。
在上课之前同学们学习了DNA的发现历程,了解到DNA是生物的主要遗传物质,且它由四种脱氧核苷酸(腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸、胞嘧啶脱氧核苷酸)组成,它的排列顺序以及数量多少决定了其储存遗传信息的多样性,同时明确组成DNA的化学元素是C、H、O、N、P,由它们组成磷酸、脱氧核糖和含氮碱基,再由1分子磷酸、1分子脱氧核糖和1分子的含氮碱基组成基本单位一—脱氧核苷酸;再通过一定的化学键(氢键、3‘-5’磷酸二酯键)连接作用形成DNA分子。
在本实验前中学生物学中与本实验相关的理论知识主要有“基因在染色体上”、“DNA是生物的主要遗传物质”、“DNA的分子结构内容”等内容。
即学生在本实验前已经对DNA双螺旋结构模型的制作有了一定的理论基础。
高中生物课程标准对本实验相关内容的要求主要有:1、通过制作DNA分子双螺旋结构模型,深入理解DNA双螺旋结构的特点;2、通过本实验锻炼学生的动手操作能力;3、培养学生对生物的兴趣爱好;4、激发学生的探究能力;5、培养学生的团队合作精神。
本实验现代生物教学中起着举足轻重的作用,在现代生物科学研究中,模型方法被广泛运用,DNA分子双螺旋结构模型的成功就是一个范例。
DNA分子双螺旋结构模型是以形象化的具体模型,能使研究对象直观化,既可以促进研究,又可以简略地描述研究成果,又便于理解和传播。
在中学生物学教材中,制作DNA 分子双螺旋结构模型作为生物技术性设计和制作的第一案例,对学生的学习有很大的帮助。
常见的难题和疑问:1、如何选取更好的实验材料便于更好地制作DNA双螺旋结构模型;2、如何确保模型构建的成功,即构建的关键步骤有哪些;3如何将模型和理论知识结合使学生更好、更全面的弄懂DNA的双螺旋结构;4、怎么通过平面结构使学生对DNA的空间立体结构有更深的了解;5、如何通过本实验开发学生的动手能力以及他们对生物学的兴趣。
《制作DNA分子双螺旋结构模型》教学设计及案例

《制作DNA分子双螺旋结构模型》教学设计与案例襄州二中生物组程晨一、教学目标的确定DNA是遗传的分子基础,课程标准中,与本节内容相关的具体内容要求是“概述DNA分子的结构模型”和“制作DNA分子结构模型”,“概述”是理解水平要求,要达到这一要求,学生需要将微观事物宏观化,通过观察、分析、描述出相关特点。
“制作”是操作水平的要求,要达到这一要求,需培养学生的动手、合作、交流的能力,从而对制作的DNA分子模型进行检查,适当修补,这是确定本节教学目标的基本考虑,现将教学目标确定如下:1、知识目标:理解核心概念掌握制作DNA双螺旋结构模型的方法理解DNA分子结构特点2、能力目标:学生形成建构物理模型、数学模型和概念模型的能力通过分析组装DNA结构模型,培养学生发现问题、提出问题和探究问题的能力3、情景价值目标:激发学生学习DNA的兴趣在合作学习和实验中,培养学生合作精神二、教学重点、难点依据新课程标准,和学生的已有认知水平,我确定了以下的教学重点和难点。
1、教学重点:理解DNA分子结构的特点在理解的基础上,完成DNA分子的组装2、教学难点:在理解的基础上组装出正确的DNA分子模型三、教学设计思路本小节教学安排1课时。
课前准备 动手实验 教师指导 构建模型 学生互评、修补模型情景导入 提出课题提出问题 回顾旧知 总结归纳设置探究问题 探索结论 通过DNA 双螺旋立体结构的动画,让学生感受DNA 的结构美,引起制作DNA 结构兴趣 双螺旋结构模型 制作DNA 双螺旋结构模型的理论依据核心概念提出 通过观察,总结DNA 特点 各组DNA 分子是否相同?一对脱氧核苷酸构成几种DNA小组讨论,学生动手构建DNA 分子具有特异性,多样性 DNA 双螺旋结构模型组件 多媒体课件 导学案四、课前准备DNA 双螺旋结构模型组件 多媒体课件 导学案五、教学过程情景创设:播放《DNA 分子立体结构》的动画提问:动画中的DNA 美不美?你们也可以拥有这种“美”。
《制作DNA分子双螺旋结构模型》教学设计与案例

《制作DNA分子双螺旋结构模型》教学设计与案例教学设计:制作DNA分子双螺旋结构模型一、教学目标1.了解DNA的结构和构成。
2.掌握DNA分子双螺旋结构的制作方法。
3.培养学生动手能力和创造力。
二、教学准备1. PowerPoint课件:介绍DNA的结构和构成。
2.透明塑料袋。
3.盐、面粉、水、搅拌器、塑料容器、食用色素、阳极铝线、阴极铜线、电池。
4.各类颜色的珠子或橡皮泥。
5.制作DNA模型所需的材料:扁平的纸杯、铅笔、细直尺、剪刀、胶带、丝线。
三、教学过程1.导入(10分钟)展示DNA的结构图片,引发学生的兴趣,让学生讨论DNA是什么,有什么作用。
