圆锥曲线与方程椭圆双曲线抛物线章节综合检测专题练习(四)附答案人教版高中数学新高考指导
圆锥曲线与方程椭圆双曲线抛物线章节综合检测提升试卷(二)含答案人教版高中数学

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编新课标理)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )A .2B .22C .4D .82.(汇编福建文数)11.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A .2B .3 C.6D .83.(汇编辽宁理数) (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A) 2 (B)3 (C)312+ (D) 512+4.(汇编全国I 理(汇编)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( ) A .32B .62C .3D .65.(汇编)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43B .75C .85D .36.(汇编湖南理)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( )A .30ºB .45ºC .60ºD .90º7. (汇编)过双曲线1:222=-by x M 的左顶点A 作斜率为1的直线l , 若l 与双曲线M 的两条渐近线分别相交于点C B ,, 且||||BC AB =, 则双曲线M 的离心率是( )A . 10B .5C .310 D .25 8.(汇编)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .49.(1994全国2)如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)10.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 A.2 B.3C.4D. 5第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1,F 2的连线互相垂直,则△PF 1F 2的面积为 2412.已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________.13.已知(0,4),(3,2)A B -,抛物线28y x =上的点到直线AB 的最短距离为__ ▲ .14.设直线:l 220x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A ,B 两点,点P 是椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为_____________.15.在平面直角坐标系xOy 中,抛物线x y 42=的焦点为F ,准线为l ,A B ,是该抛物线上两动点,120=∠AFB ,M 是AB 中点,点1M 是点M 在l 上的射影.则ABMM 1的最大值为___________ .16.在ABC ∆中,60ACB ∠=,sin :sin 8:5A B =,则以,A B 为焦点且过点C 的椭圆的离心率为 ▲ . (江苏省盐城市汇编届高三年级第一次调研)713评卷人得分三、解答题17.(本小题满分15分)设椭圆22221(0)x y a b a b +=>>的左,右两个焦点分别为1F ,2F ,短轴的上端点为B ,短轴上的两个三等分点为P ,Q ,且12F PF Q 为正方形。
新人教版高中数学选修一第三单元《圆锥曲线的方程》检测(含答案解析)(4)

一、填空题1.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为______.2.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率13,23e ⎛⎫∈ ⎪⎪⎝⎭,则C 的长轴长的取值范围是_____________. 3.过椭圆()2222:10x y C a b a b+=>>的右焦点作x 轴的垂线,交椭圆C 于,A B 两点,直线l 过C 的左焦点和上顶点,若以AB 为直径的圆与l 存在公共点,则椭圆C 的离心率的取值范围是__________.4.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.5.在平面直角坐标系中,已知抛物线24y x =的准线与双曲线22221x y a b-=(0a >,0b >)的渐近线分别交于P ,Q 两点,若POQ △的内切圆半径为13,则双曲线的离心率为________.6.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P 为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.7.设12,F F 分别是椭圆2212516x y +=的左、右焦点,P 为椭圆上任一点,点M 的坐标为()6,4,则1PM PF +的最大值为________.8.在直角坐标平面内的△ABC 中,(2,0)A -、(2,0)C ,若sin sin 2sin A C B +=,则△ABC 面积的最大值为____________.9.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 分别为椭圆的左、右焦点,已知12F PF ∠=120°,且12||3||PF PF =,则椭圆的离心率为___________.10.