人教版数学高一-必修一训练2.对数(教师版)
高中数学人教A版必修一练习:2.2.1 对数与对数运算 第二课时 对数的运算.doc

第二课时对数的运算【选题明细表】1.已知log545=a,则log53等于( D )(A)(B)(C)(D)解析:因为log545=log5(5×9)=log55+log59=1+log532=1+2log53=a,所以log53=.故选D.2.化简+log2,得( B )(A)2 (B)2-2log23(C)-2 (D)2log23-2解析:==2-log23,所以原式=2-log23+log23-1=2-2log23.3.已知lg 2=a,lg 3=b,则log36等于( B )(A)(B)(C)(D)解析:log36===,故选B.4.(2018·曲阜市高一期中)如果lg 2=m,lg 3=n,则等于( C )(A)(B)(C)(D)解析:因为lg 2=m,lg 3=n,所以===.故选C.5.若lg x=m,lg y=n,则lg -lg()2的值为( D )(A)m-2n-2 (B)m-2n-1(C)m-2n+1 (D)m-2n+2解析:因为lg x=m,lg y=n,所以lg -lg()2=lg x-2lg y+2=m-2n+2.故选D.6.已知3a=5b=A,若+=2,则A= .解析:因为3a=5b=A>0,所以a=log3A,b=log5A.由+=log A3+log A5=log A15=2,得A2=15,A=.答案:7.已知log23=t,则log4854= (用t表示).解析:log23=t,则log4854===.答案:8.解下列关于x的方程:(1)lg=lg(x-1);(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).解:(1)原方程等价于解之得x=2.经检验x=2是原方程的解,所以原方程的解为x=2.(2)原方程可化为log4(3-x)-log4(3+x)=log4(1-x)-log4(2x+1).即log4=log4.整理得=,解之得x=7或x=0.当x=7时,3-x<0,不满足真数大于0的条件,故舍去. x=0满足,所以原方程的解为x=0.9.(2018·金华高一期末)如果lg x=lg a+3lg b-5lg c,那么( C )(A)x=a+3b-c (B)x=(C)x=(D)x=a+b3-c3解析:因为lg x=lg a+3lg b-5lg c=lg a+lg b3-lg c5=lg,所以x=.故选C.10.地震的震级R与地震释放的能量E的关系为R=(lg E-11.4).A地地震级别为9.0级,B地地震级别为8.0级,那么A地地震的能量是B 地地震能量的倍.解析:由R=(lg E-11.4),得R+11.4=lg E,故E=1.设A地和B地地震能量分别为E1,E2,则==1=10.即A地地震的能量是B地地震能量的10倍.答案:1011.已知a,b,c是△ABC的三边,并且关于x的二次方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,试判断△ABC的形状.解:由题意知Δ=0,即(-2)2-4[lg(c2-b2)-2lg a+1]=0,2lg a-lg(c2-b2)=0,lg =0,=1,a2+b2=c2,故△ABC是直角三角形.12.求值:(1)2log2-lg 2-lg 5+;(2)lg 14-2lg+lg 7-lg 18;(3)计算:.解:(1)2log2-lg 2-lg 5+=2×-lg 10+()=1-1+=.(2)lg 14-2lg+lg 7-lg 18=lg[14÷()2×7÷18]=lg 1=0.(3)分子=lg 5(3+3lg 2)+3(lg 2)2=3lg 5+3lg 2(lg 5+ lg 2)=3,分母=(lg 6+2)-lg 6+1=3,所以原式=1.13.燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2(单位:m/s),其中Q表示燕子的耗氧量.(1)燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题意知,当燕子静止时,它的速度v=0,代入题中所给公式可得0=5log2,解得Q=10.故燕子静止时的耗氧量是10个单位.(2)将耗氧量Q=80代入题中所给公式,得v=5log2=5log28=15(m/s).故当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.。
人教版高一数学必修一对数运算及对数习题课(附答案解析可下载)

对数运算及对数函数习题课基础巩固1. 36log 3log 22+的值为( )A .1B .12C .12- D .-12.函数()1lg +=x y 的图象大致是( )3.函数()()x x f 2log 2=的图象可由x y 2log =的图象经下列哪种变换而得到() A .向左平移1个单位 B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位4.函数()()x x x f ++=1lg 2是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数5.已知0>a ,9432=a ,则a 32log 等于( )A .2B .3C .4D .56.函数()1log 12+=-x y 的值域为( )A .RB .(0,+∞)C .