dna双螺旋结构模型要点
知识点 制作DNA双螺旋结构模型

? 3.将12个制成的脱氧核苷酸模型,按碱基(从上到
下)GAAAGCCAGTAT 的顺序依次穿在一条长细铁丝上。
按同样方法制作好DNA的另一条链(注意碱基的顺序及脱
氧核苷酸的方向),用订书钉将两条链之间的
连接
好。
? 4.将两条铁丝的末端分别拴到另一个硬塑方框一侧的两
端,并在所制模型的背侧用两根较粗的铁丝加固。双手分
知识点——制作DNA双螺 旋结构模型
制作DNA双螺旋结构模型
? 实验原理
? DNA分子双螺旋结构由
脱氧多核苷酸链组成。
双螺旋结构外侧的每条长链,是由脱氧核糖与磷
酸交互连接形成的,两条长链以反向平行方式向 右盘绕成双螺旋,螺旋直径为 2nm,螺距为3.4
nm;两条长链上对应碱基以
连接成对,对
应碱基的互补关系为:
? (1) ? (2) ? (3)
制作DNA双螺旋结构模型
? 误区警示
? 本实验制作过程中的注意事项: ? (1)制作“脱氧核苷酸模型”:按照每个脱氧核苷酸的结构组成,挑选
模型零件,组装成若干个脱氧核苷酸。 ? (2)制作“多核苷酸长链模型”:按照一定的碱基排列顺序,将若干个
脱氧核苷酸依次穿起来,组成—条多核苷酸长链。在组装另一条多核 苷酸长链时,方法相同,但要注意两点:—是两条长链的单核苷酸数 目必须相同;二是两条长链并排时,必须保证碱基之间能够相互配对, 不能随意组装。这是实验成败的关键所在。 ? (3)制作DNA分子平面结构模型:按照碱基互补配对的原则,将两条 多核苷酸长链互相连接起来。 ? (4)制作DNA分子的立体结构(双螺旋结构):把DNA分子平面结构旋转 一下,即可得到一个DNA分子的双螺旋结构模型。
制作DNA双螺旋结构模型
dna双螺旋结构模型的主要内容

DNA双螺旋结构模型的主要内容一、发现DNA双螺旋结构的历史1. 1953年,詹姆斯·沃森和弗朗西斯·克里克提出了DNA双螺旋结构模型2. 他们在《自然》杂志上发表了有关DNA结构的历史性文章3. 这一发现为后续的分子生物学研究奠定了重要基础二、DNA双螺旋结构的组成和特点1. DNA由两条螺旋状的核苷酸链组成2. 每条核苷酸链由磷酸基团、脱氧核糖和碱基组成3. 碱基与对应的碱基之间通过氢键相互配对,形成稳定的双螺旋结构4. DNA双螺旋结构的特点包括双链性、螺旋性和碱基配对规律性三、DNA双螺旋结构的功能1. DNA作为遗传物质,承载着生物体的遗传信息2. DNA双螺旋结构的稳定性保证了遗传信息的准确传递3. DNA通过编码蛋白质的方式参与了生物体的基因表达过程4. DNA双螺旋结构的解旋和复制是生物体遗传信息传递的重要基础四、DNA双螺旋结构的意义和应用1. 对DNA双螺旋结构的理解有助于揭示生命活动的分子机制2. DNA双螺旋结构的研究为生物医学领域的发展提供了重要支持3. DNA双螺旋结构的技术应用已扩展到分子生物学、生物工程等领域4. 对DNA双螺旋结构的深入认识有望为治疗人类疾病提供新的思路和方法五、DNA双螺旋结构的未来发展1. 随着科学技术的不断进步,对DNA双螺旋结构的研究将迎来新的发展阶段2. 新的理论和技术将进一步揭示DNA双螺旋结构的奥秘3. DNA双螺旋结构的发展将为生命科学领域带来更多的突破和创新4. 应用DNA双螺旋结构的相关技术将为人类社会带来更多的福祉和进步六、总结1. DNA双螺旋结构作为生物学领域的重要课题,其研究内容丰富多样,具有重要的理论和应用价值2. 对DNA双螺旋结构的深入研究有助于推动生命科学领域的发展,为人类社会的进步做出贡献3. 期待未来对DNA双螺旋结构的研究能够取得更多的突破和进展,为人类社会带来更多的惊喜和收获。
七、DNA双螺旋结构的新进展1. 近年来,随着生物技术的飞速发展,对DNA双螺旋结构的研究迎来了新的进展。
沃森克里克dna双螺旋结构模型的要点