已知1F 为双曲线()222210,0x y a b a b-=>>的左焦点,P 是双曲线右支上一点,线段1PF 与以该双曲线实轴为直径的圆相交于A ,B 两点,且1F A AB BP ==,则该双曲线的离心率为______.11.M 是抛物线24y x =上一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角60xFM ∠=︒,则||FM =______.12.已知直线y kx m =+与双曲线22221(0,0)x y a b a b -=>>的两条渐近线交于A B 、两点,与1yx k交于点N ,若N 为AB 的中点,则双曲线的离心率等于____. 13.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且||3||PM MF =,则直线OM 的斜率的最大值是________.二、解答题14.已知椭圆()2222:10x y E a b a b+=>>的焦距为23,点()0,2P 关于直线y x =-的对称点在椭圆E 上.(1)求椭圆E 的方程.(2)如图,过点P 的直线l 与椭圆E 交于两个不同的点C ,D (点C 在点D 的上方),试求COD △面积的最大值.15.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 16.已知抛物线2:y 2)3(0C px p <<=,其焦点为F ,点3(,2Q m 在抛物线C 上,且|QF |=4,过点(4,0)的直线l 与抛物线C 相交于A ,B 两点,连结OA ,OB . (1)求抛物线C 的方程; (2)证明:OA OB ⊥.17.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.18.已知集合(){}22|4300A x x ax a a =-+<>,集合B ={a 方程221382x y a a+=--表示圆锥曲线C }(1)若圆锥曲线C 表示焦点在x 轴上的椭圆,求实数a 的取值范围;(2)若圆锥曲线C 表示双曲线,且A 是B 的充分不必要条件,求实数a 的取值范围.19.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值.20.已知双曲线1C 的方程为22143x y -=,椭圆2C 与双曲线有相同的焦距,1F ,2F 是椭圆的上、下两个焦点,已知P 为椭圆上一点,且满足12PF PF ⊥,若12PF F △的面积为9. (1)求椭圆2C 的标准方程;(2)点A 为椭圆的上顶点,点B 是双曲线1C 右支上任意一点,点M 是线段AB 的中点,求点M 的轨迹方程. 21.已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),求|PA |+|PM |的最小值22.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.23.已知抛物线C 的准线方程为14x =-.(1)求抛物线C 的标准方程;(2)若过点(,0)P t 的直线l 与抛物线C 相交于,A B 两点,且以AB 为直径的圆过原点O ,求证:t 为常数,并求出此常数.24.已知椭圆()2222:10x y C a b a b +=>>C 过点3,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)已知O 为原点,过椭圆C 的右焦点的直线l 与椭圆C 交于A 、B 两点,求OAB 的面积的最大值.25.已知抛物线2:2(0)C y px p =>的焦点(1,0),F O 为坐标原点,,A B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程; (2)若直线,OA OB 的斜率之积为12-,求证:直线AB 过定点,并求出定点坐标. 26.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】作出图形设过椭圆右焦点且垂直于长轴的弦为计算出再利用椭圆的定义可得出关于的等式进而可求得椭圆的离心率的值【详解】如下图所示设椭圆的左右焦点分别为设过椭圆右焦点且垂直于长轴的弦为则由勾股定理可【分析】作出图形,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,计算出1AF ,再利用椭圆的定义可得出关于a 、c 的等式,进而可求得椭圆的离心率的值. 【详解】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=52c c a +=,所以,该椭圆的离心率为()()251512515151c e a ====++-. 51-. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.【分析】用分离常数法求得函数的对称中心代入椭圆方程得的关系变形后得然后由的范围得出的范围【详解】因为可化为所以曲线的对称中心为把代入方程得整理得因为所以从而故答案为:【点睛】关键点点睛:本题考查求椭解析:22110⎝⎭【分析】用分离常数法求得函数的对称中心,代入椭圆方程得,a b 的关系,变形后得221911a e=+-,然后由e 的范围得出2a 的范围. 【详解】因为31x y x =-可化为111393y x =+⎛⎫- ⎪⎝⎭,所以曲线31x y x =-的对称中心为11,33⎛⎫⎪⎝⎭,把11,33⎛⎫ ⎪⎝⎭代入方程22221x y a b +=,得2211199a b +=,整理得22222221911a c a a c e-==+--.