(-∞,0)∪(0,+∞)D .(-∞,1)∪(0,+∞)7.函数()x x f ln =的单调递减区间是 .8.若函数()()1log 22++=ax x x f 为偶函数,则=a .9.已知()x xx f -+=11lg ,x ∈(-1,1),若()21=a f ,则f (-a )= .10.已知f (x )=log 3x.(1)作出函数f (x )的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.能力提升1.函数y=2+log 2x (x ≥2)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)★2.函数y=lg xx 的图象大致是( )3.若函数()()⎩⎨⎧≥<--=1,log 1,43x x x a x a x f a 在(-∞,+∞)内为增函数,则a 的取值范围是() A .(1,+∞) B .(-∞,3) C .⎪⎭⎫⎝⎛3,53 D .(1,3)4.lg 32lg 21lg 6lg 5+-=- .5.已知函数()⎪⎪⎩⎪⎪⎨⎧≥<+-=21,log 21,2x x x a x x f 的最小值为1-,则a 的取值范围是 . 6.函数f (x )=log 2(x 2-1)-log 2(x+1)在x ∈[3,5]上的值域为 .★7.已知实数x 满足-3≤12log x ≤-,求函数⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=4log 2log 22x x y 的值域.★8.已知函数f (x )=1log 1amx x --(a>0,且a ≠1,m ≠1)是奇函数. (1)求实数m 的值;(2)探究函数f (x )在(1,+∞)内的单调性.参考答案一、基础巩固1.解析:原式=212log 363log 22==⎪⎪⎭⎫ ⎝⎛⨯. 答案:B.2.解析:函数()1lg +=x y 的图象可看作是x y lg =的图象向左平移1个单位长度得到的. 答案: C.3.解析:∵()()x x x x f 2222log 1log 2log 2log +=+==,∴ x y 2log =的图象向上平移1个单位可得到()x x f 2log 1+=的图象.答案:C.4.解析:∵x x x -≥>+221 ∴ 012>++x x 恒成立. ∴()x f 的定义域为R.又()()()x f x x x x x x x f -=++=++=-+=-11lg 11lg 1lg 222∴()x f 为奇函数.答案:A.5.解析:∵9432=a , 0>a ,∴3233294⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=a . ∴ 3log 32=a . 答案:B.6.解析:∵ 11111≠+=+-x x ,∴ ()01log 1log 212=≠+=-x y ,∴所求值域为()()+∞∞-,00, . 答案:C。
高中数学第二章对数函数2.2.1对数与对数运算第2课时对数的运算练习(含解析)新人教版

第二课时对数的运算1.下列等式成立的是( C )(A)log2(8-4)=log28-log24(B)=log2(C)log28=3log22(D)log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.2.对于a>0且a≠1,下列说法中正确的是( C )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.(A)①③ (B)②④ (C)② (D)①②③④解析:①中当M=N≤0时,log a M,log a N都没有意义,故不正确;②正确;③中当M,N互为相反数且不为0时,也有log a M2=log a N2,此时M≠N,不正确;④中当M=N=0时,log a M2,log a N2都没有意义,故不正确.综上知选C.3.若lg m=b-lg n,则m等于( D )(A)(B)10bm(C)b-10n (D)解析:由题知lg m+lg n=b,即lg(mn)=b,解得10b=mn,所以m=.故选D.4.设lg 2=a,lg 3=b,则log512等于( C )(A) (B) (C)(D)解析:log512=====.故选C.5.设a,b,c都是正数,且3a=4b=6c,则( B )(A)=+(B)=+(C)=+(D)=+解析:设3a=4b=6c=t,则a=log 3t,b=log 4t,c=log 6t.所以=log t 3,=log t 4,=log t 6.所以+=log t 9+log t 4=2log t 6=.选B. 6.已知log 32=a,3b=5,则log 3由a,b 表示为( A )(A)(a+b+1) (B)(a+b)+1(C)(a+b+1) (D)a+b+1 解析:由3b=5得b=log 35,所以log 3=log 330=(log 33+log 32+log 35)=(1+a+b).故选A.7.若x 1,x 2是方程(lg x)2+(lg 2+lg 3)·lg x+lg 2·lg 3=0的两根,则x 1x 2等于( C ) (A)lg 2+lg 3 (B)lg 2·lg 3(C) (D)-6解析:由题知lg x 1+lg x 2=-(lg 2+lg 3)=-lg 6,则lg(x 1x 2)=-lg 6=lg ,故x 1x 2=,选C.8.