沃森克里克dna双螺旋结构模型的要点沃森克里克发现了DNA双螺旋结构模型,这一发现奠定了现代生物学的基础,而DNA的结构也成为了分子生物学的核心研究方向。
那么,沃森克里克的DNA双螺旋结构模型的要点是什么呢?下面就来介绍一下。
一、两个反平行的螺旋沃森克里克发现,DNA是由两个螺旋相反的链组成的。
这两个链在结构上是平行排列的,但在方向上却是相反的。
其中一个链的方向是从5'端到3'端,而另一个链的方向是从3'端到5'端。
这种链的形式让DNA具备了双螺旋的结构。
二、碱基对的不变性碱基对是DNA的基本组成单位,由adenine(A)和thymine(T)以及guanine(G)和cytosine(C)组成。
沃森克里克发现,A-T和G-C两对碱基对的比例是恒定的。
在DNA的双螺旋结构中,A总是与T相对应,而G总是与C对应。
这一发现对于DNA的复制及遗传信息的传递具有重要意义。
三、螺旋的孢节DNA的双螺旋结构上,碱基对通过氢键连接。
两条链相互缠绕形成了一个螺旋,而螺旋之间的连接点被称为孢节。
在孢节处,链并不是在交叉,而是在稍微分离的状态下相互连接,这种连结方式让复制DNA 时易于分离两条链。
四、基础的排列方式沃森克里克发现,DNA中碱基的排列方式是有规律的。
A总是放在T 的对面,而G总是放在C的对面。
在同一链中,碱基的排列方式是呈线性的,在不同链间则是对称的。
这种排列方式对于基因编码提供了重要的信息。
以上就是沃森克里克的DNA双螺旋结构模型的主要要点。
这个模型不但为基因编码提供了关键的信息,还在分子生物学与生物化学等领域提供了重要的指导思想,为人类的生命科学研究开创了新的篇章。
DNA右手双螺旋构造的基本要点

∙DNA右手双螺旋结构的基本要点?答:①DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,以右手螺旋方式绕同一公共轴盘。
②.两链以-脱氧核糖-磷酸-为骨架,在外侧;碱基垂直螺旋轴,居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; GC)③.螺旋直径为2nm;相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。
④DNA双螺旋结构稳定的因素:a.氢键维持双链横向稳定性;b.碱基堆积力维持双链纵向稳定性。
∙蛋白质的沉淀与变性的定义与方法?答:(1)蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀;(2)当天然蛋白质受物理或化学因素影响后,失去原有的生物活性,并且物理化学性质均以改变的作用称为蛋白质的变性。
(3)沉淀的方法:盐析法,有机溶剂沉淀法,等电点沉淀法,重金属盐沉淀法,生物碱试剂,加热变性沉淀法(4)变性方法:①物理因素:高温,紫外线,X射线,超声波,高压,剧烈的搅拌,震荡②化学因素:强酸和强碱,尿素和胍盐,,去污剂,浓乙醇,重金属盐和三氯乙酸。
∙酶的诱导契合学说?答:酶对于它所作用的底物有着严格的选择,只能催化一定结构或者一些结构近似的化合物,使这些化合物发生生物化学反应。
有的科学家提出,酶和底物结合时,底物的结构和酶的活动中心的结构十分吻合,就好像一把钥匙配一把锁一样。
酶的这种互补形状,使酶只能与对应的化合物契合,从而排斥了那些形状、大小不适合的化合物,这就是“锁钥学说”。
∙为什么说TCA循环式连接糖代谢,脂代谢和氨基酸代谢的枢纽?答:因为三羧酸循环中很多的中间体都可成为其他反应的起始物质或中间物质糖代谢的3-磷酸甘油酸和磷酸二羟丙酮是糖酵解中的果糖-1,6-二磷酸的裂解的产物脂代谢中每脱去2个皆可以产生一个乙酰CoA和一个FADH2 一个NADH 这些都可以进入TCA或者氧化磷酸化产生能量氨基酸代谢中谷氨酸脱去氨基的中间体α-酮戊二酸也存在于TCA中。
∙生物氧化的特点和方式是什么?答:特点:常温、酶催化、多步反应、能量逐步释放、放出的能量贮存于特殊化合物。
dna双螺旋结构模型的要点及意义

dna双螺旋结构模型的要点及意义
DNA双螺旋结构模型的要点包括以下几点:
1、主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成,主链有二条,它们似“麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。
主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。
2、碱基对(base pair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。
同一平面的碱基在二条主链间形成碱基对。
配对碱基总是A与T和G与C。
碱基对以氢键维系,A与T 间形成两个氢键。
3、大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。
小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。
这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。
在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。
4、结构主要参数:螺旋直径2nm;螺旋周期时间包括10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
此外,DNA双螺旋结构模型的意义在于揭示了DNA分子的结构特点和遗传信息存储方式,为进一步研究DNA的复制、转录和表达奠定了基础,并促进了基因工程、生物技术和其他相关领域的发展。
同时,该模型也为其他复杂生物分子结构和功能的探索提供了启示和借鉴。
DNA双螺旋结构模型的要点