2.知识讲述(15分钟)使用PowerPoint课件,简单介绍DNA的结构和构成,包括碱基对、双螺旋结构等,并解释DNA在遗传信息传递中的作用。
3.制作DNA分子双螺旋模型(40分钟)步骤一:制作阳极铝线和阴极铜线,用导线割开一段阳极铝线和一段阴极铜线。
在阳极铝线的一头插入一块铜片,在阴极铜线的一头插入一块铝片,用胶带固定。
步骤二:制作DNA模型主体,将纸杯从中间切开,保留底部。
用铅笔沿纸杯内壁打出一排小孔,每个小孔间隔约0.5cm,小孔数量为纸杯高度的2/3步骤三:安装DNA模型主体,将阳极铝线和阴极铜线固定在纸杯底部,使阳极铝线和阴极铜线透过纸杯的小孔伸出。
将阳极铝线和阴极铜线与纸杯壁贴合。
步骤四:制作DNA模型的基座,将塑料容器细细剪开一个洞口,使其可以支撑纸杯。
将纸杯插入塑料容器的洞口中,调整位置使纸杯能够稳固。
步骤五:制作DNA模型的链型结构,将丝线通过阳极铝线和阴极铜线的小孔,并将丝线两端绑在一起。
丝线应绕在阳极铝线和阴极铜线之间,形成类似双螺旋的结构。
4.小结(15分钟)学生将制作好的DNA分子双螺旋模型展示给同学们,并简单介绍模型的制作过程和原理。
老师对学生的制作过程和模型进行点评和总结,强调DNA结构和重要性。
5.展示和评价(10分钟)请学生将自己制作的DNA分子双螺旋模型放在课桌上展示,同学们互相观摩,并进行评价。
组装dna双螺旋结构模型的制作方法

组装dna双螺旋结构模型的制作方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!组装DNA双螺旋结构模型的制作方法DNA双螺旋结构模型是生物学教学和科普展示中常用的模型之一,通过手工制作可以更直观地理解DNA的结构与功能。
制作DNA双螺旋结构模型实验报告册

制作DNA双螺旋结构模型实验报告册实验名称:DNA双螺旋结构模型制作实验目的:1.了解DNA的结构和组成;2.学习并掌握制作DNA双螺旋结构模型的方法;3.加深对DNA分子结构的理解。
实验器材:1.发泡塑料球;2.草图纸;3.笔;4.学生剪刀;5.彩色笔;6.针线。
实验步骤:1.根据草图纸上的示意图,用笔画出DNA双螺旋结构的模型。
2.使用学生剪刀将发泡塑料球剪成适当大小的两段。
3.将彩色笔沾湿水,在发泡塑料球上涂抹彩色,使其呈现出DNA双螺旋结构上的不同碱基。
4.将两段发泡塑料球的一端利用针线缝在一起,形成一个螺旋结构。
5.将模型呈现给实验报告册中进行粘贴。
实验结果:通过制作出的DNA双螺旋结构模型,我们可以清楚地观察到DNA分子的双螺旋结构以及碱基的排列方式。
我们可以看到两条互补的DNA链以螺旋的方式缠绕在一起,并由碱基对连接。
这个模型形象地展示了DNA的结构,使我们更好地理解了DNA的组成和结构。
总结与分析:通过本次实验,我们深入了解了DNA分子的双螺旋结构,并通过制作DNA模型更加清晰地认识到DNA的结构和组成。
这样的实验活动有助于学生们更好地理解DNA的重要性和基本结构。
同时,通过动手制作模型,学生们能够更加深入地理解DNA双螺旋结构的复杂性和稳定性。
这样的实验活动能够培养学生的动手能力和科学思维能力。
然而,由于实验器材和步骤的简单性,这个实验不能完全再现真实的DNA分子的精细结构。
因此,学生们在进行实验时应该知道,这只是一个简化的模型,而不是真实的DNA分子。
因此,学生们仍然需要通过进一步学习和研究来深入了解和理解DNA分子的更多细节。
此外,学生们在制作DNA模型时应注意使用学生剪刀和针等尖锐器具时的安全问题,避免发生意外。
同时,教师也应该对学生进行安全教育和指导,确保实验过程中的安全。
1.《生物化学实验指导》,XXXX出版社,XXXX年。
2.《细胞与分子生物学教程》,XXXX出版社,XXXX年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制作D N A双螺旋结构模型Document number:PBGCG-0857-BTDO-0089-PTT1998制作DNA双螺旋结构模型一、实验背景资料本实验的来源是人教版高中生物第二册中的实验十二——《制作DNA双螺旋结构模型》,旧人教必修高中生物实验十《制作DNA双螺旋结构模型》。
在上课之前同学们学习了DNA的发现历程,了解到DNA是生物的主要遗传物质,且它由四种脱氧核苷酸(腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸、胞嘧啶脱氧核苷酸)组成,它的排列顺序以及数量多少决定了其储存遗传信息的多样性,同时明确组成DNA的化学元素是C、H、O、N、P,由它们组成磷酸、脱氧核糖和含氮碱基,再由1分子磷酸、1分子脱氧核糖和1分子的含氮碱基组成基本单位一—脱氧核苷酸;再通过一定的化学键(氢键、3‘-5’磷酸二酯键)连接作用形成DNA分子。