因为1,23e ⎛⎫∈ ⎪ ⎪⎝⎭,所以2759,32a ⎛⎫∈ ⎪⎝⎭,从而2,93a ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:93⎛ ⎝⎭.【点睛】关键点点睛:本题考查求椭圆长轴长的范围.解题关键是建立长半轴长a 与离心率e 的关系式,求出函数对称中心代入椭圆方程,利用222b a c =-进行转化是是解题的基本方法.3.【分析】求出直线的方程利用点到直线的距离与半通径的关系列出不等式求解即可【详解】解:直线的方程为:椭圆的右焦点过椭圆的右焦点作轴的垂线交于两点直线过的左焦点和上顶点若以为直径的圆与存在公共点可得:可解析:0,5⎛ ⎝⎦【分析】求出直线l 的方程,利用点到直线的距离与半通径的关系,列出不等式,求解即可. 【详解】解:直线l 的方程为:1x yc b+=-,椭圆的右焦点(,0)c , 过椭圆2222:1(0)x y C a b a b+=>>的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,2b a可得:2b c ,即2224a c c -,即:215e,(0,1)e ∈, 解得:50e<.故答案为:⎛ ⎝⎦. 【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).4.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.5.【分析】先求出的面积再利用等积法可求的关系从而可求离心率【详解】不妨设在轴的上方在轴的下方抛物线的准线方程为:双曲线的渐近线方程为:故故而故所以故故答案为:【点睛】关键点点睛:圆锥曲线的离心率的计算解析:3【分析】先求出POQ △的面积,再利用等积法可求,,a b c 的关系,从而可求离心率. 【详解】不妨设P 在x 轴的上方,Q 在x 轴的下方.抛物线24y x =的准线方程为:1x =-,双曲线的渐近线方程为:b y x a=±. 故1,b P a ⎛⎫- ⎪⎝⎭,1,b Q a ⎛⎫-- ⎪⎝⎭,故1212POQb b S a a =⨯⨯=△.而c OP OQ a ===,故122123b c b a a a ⎛⎫⨯+⨯=⎪⎝⎭,所以2c b =,故3c e a ===.故答案为:3. 【点睛】关键点点睛:圆锥曲线的离心率的计算,关键是利用已知条件构建关键,,a b c 的等量关系式,遇到三角形的内切圆半径的计算问题时,一般利用等积法来沟通半径与三角形的边的关系.6.【分析】根据椭圆的几何性质由轴设写出的直线方程求出与轴的交点的坐标以及点的坐标根据化简得到即可求解【详解】由题意椭圆的左右焦点分别为且因为轴不妨设则直线的方程为令可得所以直线与轴的交点为又由所以化简解析:13【分析】根据椭圆的几何性质,由2PF x ⊥轴,设(,)M c t ,写出AM 的直线方程,求出AM 与y 轴的交点N 的坐标,以及Q 点的坐标,根据3ON OQ =,化简得到3a c =,即可求解. 【详解】由题意,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,且(,0)A a ,因为2PF x ⊥轴,不妨设(,)(0)M c t t ≠, 则直线AM 的方程为()ty x a c a=--, 令0x =,可得aty a c=-, 所以直线AM 与y 轴的交点为1(0,),(0,)2at N Q t a c -, 又由3ON OQ =,所以132at t a c =⨯-,化简得3a c =, 所以椭圆的离心率为13c e a ==.故答案为:13. 【点睛】求解椭圆的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ; 齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;特殊值法:通过取特殊值或特殊位置,求出离心率.7.15【分析】利用椭圆的定义将左焦点问题转化为右焦点问题然后求解最值即可【详解】由椭圆方程可得:由椭圆的定义可得:则的最大值为15故答案为:15【点睛】本题主要考查椭圆的定义与几何性质等价转化的数学思解析:15 【分析】利用椭圆的定义将左焦点问题转化为右焦点问题,然后求解最值即可. 【详解】由椭圆方程可得:5,4,3a b c ===,12(3,0),(3,0)F F ∴-, 由椭圆的定义可得:12210PF PF a +==,()1222||||210||101015PM PF PM a PF PM PF MF ∴+=+-=+-≤+=+=,则1||PM PF +的最大值为15. 故答案为:15. 【点睛】本题主要考查椭圆的定义与几何性质,等价转化的数学思想,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【分析】由正弦定理可得结合椭圆的定义可得点的轨迹方程即可得解【详解】因为所以所以点的轨迹是以为左右焦点长轴长的椭圆(不在x 轴上)该椭圆焦距所以所以点的轨迹方程为当时所以面积的最大值故答案为:【点睛】解析:【分析】由正弦定理可得2BC AB AC +=,结合椭圆的定义可得点B 的轨迹方程,即可得解. 【详解】因为sin sin 2sin A C B +=,4AC =,所以28BC AB AC AC +==>, 所以点B 的轨迹是以A 、C 为左右焦点,长轴长28a =的椭圆(不在x 轴上), 该椭圆焦距24c =,所以22212b a c =-=,所以点B 的轨迹方程为()22101612x y y +=≠,当0x =时,y =±,所以ABC 面积的最大值max 142S =⨯⨯=故答案为: 【点睛】关键点点睛:解决本题的关键是利用正弦定理转化条件为2BC AB AC +=,再结合椭圆的定义即可得解.9.