已知x,y,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m 的值为( B )(A) (B)60 (C) (D)解析:log m (xyz)=log m x+log m y+log m z=,而log m x=,log m y=,故log m z=-log m x-log m y=--=,即log z m=60.故选B.9.已知2lg(x+y)=lg 2x+lg 2y,则= .解析:因为2lg(x+y)=lg 2x+lg 2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,即(x-y)2=0.所以x=y,所以=1.答案:110.已知log34·log48·log8m=log416,则m= .解析:由题知··=log416=log442=2,所以=2,即lg m=2lg 3=lg 9,所以m=9.答案:911.已知=(a>0),则lo a= .解析:因为=(a>0),所以=,所以a=()3,故lo a=lo()3=3.答案:312.若lg a,lg b是方程2x2-4x+1=0的两根,则(lg)2= .解析:由题知则(lg)2=(lg a-lg b)2=(lg a+lg b)2-4lg a·lg b=22-4×=2.答案:213.求下列各式的值:(1)4lg 2+3lg 5-lg;(2)log220-log25+log23·log34;(3);(4)已知log189=a,18b=5,用a,b表示log3645的值.解:(1)原式=4lg 2+3lg 5+lg 5=4lg 2+4lg 5=4.(2)原式=log2+log23·=log24+log24=2log24=4.(3)原式====.(4)因为log189=a,18b=5,所以log185=b,于是log3645======.14.解下列关于x的方程:(1)lg=lg(x-1);(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).解:(1)原方程等价于解之得x=2.经检验x=2是原方程的解,所以原方程的解为x=2.(2)原方程可化为log4(3-x)-log4(3+x)=log4(1-x)-log4(2x+1).即log4=log4.整理得=,解之得x=7或x=0.当x=7时,3-x<0,不满足真数大于0的条件,故舍去.x=0满足,所以原方程的解为x=0.15.已知二次函数f(x)=(lg a)x2+2x+4lg a的最小值为3,求(log a5)2+log a2·log a50的值. 解:因为f(x)=(lg a)x2+2x+4lg a存在最小值3,所以lg a>0,f(x)min=f(-)=4lg a-=3,即4(lg a)2-3lg a-1=0,则lg a=1,所以a=10,所以(log a5)2+log a2·log a50=(lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+1)=(lg 5)2+lg 2lg 5+lg 2=lg 5(lg 2+lg 5)+lg 2=lg 5+lg 2=1.16.若2.5x=1 000,0.25y=1 000,则-等于( A )(A)(B)3(C)-(D)-3解析:因为x=log2.51 000,y=log0.251 000,所以==log1 0002.5,同理=log1 0000.25,所以-=log1 0002.5-log1 0000.25=log1 00010==.故选A.17.已知log2x=log3y=log5z<0,则,,的大小排序为( A )(A)<<(B)<<(C)<<(D)<<解析:x,y,z为正实数,且log2x=log3y=log5z<0,所以=2k-1,=3k-1,=5k-1,可得,=21-k>1,=31-k>1,=51-k>1.即1-k>0,因为函数f(x)=x1-k单调递增,所以<<.故选A.18.已知log a x=2,log b x=3,log c x=6,则log(abc)x的值为.解析:因为log a x=2,log b x=3,log c x=6,则a2=x,b3=x,c6=x,所以a=,b=,c=,所以abc==x,所以log(abc)x=log x x=1.答案:119.下列给出了x与10x的七组近似对应值:第组解析:由指数式与对数式的互化可知,10x=N⇔x=lg N,所以第一组、第三组对应值正确.又显然第六组正确,因为lg 8=3lg 2=3×0.301 03=0.903 09,所以第五组对应值正确.因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,所以第四组、第七组对应值正确.所以只有第二组错误.答案:二20.若a,b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(log a b+log b a)的值.解:原方程可化为2(lg x)2-4lg x+1=0.设t=lg x,则方程化为2t2-4t+1=0,所以t1+t2=2,t1·t2=.又因为a,b是方程2(lg x)2-lg x4+1=0的两个实根,所以t1=lg a,t2=lg b,即lg a+lg b=2,lg a·lg b=.所以lg(ab)·(log a b+log b a)=(lg a+lg b)·(+)=(lg a+ lg b)·=(lg a+lg b)·=2×=12,即lg(ab)·(log a b+log b a)=12.。