在本实验前中学生物学中与本实验相关的理论知识主要有“基因在染色体上”、“DNA是生物的主要遗传物质”、“DNA的分子结构内容”等内容。
即学生在本实验前已经对DNA双螺旋结构模型的制作有了一定的理论基础。
高中生物课程标准对本实验相关内容的要求主要有:1、通过制作DNA分子双螺旋结构模型,深入理解DNA双螺旋结构的特点;2、通过本实验锻炼学生的动手操作能力;3、培养学生对生物的兴趣爱好;4、激发学生的探究能力;5、培养学生的团队合作精神。
本实验现代生物教学中起着举足轻重的作用,在现代生物科学研究中,模型方法被广泛运用,DNA分子双螺旋结构模型的成功就是一个范例。
DNA分子双螺旋结构模型是以形象化的具体模型,能使研究对象直观化,既可以促进研究,又可以简略地描述研究成果,又便于理解和传播。
在中学生物学教材中,制作DNA分子双螺旋结构模型作为生物技术性设计和制作的第一案例,对学生的学习有很大的帮助。
常见的难题和疑问:1、如何选取更好的实验材料便于更好地制作DNA双螺旋结构模型;2、如何确保模型构建的成功,即构建的关键步骤有哪些;3如何将模型和理论知识结合使学生更好、更全面的弄懂DNA的双螺旋结构;4、怎么通过平面结构使学生对DNA的空间立体结构有更深的了解;5、如何通过本实验开发学生的动手能力以及他们对生物学的兴趣。
6、实验的拓展(替代实验)(一)核酸的发现历程1868年,瑞士的内科医生F. Miescher从脓细胞核中提取到一种富含磷元素的酸性化合物,将其称为核素(nuclein);后来他又从鲑鱼精子中分离出类似的物质,并指出它是由一种碱性蛋白质与一种酸性物质组成的,此酸性物质即是现在所知的核酸(nucleic acid)。
1889年Altman制备了不含蛋白质的核酸制品,命名为核酸.以后四五十年中,Kossel和Levene等在确定核酸组分方面做了大量的工作,逐步明确核酸可分为两大类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。
(二)DNA是主要遗传物质的发现历程1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。
他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。
这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。
这种假设是否正确呢格里菲斯又在试管中做实验,发现把死了的有荚菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。
格里菲斯称该核酸为"转化因子"。
1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA。
但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。
美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。
因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。
噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。
它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。
当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。
进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。
1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。
他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。
先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。
这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的。
(三)DAN双螺旋结构发现历程:1、X射线衍射数据--Wilkins和Franklin发现不同来源的DNA纤维具有相似的X射线衍射图谱。
2、1950~1953碱基成对证据--Chargaff研究小组对DNA的化学组成进行了研究,发现:①所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等,(即A=T);鸟嘌呤与胞嘌呤的摩尔含量相等,(即G=C)。
