反馈控制电路

合集下载

反馈控制电路原理详解

反馈控制电路原理详解
采用先进控制策略
如鲁棒控制、自适应控制等,这些 控制策略能够自动适应系统参数变 化和外部扰动,提高系统稳定性。
04
频率响应与滤波器设计
BIG DATA EMPOWERS TO CREATE A NEW
ERA
频率响应概念及意义
频率响应定义
描述电路或系统对不同频率信号的放大或衰减特性。
意义
反映电路对不同频率信号的传递能力,是评价电路性 能的重要指标。
加强系统维护
定期对电路进行维护和保养,确保电路处于 良好状态,提高其抗干扰能力。
THANKS
感谢观看
02
来自外部环境的干扰,如电磁干扰、电源波动等,可能导致电
路误动作或性能下降。
传输噪声
03
信号在传输过程中受到干扰,如串扰、反射等,影响信号质量
和传输效率。
常见噪声抑制方法介绍
滤波技术
采用滤波器对电路中的噪声进行 滤除,如低通、高通、带通滤波 器等,可有效抑制特定频率范围
的噪声。
屏蔽技术
采用屏蔽罩、屏蔽线等措施,减 少外部电磁干扰对电路的影响。
应用
在通信、音频、图像处理等领域,需根据信号频率特 性选择合适的电路或系统。
滤波器类型选择依据
滤波器作用
允许某一部分频率的信号通过 ,同时抑制其他频率的信号。
通带与阻带
根据需要选择通带(允许通过 的频率范围)和阻带(被抑制 的频率范围)。
滤波器类型
如低通、高通、带通、带阻等 ,根据信号特性和应用需求选 择。
控制对象
被控制的物理量或系统,如温 度、压力、速度等。
比较元件
将测量元件输出的实际值与给 定值进行比较,产生误差信号。
执行元件
根据放大后的误差信号,驱动 控制对象改变其状态或行为。

通信电子线路第7章反馈控制电路

通信电子线路第7章反馈控制电路

04
CHAPTER
反馈控制电路的实现
反馈元件的选择与设计
反馈元件类型
01
根据电路需求选择合适的反馈元件,如电阻、电容、电感等。
反馈元件参数
02
根据电路性能要求,设计反馈元件的参数,如电阻值、电容值、
电感值等。
反馈元件布局
03
合理安排反馈元件在电路板上的位置,确保信号传输的稳定性
和减小干扰。
反馈控制电路的调试与优化
减小非线性失真
负反馈可以减小放大器内部的 非线性效应,减小输出信号的 非线性失真。
扩展放大器的频带宽度
负反馈可以扩展放大器的频带 宽度,使得放大器在更宽的频 率范围内具有稳定的性能。
提高放大器的输入阻抗和 共模抑制比
适当的负反馈可以增大放大器 的输入阻抗,减小信号源内阻 对放大器性能的影响,同时提 高共模抑制比,增强放大器抑 制共模干扰的能力。
电流负反馈
通过将输出电流的一部分反相后回输到输入端,从而对放 大器的净输入电流进行调节。电流负反馈具有稳定输出电 流、减小输入电阻的作用。
并联负反馈
反馈信号与输入信号并联,对输入电流进行调节。并联负 反馈具有减小输出电阻、提高电流增益的作用。
负反馈对放大器性能的影响
提高放大倍数的稳定性
负反馈可以减小放大倍数的温 度漂移和时间漂移,提高放大 倍数的稳定性。
音频设备
用于音响、麦克风等设备, 提高音质和音效。
02
CHAPTER
负反馈控制电路
负反馈的工作原理
负反馈的工作原理是通过将输出信号的一部分或全部反相后回输到输入端,从而对 放大器的净输入信号进行调节,达到稳定输出、改善性能的目的。
负反馈电路由放大器和反馈网络组成,其中反馈网络通常由电阻、电容、电感等元 件构成。