DNA双螺旋结构模型的要点
由两条碱基互补的、反向平行排列的脱氧多核苷酸单链组成,碱基互补的方式是A与T,C与G对应;两条互补链围绕一“主轴”向右盘旋形成双螺旋结构。
DNA 分子结构由4种碱基(A、T、G、C)的排列顺序决定储存遗传信息。
dna双螺旋结构模型的要点
(1)两条多核苷酸链以相反的平行缠结,依赖成对的碱基上的氢键结合形成双螺旋状,亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,两条链的碱基之间以氢键相结合,一条链的走向是5’到3’,另一条链的走向是3’到5’;
(2)碱基平面向内延伸,与双螺旋链成垂直状;
(3)向右旋,顺长轴方向每隔0.34nm有一个核苷酸,每隔3.4nm重复出现同一结构;
(4)A与T配对,其间距离1.11nm;G与C配对,
其间距离为1.08nm,两者距离几乎相等,以便保持链间距离相等;
(5)在结构上有深沟和浅沟;
(6)DNA双螺旋结构稳定的维系横向稳定靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性递积力维持。
dna双螺旋结构模型的要点

dna双螺旋结构模型的要点DNA双螺旋结构模型是由詹姆斯·沃森和弗朗西斯·克里克于1953年提出的。
他们的发现是当代生物学史上的重大突破,对于遗传信息的传递和维持起了关键作用。
以下是DNA双螺旋结构模型的要点:1. DNA是脱氧核糖核酸(Deoxyribonucleic Acid)的缩写,由磷酸基团、脱氧核糖糖分子和四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟腺嘧啶)组成。
2. DNA的双螺旋结构由两根相互缠绕的链组成,两条链以氢键相互连接。
这两条链通过碱基之间的互补配对形成。
腺嘌呤与鸟嘌呤之间形成三个氢键,胸腺嘧啶与鸟腺嘧啶之间形成两个氢键。
3. DNA的两条链是反向的,即一个链的5'末端与另一个链的3'末端相连。
这种反向排列使得DNA分子能够稳定地保存遗传信息,并在复制过程中减少错误。
4. DNA的结构有规则的直径和螺距。
直径为20埃,螺距为34埃,即相邻两个碱基之间的垂直距离。
5. DNA的双螺旋结构具有不对称性,即在一个链上的碱基序列完全可以确定另一个链上的序列。
这种互补配对意味着DNA的复制是半保留的,即每条新的DNA分子都包含了一个原有链和一个新合成出的链。
6. DNA的双螺旋结构是稳定的,不易被外界因素破坏。
DNA能够包裹在具有抗腐蚀性的蛋白质(称为组蛋白)中,进一步保护其结构和功能。
7. DNA的双螺旋结构具有很高的信息密度,碱基的排列顺序决定了遗传信息的编码。
通过DNA的转录和翻译,遗传信息可以被转化为蛋白质,从而决定了生物的特征和功能。
8. DNA双螺旋结构模型的提出使得我们能够更好地理解遗传信息的传递和变异。
这一发现为后续的基因工程、遗传学研究和生物技术的发展提供了坚实的基础。
9. DNA双螺旋结构模型的发现被认为是20世纪最重要的科学突破之一,沃森和克里克因此获得了1962年的诺贝尔生理学或医学奖。
总结来说,DNA双螺旋结构模型的要点包括:DNA由磷酸基团、脱氧核糖糖分子和四种碱基组成;两条链以氢键互相连接,并通过互补配对形成双螺旋结构;DNA是稳定的且具有高信息密度;双螺旋结构为遗传信息的传递和变异提供了基础。
科二生化简答题及名词解释