【解析】设由余弦定理知所以故填【解析】设21,3,24PF x PF x a x ===,由余弦定理知22(2)13c x =,所以c a =10.【分析】先取的中点证明是的中点再设得到最后建立方程并求双曲线的离心率即可【详解】设为双曲线的右焦点取的中点则如图因为所以是的中点则设则因为所以则又因为所以即该双曲线的离心率故答案为:【点睛】本题考查【分析】先取AB 的中点M ,证明M 是1PF 的中点,再设AB t =,得到65t a =,1185PF a =,285PF a =,最后建立方程2221212PF PF F F +=并求双曲线的离心率即可.【详解】设2F 为双曲线22221x y a b-=的右焦点,取AB 的中点M ,则1OM PF ⊥,如图.因为1F A AB BP ==,所以M 是1PF 的中点,则2//OM PF ,212OM PF =. 设AB t =,则13PF t =,232PF t a =-,2t AM =. 因为222OM AMOA =+,所以65t a =,则1185PF a =,285PF a =.又因为2221212PF PF F F +=,所以29725e =,即该双曲线的离心率5e =.故答案为:975. 【点睛】本题考查圆的几何性质、求双曲线的离心率,考查数形结合的数学思想,是基础题.11.4【分析】设点为过点作垂直于轴垂足为利用点在抛物线上建立方程即可求得的长【详解】解:由题意得设点为过点作垂直于轴垂足为即即整理得①又是抛物线上一点②由①②可得或(舍去)故答案为:【点睛】本题给出抛物解析:4 【分析】设点M 为(,)a b ,过点M 作MA 垂直于x 轴,垂足为A ,利用60xFM ∠=︒,点M 在抛物线24y x =上,建立方程,即可求得FM 的长. 【详解】解:由题意得(1,0)F设点M 为(,)a b 过点M 作MA 垂直于x 轴,垂足为A 60xFM ∠=︒,||2||MF FA ∴=,即||2(1)FM a =- ||3MF =,即||3MF =,2(1)3a ∴-223(1)b a =-⋯①又M 是抛物线24y x =上一点24b a ∴=⋯②由①②可得3a =或13a =(舍去) ||2(31)4MF ∴=-=故答案为:4.【点睛】本题给出抛物线上的点M 满足60xFM ∠=︒,求焦半径||FM 的长,着重考查了抛物线的定义与简单几何性质等知识,属于中档题.12.【分析】由题意联立方程组可得由中点的性质可得化简后利用即可得解【详解】由题意双曲线的两条渐近线为则同理联立为的中点即整理得故答案为:【点睛】本题考查了双曲线的性质和离心率的求解考查了直线交点的问题和 2【分析】由题意联立方程组可得A am x ka b -=+、B amx b ka=-、21N km x k =-,由中点的性质可得2A B N x x x +=,化简后利用221b e a=+即可得解. 【详解】由题意双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,则A y kx mam x b ka b y x a =+⎧-⎪⇒=⎨+=-⎪⎩,同理B am x b ka =-, 联立211N y kx mkm x k y x k =+⎧⎪⇒=⎨-=⎪⎩,N 为AB 的中点,∴2A B N x x x +=,即221am am mkb ka b ka k -+=+--, 整理得221b a =,∴2212b e a=+= 2. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了直线交点的问题和运算能力,属于中档题.13.【分析】转化条件得点则利用基本不等式即可得解【详解】由题意可知点设由可得则点当且仅当时等号成立故答案为:【点睛】本题考查了抛物线的性质平面向量的应用以及基本不等式的应用属于中档题【分析】转化条件得点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,则001322OM k y p y p=+,利用基本不等式即可得解. 【详解】 由题意可知点,02p F ⎛⎫⎪⎝⎭,0p >, 设()2000,02y P y y p ⎛⎫> ⎪⎝⎭,由||3||PM MF =可得4PF MF =, 则200,884y y p MF p ⎛⎫=-- ⎪⎝⎭,∴点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,∴02014332288OM y k y p y p y pp==≤=++,当且仅当00322y p y p =时等号成立.故答案为:3. 【点睛】本题考查了抛物线的性质、平面向量的应用以及基本不等式的应用,属于中档题.二、解答题14.(1)2214x y +=;(2)1.【分析】(1)根据椭圆的焦距为c =()0,2P 关于直线y x =-的对称点在椭圆E 上,得到()2,0-在椭圆E 上,进而得到a 即可.(2)设过点()0,2P 的直线方程为2y mx =+,与椭圆方程联立,求得弦长CD 以及点O 到直线CD 的距离,代入面积公式求解. 【详解】(1)因为椭圆()2222:10x y E a b a b +=>>的焦距为2c ∴=c =()0,2P 关于直线y x =-的对称点在椭圆E 上,()2,0∴-在椭圆E 上,2a ∴=, 2221b a c ∴=-=,2214x y ∴+=. (2)设过点()0,2P 的直线方程为2y mx =+,联立方程组可得22214y mx x y =+⎧⎪⎨+=⎪⎩, 消y 可得()221416120mxmx +++=,2430m =->△,设(),C C C x y ,(),y D D D x ,21614C D m x x m ∴+=-+,21214C Dx x m =+,CD ∴== ∴点O 到直线CD 的距离d =142CODS CD d ∴=⋅=△, 设214m t +=,则4t >,CODS ∴===△ 当8t =时,取得最大值,即为1. 