高一数学第一学期必修一第三章第2节:对数与对数函数_教师版

一、以考查知识为主试题【容易题】1.(09·江西理)函数y=ln(x+1)-x2-3x+4的定义域为()A.(-4,-1) B.(-4,1)C.(-1,1) D.(-1,1][答案] C2.下列各式中不正确的是()[答案] D3.log23·log34·log45·log56·log67·log78=()A.1B.2C.3D.4[答案] C4.三个数60.7,0.76,log0.76的大小顺序是()A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7[答案] D5.设log(a-1)(2x-1)>log(a-1)(x-1),则()A.x>1,a>2 B.x>1,a>1C.x>0,a>2 D.x<0,1<a<2[答案] A6.若函数y=log(a2-1)x在区间(0,1)内的函数值恒为正数,则a的取值范围是() A.|a|>1 B.|a|> 2C.|a|< 2 D.1<|a|< 2[答案] D7.函数y=log2x+的定义域是()A.(0,+∞) B.(1,+∞)C.(0,1) D.{1}[答案] D8.给出函数f (x )=⎩⎪⎨⎪⎧(12)x (当x ≥4时)f (x +1) (当x <4时),则f (log 23)=( )A .-238B.111C.119D.124[答案] D9.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∪B =( )A .{y |0<y <12}B .{y |y >0}C .∅D .R[答案] B10.(2010·湖北文,5)函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)[答案] A11.已知5lg x =25,则x =________,已知log x 8=32,则x =________.[答案] 100;412.设log 89=a ,log 35=b ,则lg2=________.[答案]22+3ab13.光线每透过一块玻璃板,其强度要减弱110,要使光线减弱到原来的13以下,至少要这样的玻璃板______块(lg3=0.4771).[答案] 1114.若log 0.2x >0,则x 的取值范围是________;若log x 3<0,则x 的取值范围是________. [答案] (0,1),(0,1) 二、以考查技能为主试题 【中等题】15.的值等于( )A .2+ 5B .2 5C .2+52D .1+52[答案] B16.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为________[答案]pp q17.已知lg(x +2y )+lg(x -y )=lg2+lg x +lg y ,求xy的值.答案x y =2.【较难题】18.如果方程lg 2x +(lg2+lg3)lg x +lg2·lg3=0的两根为x 1、x 2,那么x 1·x 2的值为______[答案] .1619.设x =,则x ∈( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)[答案] D20.我们知道,y =a x (a >0且a ≠1)与y =log a x (a >0且a ≠1)互为反函数.只要把其中一个进行指对互化.就可以得到它的反函数的解析式.任意一个函数y =f (x ),将x 用y 表示出来能否得到它的反函数?据函数的定义:对于自变量x 的每一个值y 都有唯一确定的值与之对应.如果存在反函数,应是对于y 的每一个值,x 都有唯一确定的值与之对应,据此探究下列函数是否存在反函数?若是,反函数是什么?若否,为什么?(1)y =2x +1; (2)y =x ;(3)y =x 2; (4)y =2x -1x +1.答案 (1) y =2x +1的反函数为y =12(x -1).(2)反函数为y =x 2(x ≥0). (3) y =x 2不存在反函数. (4)反函数为y =x +12-x (x ≠2).。
人教新课标版数学高一(必修1)练习2.2.1对数(第1课时)

§2.2 对数函数2.2.1 对数与对数运算第1课时 对 数一、基础过关1. 有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =lnx ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④2. (log 29)·(log 34)等于 ( )A.14B.12C .2D .4 3. 方程2log 3x =14的解是 ( ) A .x =19 B .x =33C .x = 3D .x =9 4. 若log a 5b =c ,则下列关系式中正确的是 ( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a5. 已知log 7[log 3(log 2x )]=0,那么x -12=________. 6. 若log 2(log x 9)=1,则x =________.7. (1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式:①log 68;②log 62;③log 26.8. 求下列各式中x 的取值范围:(1)log (x -1)(x +2);(2)log (x +3)(x +3).