5 名词解释 增色效应:DNA变性后在260nm处的紫外光吸收增加的效应称为增色效应 减色效应:DNA复性后在260nm处的紫外光吸收减少的效应称为减色效应 第三章 名词解释 蛋白质一级结构:蛋白质分子中氨基酸的排列顺序就是蛋白质的一级结构 蛋白质二级结构:指具有一定程序规则氢键结构的多肽链主链的空间排布,而不涉及侧链的构象 等电点 氨基酸等电点:在某一特定的PH条件下,氨基酸分子在溶液中解离成阳离子和阴离子的数目和趋势相等,即氨基酸分子所带静电荷为零,在电场中级既不向阴极也不向阳极移动,这是氨基酸所处溶液的PH即为该氨基酸的等电点。 蛋白质等电点:当溶液在某一特定的PH时,使蛋白质多所带的正负电荷恰好相等,即静电荷为零,这时溶液的PH称为该蛋白质的等电点。 1在下述条件下计算含有45个氨基酸残基肽链的长度(以nm为单位) (1)70%为a螺旋,10%为平行式B折叠,20%为线性。(2)全部为a螺旋。 ①(45*70%/3.6)*0.54+(45*10%/2-1)*0.132+(45*20%-1)0.132=5.496 ②(45/3.6)*0.54nm=6.75 2已知:(1)卵清蛋白pI为4.6;(2)B乳球蛋白pI为5.2;(3)糜蛋白酶原pI为9.1。问在PH5.2时上述蛋白质在电场中向阳极移动、向阴极移动还是不移动? a 向阳极移动 因为PI<5.2,所以蛋白质带负电荷,在电场中向阳极移动。 b 不移动 因为PI=5.2 c向阴极移动 因为PI>5.2,所以蛋白质带正电荷,在电场中向阴极移动。 3什么叫蛋白质的变性?哪些因素可以引起变性?蛋白质变性后有何性质和结构上的改变?蛋白质的变性有何实际应用? 蛋白质变性指天然蛋白质因受某些物理或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理化学性质和生物活性改变的作用 影响因素 物理因素:加热、紫外线、X射线、超声波、剧烈震荡、搅拌等 化学因素:强酸、强碱、脲,胍,重金属盐,三氯乙酸,磷钨酸,浓乙醇等 物理性质的改变:黏度增加、溶解度减少、旋光值改变、渗透压和扩散速度降低。 化学性质的改变:容易被酶水解。生物活性改变:活性降低或完全丧失 结构改变:由于二级结构以上的高级结构破坏,由有序的紧密结构变成无序的松散结构,侧链基因暴露。变性可涉及次级键和与二硫键的变化,但不涉及肽键的断裂。 蛋白质变性的应用:做豆腐利用蛋白质变性的原理,将大豆蛋白质的浓溶液加热加盐而成变性蛋白凝固体即豆腐。医疗上的消毒杀菌是利用了蛋白质变性而使病菌失活。在急救重金属盐中毒患者时,可给患者饮用大量牛乳或蛋清,其
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dna双螺旋结构模型要点
DNA双螺旋结构模型要点
DNA(脱氧核糖核酸)是构成生物体遗传信息的基本分子。
在1953年,詹姆斯·沃森和弗朗西斯·克里克提出了DNA的双螺旋结构模型,这一理论奠定了现代生物学的基础。
本文将重点介绍DNA 双螺旋结构模型的要点。
1. DNA的构成
DNA由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)、糖(脱氧核糖)和磷酸组成。
碱基通过氢键连接到一起,形成了DNA的两条链。
2. DNA的双螺旋结构
DNA的双螺旋结构由两条互相缠绕的链组成,形成了一个螺旋形的结构。
这两条链以反向方向排列,即一个链的5'末端与另一个链的3'末端相对应。
3. 碱基配对规则
在DNA的双螺旋结构中,碱基之间通过氢键进行配对。
腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间则形成三个氢键。
这种碱基之间的特定配对规则保证了DNA 的稳定性和准确复制。
4. 主链和侧链
DNA的双螺旋结构由主链和侧链组成。
主链是由磷酸和糖组成的连续链,而侧链则是由碱基组成的。
主链和侧链之间通过磷酸二酯键连接在一起。
5. 螺旋的方向
DNA的双螺旋结构呈右旋构象,即从螺旋顶端向下观察,顺时针旋转。
6. DNA的稳定性
DNA的双螺旋结构具有很强的稳定性。
碱基配对的氢键和磷酸二酯键的共价键能够保持DNA的结构稳定,并且能够抵抗外部的力量和化学反应。
7. DNA的复制
DNA的双螺旋结构在细胞分裂过程中起着重要的作用。
每一条DNA链可以作为模板,通过碱基配对规则,合成一个新的DNA链。
这个过程被称为DNA复制,是细胞遗传信息传递的基础。
8. DNA的功能
DNA不仅仅是遗传信息的载体,还参与了多种生物过程。
DNA中的基因编码了蛋白质的合成,控制了细胞的生长和分化。
此外,DNA还参与了DNA修复、基因表达调控等重要生物过程。
9. DNA的结构研究方法
研究DNA结构的方法主要包括X射线晶体衍射、核磁共振等。
这些方法使得科学家们能够更加深入地了解DNA的双螺旋结构,揭示了DNA在生物学中的重要性。
总结起来,DNA的双螺旋结构模型是对DNA分子结构的重要描述,它的发现对于理解生物遗传和进化机制具有重要意义。
通过研究DNA的双螺旋结构,科学家们不断深入探索DNA的功能及其与生命活动的关系,为生物学领域的发展做出了巨大贡献。