什么是电路的自动控制和反馈

什么是电路的自动控制和反馈

什么是电路的自动控制和反馈电路的自动控制和反馈电路的自动控制和反馈是指通过某种机制或技术手段,对电路中的信号、电流或电压等进行监测和调节,以实现电路的自动化运行和稳定性。

自动控制和反馈系统在许多电子设备和工业领域中都得到广泛应用,对于提高电路的性能和效率起着至关重要的作用。

一、什么是自动控制和反馈自动控制是指对电路的输入和输出进行实时监测,并根据设定的规则或条件,进行适当的调整和控制的过程。

它通常涉及到传感器、执行器和控制器等组件。

传感器负责感知电路的输入和输出信号,执行器用于对电路进行调节和控制,而控制器则负责根据传感器获取的信息,对执行器进行指令的发出。

反馈是指将电路输出的一部分信号重新引入到电路系统中,与输入信号进行比较,以实现对电路参数的监测和修正。

通过引入反馈,可以使电路在一定程度上自我纠正,从而提高电路的稳定性和可靠性。

同时,反馈还能够根据实际输出结果,调整电路的工作状态,以实现期望的控制效果。

二、自动控制和反馈的应用自动控制和反馈技术在各个领域都有广泛的应用,以下是几个常见的例子:1. 温度控制:在冰箱、空调等电器设备中,通过温度传感器监测室内温度情况,并根据设定的温度范围来自动调节制冷或制热效果,从而保持室内温度的稳定。

2. 水位控制:在水泵、水箱等设备中,通过水位传感器监测水位高低,并根据设定的水位范围来自动控制水泵的开关,以保持水位在合适的范围内。

3. 光照控制:在灯光系统中,通过光敏传感器感知光照情况,并根据实际需要,自动调节灯光的亮度和色温,以满足不同场景的照明需求。

4. 机械控制:在工业自动化领域中,通过传感器和执行器的组合,对机械设备的运动、速度、位置等参数进行监测和控制,以实现自动化生产线的运行。

5. 音频控制:在音频设备中,通过麦克风和扬声器等组件,对输入音频信号进行采集和处理,并根据实际输出效果进行反馈调节,以实现音频的清晰和音量的合适。

三、自动控制和反馈系统的优势自动控制和反馈系统的应用带来了许多优势,包括但不限于以下几点:1. 提高系统的稳定性和可靠性:通过自动调节和反馈机制,能够及时监测和修正电路的工作状态,以保持电路的稳定性和可靠性。