二、能力提升9. (12)-1+log 0.54的值为 ( ) A .6 B.72C .8 D.3710.若log a 3=m ,log a 5=n ,则a 2m +n 的值是 ( )A .15B .75C .45D .22511.已知lg a =2.431 0,lg b =1.431 0,则b a=______________. 12.计算下列各式:(1)10lg 3-10log 41+2log 26;(2)22+log 23+32-log 39.三、探究与拓展13.已知log a b =log b a (a >0,a ≠1;b >0,b ≠1),求证:a =b 或a =1b.答案1.C 2.D 3.A 4.A 5.246.3 7. 解 (1)①因为log 2x =-25, 所以x =2-25=582. ②因为log x 3=-13,所以x -13=3, 所以x =3-3=127. (2)①log 68=a .②由6a =8得6a =23,即6a 3=2, 所以log 62=a 3. ③由6a 3=2得23a =6,所以log 26=3a. 8. 解 (1)由题意知⎩⎪⎨⎪⎧ x +2>0,x -1>0,x -1≠1.解得x >1且x ≠2,故x 的取值范围是(1,2)∪(2,+∞).(2)由题意知⎩⎪⎨⎪⎧x +3>0x +3≠1,解得x >-3且x ≠-2. 故x 的取值范围是(-3,-2)∪(-2,+∞).9.C 10.C 11.11012.解 (1)10lg 3-10log 41+2log 26=3-0+6=9.(2)22+log 23+32-log 39=22×2log 23+323log 39=4×3+99=12+1=13. 13.证明 令log a b =log b a =t ,则a t =b ,b t =a ,∴(a t )t =a ,则at 2=a ,∴t 2=1,t =±1.当t=1时,a=b,当t=-1时,a=1,b所以a=b或a=1b。
人教新课标版数学高一-A版必修一课后训练 .2对数的运算

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升训练十九对数的运算(30分钟60分)一、选择题(每小题5分,共40分)1.(2017·大同高一检测)2log32-log3+log38的值为( )A. B.2 C.3 D.【解析】选B.原式=log322-log332+log39+log38=log34+log38-log332+2=log332-log332+2=2.【补偿训练】(2017·杭州高一检测)2log510+log50.25= ( ) A.0 B.1 C.2 D.4【解析】选C.2log510+log50.25=log5100+log50.25=log525=2.2.下列各式中正确的个数是( )①log a(b2-c2)=2log a b-2log a c;②(log a3)2=2log a3;③=lg5.A.0B.1C.2D.3【解析】选A.由对数的运算性质和换底公式知,它们均不正确.3.(2017·黑龙江高一检测)已知lg2=a,lg3=b,则log36等于( )A. B. C. D.【解析】选B.log36===.4.若log5·log36·log6x=2,则x等于( )A.9B.C.25D.【解题指南】利用对数的换底公式将原式中的对数转化为常用对数,再计算.【解析】选D.由换底公式,得··=2,所以-=2.所以lgx=-2lg5=lg.所以x=.5.声强级L I(单位:dB)由公式L I=10lg给出,其中I为声音强度(单位:W/m2).交响音乐会坐在铜管乐前的声音强度约为 5.01×10-2W/m2,则其声强级为(其中lg5.01≈0.7) ( )A.99dBB.100dBC.107dBD.109dB【解析】选 C.当I=5.01×10-2时,其声强级为L I=10lg=10lg(5.01×1010)=10(lg5.01+10)≈107(dB).6.(2017·大连高一检测)若lna,lnb是方程3x2-6x+2=0的两个根,则的值等于( )A. B. C.4 D.【解析】选A.由根与系数的关系,得lna+lnb=2,lna·lnb=,所以=(lna-lnb)2=(lna+lnb)2-4lna·lnb=22-4×=.7.(2017·北京高一检测)函数f(x)=log a x(a>0且a≠1),若f(x1x2…x n)=16,则f()+f()+…+f()的值等于( )A.2log216B.32C.16D.8【解析】选B.f(x)=log a x,f(x1x2…x n)=16,所以log a(x1x2…x n)=16,所以f()+f()+…+f()=log a+log a+…+log a=2(log a x1+log a x2+…+log a x n)=2log a(x1x2…x n)=32.8.(2017·武汉高一检测)已知2m=5n=10,则+= ( )A.0B.1C.2D.3【解析】选B.因为2m=5n=10,所以m=log210,n=log510,即=lg2,=lg5,故+=lg2+lg5=1.二、填空题(每小题5分,共10分)9.已知f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=________.【解析】因为f(ab)=1,所以lg(ab)=1,即lga+lgb=1,所以f(a2)+f(b2)=lga2+lgb2=2(lga+lgb)=2.答案:210.