碱基当量定律:嘌呤碱总量=嘧啶碱总量。
(即A+G=T+C)②不同生物DNA的碱基组成有很大差异,可用不对称比率:A+T/G+C表示。
亲缘相近的生物,其DNA的碱基组成相近,即不对称比率相近。
③同一种生物所有体细胞DNA的碱基组成相同,可作为该物种的特征。
3、Pauling 和Corey发现A与T生成2个氢键、C与G生成3个氢键。
4、电位滴定行为--电位滴定证明,DNA中的磷酸基可滴定,而嘌呤与嘧啶的可解离基团不能滴定,因为碱基间是由氢键连接。
5、1953年由Wilkins研究小组完成的研究工作,发现了DNA晶体的X线衍射图谱中存在两种周期性反射,并证明DNA是一种螺旋构象。
6、1953年,沃森(J. Watson)和克里克(F. Crick)在前人研究工作的基础上,根据DNA纤维和DNA结晶的X-衍射图谱分析及DNA碱基组成的定量分析以及DNA中碱基的物化数据测定,提出了着名的DNA双螺旋结构模型,并对模型的生物学意义作出了科学的解释和预测。
二、实验目的(一)学习目标:1、使学生明确4种脱氧核糖的根本区别在于含氮碱基的不同;2、让学生理解DNA分子的结构特点;3、知识深化,使学生在DNA的碱基计算问题上不但知道有A=T,G=C,以及演化出的A+G=T+C,还进一步知道在DNA的结构特点上还有总链=a链=b链,并能具体运用在实际计算中。
(二)技能目标1、培养学生的动手操作能力,初步学会制作DNA双螺旋结构模型,掌握制作技术;2、培养学生提出问题的能力;(三)情感目标1、培养学生的团队合作精神。
三、实验原理(一)依据沃森和克里克提出的DNA分子双螺旋结构,其主要特点如下: (1)每个DNA分子是由两条反向平行的脱氧核苷酸长链盘旋而成的规则的双螺旋结构。
脱氧核苷酸长链的两端是不同的,一端是脱氧核糖上羟基,另一端是磷酸基,而 DNA分子两条长链的同一端,一个是磷酸基,另一个则是羟基,因而两条长链的方向是相反的;(2)DNA分子的外侧是脱氧核糖和磷酸交替连结构成的基本骨架,内侧是碱基对;(3)DNA 分子两条链上的内侧碱基按照碱基互补配对原则(A配T,G配C)两两配对,通过氢键互相连结;(4)在DNA分子双螺旋结构中相邻碱基对之间夹角是36°,所以,在DNA分子双螺旋结构中10对碱基对正好螺旋一圈,是360°。
另外研究发现磷酸基团与脱氧核糖之间连接的是3‘-5’磷酸二酯键,脱氧核糖与含氮碱基之间连接的是糖苷键。
在本实验中可以通过运用不同的实验材料表示脱氧核苷酸的不同构成成分,再根据上述的DNA双螺旋结构来构建其模型。
(二)实验原理图片脱氧核苷酸(图1)脱氧核苷酸单链(图3)脱氧核苷酸双链(图4)DNA双螺旋结构立体模拟图(图5)四、实验材料及器具1.实验材料硬塑方框两个(硬且可弯曲既可做成框形也可固定做支架。
用作两端固定以及方便拿取旋转展示的支架,长15cm/宽8cm), m细铁丝两根(柔软且有韧性,便于做好模型后的扭转和固定。
用作双螺旋两边的固定,分别将两条子链串连起来),剪好的球形卡纸片(有韧性,不易损坏。
用来代表磷酸,半径1cm),长方形卡纸片(有韧性,不易损坏。
4种不同颜色的长方形塑料片分别代表4种不同的碱基,长5cm/宽4cm,),正五边形卡纸片(有韧性,不易损坏。
代表脱氧核糖,边长3cm),订书机5个(自己提供)、订书针5盒(订书针用来连接碱基和脱氧核糖代表氢键以及脱氧核糖和磷酸的连接),小剪刀两把(用于材料剪制,自己提供)。
四种DNA碱基大小比例图(图6)2.实验药品无3.实验仪器六个瓷盘(用于盛装材料)五、实验步骤实验材料的准备:需将买回来的材料卡纸剪成上述要求的规格,然后进行下面的操作步骤。
1、先做支架取一个硬塑或硬铁丝做成方框,在硬塑方框一侧的两端各拴上一条长 m长度的细铁丝或细线(注意固定牢)。
2、制作脱氧核苷酸模型将一个圆形卡纸片(代表磷酸)和一个长方形卡纸片(4种不同颜色的长方形塑料片分别代表4种不同的碱基),分别连接在一个剪好的正五边形卡纸片上(代表脱氧核糖),连接时订书针连接(磷酸基团与脱氧核糖之间用一颗订书针就可以,代表3‘-5’磷酸二酯键,脱氧核糖与含氮碱基之间也用一颗订书针连接,代表糖苷键),用同样的方法制作出一个个含有不同碱基的脱氧核苷酸模型,其连接方式如图6—4—1,具体连接方式是磷酸基团与脱氧核糖的5号碳原子连接,碱基与脱氧核糖的1号碳原子连接。
3、制作多核苷酸长链模型将若干个制成的脱氧核苷酸模型,按照一定的碱基顺序(可自行设定)依次穿在长细铁丝上。
具体方式是一个脱氧核苷酸的磷酸基团与下一个脱氧核苷酸的脱氧核糖的3号碳原子连接,依次类推连接成一条完整的多核苷酸长链模型。
4、制作DNA平面结构模型按同样方法制作好DNA的另一条脱氧核苷酸链(注意碱基的顺序与第一条链上碱基顺序互补配对,但方向相反)。