反馈电路的四种反馈类型

反馈电路的四种反馈类型

反馈电路的四种反馈类型反馈电路是一种控制电路,他能够改变控制电路的运行状态,使电路的控制变得更加精确和效率。

反馈电路主要由反馈元件和控制部件组成。

反馈元件通过控制部件,将控制信号返回给控制电路,使其能够按照相应的电路要求运行。

通常情况下,反馈电路的反馈类型可分为四种:补偿反馈、限制反馈、阻尼反馈和正反馈。

一、补偿反馈补偿反馈是最常见的反馈类型,它通过补偿电路,将反馈信号复位到电路的稳定阶段,使系统获得良好的稳态。

补偿反馈电路中,通常只能获得低电平信号,补偿信号可以是其他低电平信号或另外一个高电平信号,要根据系统不同而不同。

二、限制反馈限制反馈是补偿反馈的一种改进,它旨在准确控制一个系统的操作范围,使其能够更加精确的控制输出信号。

限制反馈可以分为正限制反馈和负限制反馈两种类型。

正限制反馈用于限制系统输出信号的最大值,而负限制反馈用于限制系统输出信号的最小值。

三、阻尼反馈阻尼反馈是使用滞后反馈信号来控制系统的运行状态,主要用于减少输出信号的波动和抑制输出的大峰值,使系统的输出信号更平稳。

四、正反馈正反馈也称为正向反馈或反馈强化,它是一种强大的反馈类型,它可以改变系统的控制状态,使其能够正确地运行。

正反馈可以通过加大反馈量程、增大反馈系数,以及修改反馈信号的滞后次数来改变系统的控制状态。

综上所述,反馈电路的反馈类型可以分为补偿反馈、限制反馈、阻尼反馈和正反馈四种,他们在不同的反馈电路中都有着独特的作用。

补偿反馈可以将系统复位到稳定阶段;限制反馈旨在准确控制系统的操作范围;阻尼反馈是使用滞后反馈信号来控制系统的运行状态;正反馈可以改变系统的控制状态,使系统正确运行。

以上就是反馈电路的四种反馈类型的主要内容,希望能够给大家带来帮助。

《高频反馈控制电路》课件

《高频反馈控制电路》课件
解决方案
为了解决非线性失真问题,可以采取一系列措施,如优化电路设计、减小信号幅度、选择合适的元件等。此外,在电路设计中考虑非线性抑制也是解决非线性失真问题的有效方法。
06
高频反馈控制电路的发展趋势与展望
新型高频反馈控制电路的研究方向:随着技术的不断发展,新型高频反馈控制电路的研究也在不断深入。目前的研究方向主要包括采用新型材料、优化电路设计、提高工作频率等方面。
详细描述
线性度是指高频反馈控制电路在一定工作范围内,输出与输入之间的线性关系。线性度好的电路,其输出与输入成比例关系,能够更好地实现信号的传输和处理。线性度对于保证信号的真实性和准确性至关重要,特别是在高精度和高稳定性的应用中。
VS
噪声性能是衡量高频反馈控制电路性能的重要指标之一,它反映了电路对噪声的抑制能力。
高频反馈控制电路的组成
输入阻抗
输入灵敏度
输入噪声
输入带宽
01
02
03
04
描述输入端对信号源的电阻抗特性,影响信号源的输出电压。
输入电压变化与输入电流变化的比值,表示电路对微弱信号的响应能力。
输入端产生的随机电信号,影响电路性能和稳定性。
输入部分对信号频率的响应范围,限制了电路处理信号的频率范围。
总结词
带宽增益乘积是指高频反馈控制电路在一定带宽内的增益与工作频率的乘积。该指标用于评估电路在不同频率下的增益表现,是衡量电路性能的重要参数。在高频应用中,带宽增益乘积的大小直接影响到电路的动态响应和信号处理能力。
详细描述
总结词
线性度是衡量高频反馈控制电路性能的重要指标,它反映了电路输出与输入之间的关系。
详细描述
噪声性能是指高频反馈控制电路在工作过程中,对内部和外部噪声的抑制能力。噪声性能好的电路能够有效抑制噪声干扰,提高信号的信噪比,从而保证信号传输和处理的准确性。噪声性能对于高频反馈控制电路的可靠性和稳定性具有重要影响。