若lg3=a,lg5=b,那么lg=________.【解析】lg=lg4.5=lg=lg=(lg5+lg9-1)=(2a+b-1). 答案:三、解答题11.(10分)(2017·兰州高一检测)计算下列各式的值:(1)log535+2lo-log5-log514.(2)[(1-log63)2+log62·log618]÷log64.【解析】(1)原式=log535+log550-log514+2lo=log 5+lo2=log553-1=2.(2)原式=[(log66-log63)2+log62·log6(2×32)]÷log64 =÷log622=[(log62)2+(log62)2+2log62·log63]÷2log62=log62+log63=log6(2×3)=1.【能力挑战题】已知2lg(x+y)=lg2x+lg2y,则log2=________. 【解析】因为2lg(x+y)=lg2x+lg2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,所以(x-y)2=0,所以x=y,所以=1,所以log2=log21=0.答案:0关闭Word文档返回原板块。
高中数学 2.2.2对数与对数运算(二)练习 新人教A版必修1-新人教A版高一必修1数学试题

【金版学案】2015-2016高中数学 对数与对数运算(二)练习 新人教A 版必修1 基础梳理1.设a >0,a ≠1,M >0,N >0,则有(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和.(2)log a MN=log a M -log a N ,简记为:商的对数=对数的差.(3)log a M n =n log a M (n ∈R). 例如:①lg (3×5)=______;②lg 5+lg 2=______;③ln e 2=______.2.几点注意:(1)对数的真数是多项式时,需将真数部分加括号,如lg(x +y )与lg x +y 的含义不同.(2)(lg M )n 与lg M n 的含义不同.(3)log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的.(4)log 10(-10)2=2log 10(-10)是不成立的.(5)当心记忆错误:log a (MN )≠log a M ·log a N ;log a (M ±N )≠log a M ±log a N .3.对数的换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0).换底公式的意义是把一个对数式的底数改变,可将不同底问题化为同底,便于使用运算法则.例如:log 35=________,其中a >0,且a ≠1.4.关于对数换底公式的证明方法有很多,可借助指数式证明对数换底公式.例如:设a >0,且a ≠1;c >0,且c ≠1;b >0.求证:log a b =log c b log c a.5.设a ,b >0,且均不为1,由换底公式可加以求证:(1)log a b ·log b a =1;(2)log am b n =n mlog a b .例如:①log 23·log 32=____;②log 89=________ .基础梳理1.①lg 3+lg 5 ②1 ③2 3.log a 5log a 34.证明:设log a b =x ,则b =a x ,于是log c b =log c a x ,即x log c a =log c b ,∴x =log c b log c a ,∴log a b =log c b log c a. 5.证明:(1)log a b ·log b a =lg b lg a ·lg a lg b=1. (2)log am b n =lg b n lg a m =n lg b m lg a =n mlog a b . 答案:1 23log 23 ,思考应用1.log a (M +N )=log a (MN )对吗?1.错2.log a (M -N )=log a M N 对吗?2错 自测自评1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( ) A .0个 B .1个C .2个D .3个2.设9a =45,log 95=b ,则( )A .a =b +9B .a -b =1C .a =9bD .a ÷b =13.求值:log 274log 32=____. 1.解析:根据对数的性质知4个式子均不正确.故选A.答案:A2.解析:由9a =45得a =log 945=log 99+log 95=1+b ,即a -b =1,故选B. 答案:B3.解析:log 274log 32=lg 4lg 27lg 2lg 3=2lg 23lg 3lg 2lg 3=23. 答案:23►基础达标1.lg a 与lg b 互为相反数,则( )A .a +b =0B .a -b =0C .ab =1 D.a b=11.C2.在log (a -2)2中,a 的取值X 围是____________.2.(2,3)∪(3,+∞)3.已知log 5[log 4(log 3x )]=0,则x =____.3.814.化简12log 612-2log 62的结果为( ) A .6 2 B .12 2C .log 6 3 D.124.解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.故选C.答案:C5.(log 29)·(log 34)=( )A.14B.12C .2D .4 5.解析:原式=lg 9lg 2·lg 4lg 3=2lg 3·2lg 2lg 2·lg 3=4. 答案:D6.设lg 2=a ,lg 3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b 1-a6.解析:log 512=lg 12lg 5=lg 3+2lg 2lg 5=lg 3+2lg 21-lg 2= b +2a 1-a. 答案:C►巩固提高7.(lg 2)3+(lg 5)3+3lg 2 lg 5的值是( )A .4B .1C .6D .37.B8.(2014·某某卷)已知a =2-13,b =log 2,c =log 1213,则( ) A .a >b >c B .a >c >bC .c >a >bD .c >b >a8.解析:0<a =2-13<20=1,b =log 213<0,a =log 1213=log 23>1,所以c >a >b ,故选C.答案:C9.求值:(lg 2)2+lg 2·lg 50+lg 25.9.解析:(lg 2)2+lg 2·lg 50+lg 25=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2.10.求值:(log 32+log 92)·(log 43+log 83).10.解析:(log 32+log 92)·(log 43+log 83)=⎝⎛⎭⎪⎫log 32+log 32log 39·⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38 =32log 32·⎝ ⎛⎭⎪⎫12log 32+13log 32 =34+12=54.1.条件代数式的求值问题包括以下三个方面:①若条件简单,结论复杂,可从化简结论入手;②若条件复杂,结论简单,可从化简条件入手,转化成结论的形式;③若条件与结论的复杂程度相差无几时,可同时对它们进行化简,直到找出它们之间的联系为止.2.利用换底公式统一对数的底数,即化异为同是处理含不同底的对数的常用方法.3.在化简、求值、证明等问题中,要把换底公式与对数的运算性质结合起来.4.有时需将对数式log a 5log a 3写成log 35后解决有关问题.。
人教版新课标高中数学必修一:对数及其运算的练习题(附答案)

姓名_______ ___年___月__日 第___次课 §2.2.1 对数与对数运算一、课前准备(预习教材P 66~ P 69,找出疑惑之处;有问题:请找陈智林老师,q:1315161217) 1,。
对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。
) 由于N a b=>0故lo g a N 中N 必须大于0。
2.对数的运算性质及换底公式.如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)nm mn b a =log (3)log aM N= ;(4) log n a M = . (5) b a b a =log换底公式log a b = . (6) b aba=log (7)ba b a nn log 1log =考点一: 对数定义的应用例1:求下列各式中的x 的值; (1)23log27=x; (2)32log 2-=x ; (3)9127log =x (4)1621log =x 例2:求下列各式中x 的取值范围; (1))10(2log-x (2)22)x )1(log +-(x (3)21)-x )1(log (+x例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log3=x (2)6log 64-=x (3)9132-= (4)1641=x )( 考点二 对数的运算性质1.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-)0(),2()1(log )0(),4(2x x f x f x x ,则f(3)的值为__________2.计算下列各式的值: (1)245lg 8lg 344932lg 21+- (2)8.1lg 10lg 3lg 2lg -+ 3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值4.计算: (1))log log log582541252++()log log log 812542525++( (2)3473159725log log log log ∙∙+)5353(2log --+(3)求0.3252log4⎛⎫ ⎪ ⎪⎝⎭的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56. 随堂练习:1.9312-=⎪⎭⎫⎝⎛写成对数式,正确的是( ) 2.=34349log ( )A.7B.2C.32D.233.成立的条件yx xy 33)(3log log log +=( ) A.x>0,y>0 B.x>0,y<0 C.x<0.y>0 D.R y R x ∈∈, 4.,0,0,1,0>>≠>y x a a 若下列式子中正确的个数有( ) ①)(log log log y x a y a x a +=∙ ②)-(log log -log y x a y a x a = ③yax a y x alog log log÷= ④y a x a xy a log log log ∙=A.0B.1C.2D.3 5.