反馈 控制电路

反馈 控制电路
自动增益控制电路是一种在输入信号幅值变化很大的情况下.通 过调节可控增益放大器的增益.使输出信号幅值基本恒定或在较小范 围内变化的一种电路.其组成框图如图6-5所示。
6.2.2自动增益控制电路的应用
图6-6所示是具有简单的AGC电路的超外差式收音机的框图。天 线收到的信号经过放大、变频再放大后.进行检波.取出音频信号。此 音频信号的大小将随着输入信号强弱的变化而变化。
第6章反馈控制电路
6.1概述 6.2自动增益控制电路 .3自动频率控制电路 6.4自动相位控制环路 6.5反馈控制电路的制作、调试和检测
6.1概述
6 .1.1自动振幅控制原理
自动振幅控制电路通常称为自动增益控制电路。它主要用于接 收机中.使整机在输入振幅变化时保持输出电压振幅不变。自动振幅 控制电路的被控量是电压振幅.在反馈控制器中必须进行振幅比较.利 用误差量去对输出振幅进行调整。图6-2所示是自动振幅控制电路组 成方框图.可控增益放大器是环路的被控对象.它的输入量ui(不是控制 环路的输入量uR)与输出量uo的关系是
第一节 儿童律动、歌表演、集体舞的创编
三、儿童集体舞 集体舞是一种有多数人表演的舞蹈,是在短小歌曲和乐曲的 伴奏下,按照一定的位置队形,做共同或不同的舞蹈动作的 舞蹈形式,舞蹈时力求动作和谐一致。集体舞的形式通常是 单圈或双圈,也有多圈或三人一组、四人一组。集体舞主要 是培养儿童在音乐伴奏下改换队形,动作整齐协调及表现统 一思想感情的能力,有利于培养儿童集体主义观念。 集体舞是幼儿园舞蹈教学的主要形式之一,具有一定的灵活 性。表演时人数可多可少,通常以班级或小组为单位进行, 或有指定的队形和规定的位置。由于舞蹈动作能够引起儿童 的学习兴趣和情绪,且全体儿童都能有机会参加表演,所以 通过表演集体舞,每个儿童的表演能力都能从中得到发挥和 表现。

第9章反馈控制电路

第9章反馈控制电路
假设输出信号为:


v ( t ) V cos[ t ( t )] V cos[ ( t )] o om o 0 o om o
统一参考相位:一般两信号的频率是不同的。为了便于 比较,现统一以VCO 的自由振荡相位 o 0 t 为参考 输入信号相位可改写为:


( t ) ( ) t ( t ) t ( t ) 式中:1 i 0 o 0 i 0 i
vFM i
混频器
e
中频 放大器
低通 滤波器
kv
o
压控 振荡器
§6-2 自动相位控制电路(锁相环路PLL)
一、基本组成
鉴相器的输出信号vd(t) 是输入信号vi(t)和压控振荡器输出 信号vo(t)之间相位差的函数。 vd(t)经环路滤波器滤波(也可能包括放大),滤除高频分 量后,成为压控振荡器的控制电压vp(t) 。 在vp(t)的作用下,压控振荡器输出信号的频率将发生相应变 化并反馈到鉴相器。最后进入稳定状态。
( t ) t A v ( t ) dt t ( t )
t o o 0 o 0p o 0 2

时域模型:
v P (t ) v P (t )
Ao
Ao
1
2 (t )
p
2 (t )
p
4、PLL的相位数学模型与环路方程
原理方框图
1 (t )
( t ) ( t ) ( t ) e 1 2
PLL环路的非线性微分方程。
d ( t ) d ( t ) e 1 K H ( p ) sin ( t ) 0 P F e dt dt
d ( t ) d ( t ) e 1 K H ( p ) sin ( t ) 0 讨论: P F e dt dt