已知0log)2(log 3log 7=⎥⎦⎤⎢⎣⎡x ,那么21-x =( )A.31 B.321 C.221 D.3316已知x f x =)10(,则f(5)=( )A.510B.105C.105logD.lg57.若16488443log log log log =∙∙m ,则m=( ) A.21 B.9 C.18 D.278.设638323log 2log ,log -=则a ,用a 表示的形式是( )A.a-2B.2)1(3a +-C.5a-2D.132-+-a a 9.设a 、b 、c 均为正实数,且c b a 643==,则有( )A.b a c 111+=B.b a c 112+=C.b a c 2111+=D.ba c 212+=10若方程05lg 7lg lg )5lg 7(lg )lg 2=∙+++x x (的两根为βα,,则βα∙=( ) A.5lg lg7∙ B.35lg C.35 D.351 二.填空题11.若4123log =x ,则x=________ 12.已知______)21(,)lo (2==f x g f x 则13.已知lg2=0.3010,lg3=0.4771,lgx=-2+0.7781,则x=_________ 三.选做题(三题中任选两道)14.已知lgx+lgy=2lg(x-2y),求yx2log 的值15.已知2014log 4)3(32-=x f x ,求f(2)+f(4)+f(8)+.....+)2(1007f 的值 16.设a 、b 、c 均为不等于1的正数,且0111,=++==zyxc b a z y x ,求abc 的值附答案: 考点一:例1:1,x=9 2,223=x 3,32-=x 4,x=-4例2:1,x>0; 2,21≠>x x 且 3,101-≠≠>x x x 且且例3:1,33)(=x , 2,646=-x 3,2log 913-= 4,x =1641log 考点二:1,-2 2,(1)21 (2)213,x:y=1:2或x:y=3:1(x>0,y>0)4, (1)13, (2)-1 (3)-21 (4)12+++a ab aab 随堂练习:一选择题:1B;2D;3A;4A;5C;6D;7B;8A;9C;10D(注意原方程的根为x,不是lgx,别弄错了) 二.填空题:11,91 12,2 13, 0.06三选做题:14, 4 15,2014 16,1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本栏目内容,在学生用书中以活页形式分册装订!)
一、选择题(每小题5分,共20分)
1.下列指数式与对数式互化不正确的一组是( )
A .100=1与lg 1=0
B .27-13=13与log 2713=-3
C .log 39=2与32=9
D .log 55=1与51=5 答案: B
2.在M =log (x -3)(x +1)中,要使式子有意义,x 的取值范围为( )
A .(-∞,3]
B .(3,4)∪(4,+∞)
C .(4,+∞)
D .(3,4) 解析: ⎩⎪⎨⎪⎧ x -3>0x -3≠1
x +1>0
,∴x >3且x ≠4. 答案: B
3.有以下四个结论:①lg(lg 10)=0;②lg(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )
A .①③
B .②④
C .①②
D .③④
解析: ①②正确,③④错误.
答案: C
4.设a =log 3 10,b =log 37,则3a -b =( )
A.107
B.710
C.1049
D.4910 解析: 由a =log 310,b =log 37得3a =10,3b =7,
∴3a -b =3a ÷3b =107
. 答案: A
二、填空题(每小题5分,共10分)
5.若ln(lg x )=0,则x =________.
解析: 由ln(lg x )=0得lg x =1,
∴x=10.
答案:10
6.对于a>0且a≠1,下列说法中正确的序号是________.
①若M=N,则log a M=log a N;
②若log a M=log a N,则M=N;
③若log a M2=log a N2,则M=N;
④若M=N,则log a M2=log a N2.
解析:①中若M、N<0,则不成立.②正确.③中M2=N2,但M=N不一定成立.④中,M=N=0时,
log a M2=log a N2不存在,故④错误.
答案:②
三、解答题(每小题10分,共20分)
7.求值:
(1)810.5log35;
(2)10lg 3-10log51+e ln 2.
解析:(1)原式=(34)0.5log35=32log35
=(3log35)2=52=25;
(2)原式=3-10×0+2=5.
8.已知lg 3=m,lg 5=n,求1003m-2n的值.
解析:∵lg 3=m,lg 5=n,
∴10m=3,10n=5.
∴1003m-2n=102(3m-2n)
=106m÷104n=106lg 3÷104lg 5
=(10lg 3)6÷(10lg 5)4=36÷54=729
625.
尖子生题库☆☆☆
9.(10分)求方程9x-6·3x-7=0的解.
解析:设3x=t(t>0),则原方程可化为t2-6t-7=0,
解得t=7或t=-1(舍去),
∴t=7,即3x=7.
∴x=log37.。