第8章反馈控制电路

第8章反馈控制电路

式中,τ1=(R1+R2)C, τ2=R2C,R1>> R2。与RC积分滤波器不 同的是,当频率很高时,F(jΩ)|Ω→∞=R2/(R1+R2)是电阻的分压 比,这就是滤波器的比例作用。
第8章 反馈控制电路
无源比例积分滤波器 的频率特性
从相频特性上看,当频率很高时有相位超前校正的作用, 可以 改善环路的稳定性。
提取检测信号,通过检波和直流放大,控制高频(或中频)放大 器的增益。
后置AGC: AGC处于解调以后,是从解调后提取检测信 号来控制高频(或中频)放大器的增益。
基带AGC: 整个AGC电路均在解调后的基带进行处理。基 带AGC可以用数字处理的方法完成。
第8章 反馈控制电路
三 AGC的性能指标
1. KV(可控放大器的增益):
y r时,应该减小振荡频率
因为此时uc 0,所以KC为负值
第8章 反馈控制电路
2.鉴频特性
斜率为Kd
第8章 反馈控制电路
3.无偏差的AFC特性 假设低通滤波器的传 输系数为1,即误差电 压等于控制电压
y0 r时
第8章 反馈控制电路
4.有偏差的AFC特性
y0 r时
稳定频差:
1 Kd Kc
ωy=ωy0+Kcuc 其中ωy0是控制信号uc=0时的振荡角频率,称为VCO的固有振 荡角频率,Kc是压控灵敏度。
注意:环路锁定时,ωy固定不变,但是不等于ωr,还有 剩余频差Δω=|ωy-ωr|,否则无控制信息。
第8章 反馈控制电路
二 AFC电路特性分析
1.VCO的压控特性 y y0 KCuc
说明:1。由于PD的存在,锁相环只对相位进行比较。 2。锁相环是靠剩余相差进行工作(无剩余频差) 3。系统为相位负反馈环路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 反馈控制电路
➢ 反馈控制是现实物理过程中的一个基本现象。反馈 控制方法的采用是为了准确地调整某一个系统或单 元的某些状态参数。
如采用反馈控制方法稳定放大器增益是反馈控制在 电子线路领域最典型的应用之一。
➢ 为稳定系统状态而采用的反馈控制系统是一个负反 馈系统。它由下图所示的三部分组成。
输 入 信 号
7.2.1
➢ 自动频率控制(AFC)电路由频率比较器、低通滤 波器和可控频率器件三部分组成,如图7―8所示。
➢ 频率比较器通常是鉴频器,参考频率ωr与鉴频器的 中心角频率ω0相等。
➢ 可控频率器件通常是压控振荡器(VCO),其输出振 荡角频率可写成
y y0kcuc
(7―3)
➢ 自动频率控制电路是利用误差信号的反馈作用来控 制被稳定的振荡器频率,使之稳定。误差信号是由 鉴频器产生的,它与鉴频器的两个输入信号频率差 成正比,显然达到最后稳定状态时,两个频率不可 能完全相等,必定存在剩余频差:y r 。
r r(s)
频 率 比 较 器ue 低 通 滤 波 器uc 可 控 频 率 器 件 r 输 出
Kp
U e(s)
H (s)
U c(s)
Kc
r(s) 信 号
图7―8 自动频率控制电路的组成
7.2.2 应用
自动频率微调电路(简称AFC电路)
➢ 图7―9是一个调频通信机的AFC系统的方框图。这里
是以固定中频fI作为鉴频器的中心频率,亦作为AFC
0
U im in
Uimax
Ui
图7―5 延迟AGC特性曲线
7.1.3 放大器的增益控制
➢由于高频放大器的谐振增益为:
Au0
p1 p2 Y fe g
(7-2)
从上式可知放大器的增益与晶体管的正向传输导纳
成正比,而 Y fe的大小与晶体管的工作点电流IQ有关。 因此,通过改变晶体管发射极电流IE,可以改变 , 从而Y f实e 现改变放大器的电压增益Au0。
鉴频
低放
f0 本振 (压 控 振 )
低通 滤波器
图7―9 调频通信机的AFC系统方框图
7.3 锁相环路 7.3.1 工作原理
锁相环PLL(Phase-Locked Loop)是一个相位负 反馈控制系统。它由鉴相器(Phase Detector,缩写 为PD)、环路滤波器(Loop Filter,缩写为LF)和电压 控制振荡器(Voltage Controlled Oscillator,缩写 为VCO)三个基本部件组成,如图7―10所示。
Uo
0 Ui
图7―4 简单AGC特性曲线
2.延迟AGC电路
➢ 在延迟AGC电路里有一个起控门限,即比较器
参考电压Ur,它对应的输入信号振幅Uimin,如图
7―5所示。
- 至信号 + 检波
VCC VD
延迟 电压
C1
R AGC电压 C
R1
图7―6 延迟AGC电路
Uo
U om ax U om i n
➢根据控制状态参数的不同,在高频电路中,反馈控制 电路可分为四类:
✓自动增益控制(AGC):调整输出电压振幅
✓自动功率控制(APC):调整功率放大器输出功率
✓自动频率控制(AFC):调整振荡信号的频率
✓自动相位控制(PLL):调整振荡信号的相位
主要内容
➢7.1 自动增益控制电路 ➢7.2 自动频率控制电路 ➢7.3 锁相环路 ➢7.4
7.1 自动增益控制电路
Ø具有AGC电路的接收机组成框图如下图所示。
高频 放大器
混频器
中频 至解调器 放大器
直流 放大器
AGC 检波器
ur
图7―2 具有AGC电路的接收机组成框图
7.1.1 工作原理
➢ 自动增益控制是用负反馈控制的方法动态地调整放 大器的增益,使得输入电压幅度在相当大的范围内 变化时,放大器输出电压振幅的平均值能基本保持 恒定。
➢晶体管的-特性曲线如图7-7所示。从曲线可知
AGC分正向AGC和反向AGC,相应的电路中AGC控
制电压应分别加在晶体管的基极和发射极,即可实现
放大器的增益控制。
Y fe
普通晶体管
反向AGC 正向AGC AGC电路
o
ห้องสมุดไป่ตู้
I EQ
IE
图7-7 晶体管 Y f e -IE特性曲线
7.2 自动频率控制电路
1.简单AGC
➢ 在简单AGC电路里,参考电平Ur=0。这样,只要输 入信号振幅Ui增加,AGC的作用就会使增益Kv减小,从 而使输出信号振幅Uo减小。图7―4为简单AGC的特性
曲线。
➢简单AGC电路的优点是线路简单,在实用电路中不 需要电压比较器;主要缺点是,一有外来信号,AGC 立即起作用,接收机的增益就受控制而减小,这对提 高接收机的灵敏度是不利的,尤其在外来信号很弱时。 故简单AGC电路适用于输入信号振幅较大的场合。
➢ 设输入信号振幅为Ui,输出信号振幅为Uo,可控增益放 大器增益为Kv(uc),它是控制电压uc的函数,则有
UoKv(uc)Ui
(7―1)
➢ 自动增益控制电路框图如图7-3所示。
图7―3 自动增益控制电路框图
7.1.2 自动增益控制电路
根据输入信号的类型、特点以及对控制的要求, AGC电路主要有以下几种类型。
ur(t) PD
参考信号
ud(t)
uc(t) LF
VCO
uo(t) 输出信号
图7―10 锁相环的基本构成
设参考信号为
u r(t) U rsin [rtr(t)]
(7―4)
若参考信号是未调载波时,则θr(t)=θr=常
数。设输出信号为
u o(t) U oc o s[o to(t)]
(7―5)
两信号之间的瞬时相差为 e ( t ) ( r t r ) ( 0 t 0 ( t ) ) ( r 0 ) t r 0 ( t ) (7―6)
系统的标准频率。 ➢ 当混频器输出差频 fIf0fs 不等于fI时,鉴频器即
有误差电压输出,通过低通滤波器,得到直流电压 输出,用来控制本振(压控振荡器),从而使f0改
变,直到 f I f I 减小到等于剩余频差为止。这固定
的剩余频差叫做剩余失谐。
fI=f|s-f0|
中 心 频率fI
fs
混频
中放 fI
误 差 信 号
控 制 信 号
输 出 信 号
比 较 器
处 理 机 构
执 行 机 构
X i
X e
X c
X o
X o
图7-1 反馈控制系统的组成
整个系统的功能就是使输出状态跟踪输入信号(基 准)或它的平均值的变化。控制过程总是使调整后的误 差以与起始误差相反的方向变化,结果逐渐减小绝对误 差,最终趋向于一个极限值。
相关文档
最新文档