【点睛】方法点睛:圆锥曲线中的三角形最值问题的求法:一般由直线与曲线联立求得弦长及相应点的直线的距离,得到含参数的△OMN 的面积的表达式,再应用基本不等式或函数法求最值.15.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程. 16.(1)24y x =;(2)证明见解析. 【分析】(1)由点在抛物线上,焦半径的长|QF |=4,列方程求p ,写出抛物线方程;(2)讨论直线l 斜率的存在性,若11(,)A x y ,22(,)B x y ,结合向量数量积的坐标表示有0OA OB ⋅=,则OA OB ⊥即得证.【详解】解:(1)由(,Q m 在抛物线C 上可得,212pm =, 由4QF =可得,42pm +=, ∵03p <<, ∴2p =,3m =. 抛物线的方程为24y x =.(2)当直线l 的斜率不存在时,方程为4x =,易求得()4,4A -,()4,4B(4,4)OA =-,(4,4)OB =,16160OA OB ⋅=-=,此时OA OB ⊥成立.当直线l 的斜率存在时,设直线方程为()4y k x =-,11(,)A x y ,22(,)B x y ,由24(4)y x y k x ⎧=⎨=-⎩,得24160ky y k --=,216640k ∆=+>,124y y k +=,1216y y =-,2121212121()1616016OA OB x x y y y y y y ⋅=+=+=-=此时OA OB ⊥成立, 综上可得,OA OB ⊥. 【点睛】关键点点睛:由抛物线过点,已知焦半径长并结合抛物线定义列方程组求参数,写出抛物线方程;利用向量垂直的坐标表示12120OA OB x x y y ⋅=+=即可证OA OB ⊥.17.(1)22143x y +=;(2)证明见解析;22127x y +=.【分析】(1)根据条件得出221914a b +=且12c a =,解出,a b 即可得出方程; (2)设出直线方程,联立直线与椭圆,由OA OB ⊥得0OAOB ⋅=,由此可得=. 【详解】(1)由椭圆经过点31,2P ⎛⎫⎪⎝⎭,离心率12e =得:221914a b +=且12c a =. 解得2a =,1c =,b =所以椭圆C :22143x y +=.(2)当直线AB l 的斜率不存在时,设直线为x m =,则由OA OB ⊥可得(),A m m ±,代入椭圆得22143m m +=,解得2127m =,则与直线AB l 相切且圆心为原点的圆的半径为m =, 即圆的方程为22127x y +=; 当斜率存在时,设直线AB l 的方程为:y kx b =+,()11,A x y ,()22,B x y ,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b +++-=.所以122834kbx x k +=-+,()21224334b x x k-=+. 因为OA OB ⊥,所以12120OA OB x x y y ⋅=+=, 又因为11y kx b =+,22y kx b =+,故()()12121212x x y y x x kx b kx b +=+++()()22121210k x x kb x x b =++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r === 所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解. 18.(1)1143a <<;(2)01a <≤或4a ≥. 【分析】(1)根据椭圆的标准方程,求出a 的范围;(2)再确定集合A ,由双曲线的标准方程得集合B ,然后根据充分必要条件的定义集合包含关系,从而得出a 的不等关系,求得结论. 【详解】(1)由方程221382x y a a+=--表示的曲线是表示焦点在x 轴上的椭圆∴(3)(82)0a a ->->, ∴1143a << 解不等式22430(0)x ax a a -+<>可得3(0)a x a a <<>方程221382x y a a+=--表示的曲线是双曲线∴(3)(82)0a a --<, ∴4a >或3a <因为A 是B 的充分不必要条件所以(,3)a a 是(,3)(4,)-∞⋃+∞的真子集 所以033a <≤或4a ≥ 解得01a <≤或4a ≥所以a 的取值范围是01a <≤或4a ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.19.(Ⅰ)22143x y +=;(Ⅱ)247;(Ⅲ)12||S S -【分析】(Ⅰ)根据椭圆的几何性质求出,a b 可得结果; (Ⅱ)联立直线与椭圆,根据弦长公式可求得结果;(Ⅲ)设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立直线l 与椭圆M 的方程,利用韦达定理求出12y y +,12||S S -=212||34t t +,变形后利用基本不等式可求得最大值. 【详解】(Ⅰ)因为椭圆的焦点为()1,0F -,所以1c =且23b =,所以222314a b c =+=+=,所以椭圆M 方程为22143x y +=.(Ⅱ)因为直线l 的倾斜角为45,所以斜率为1,直线l 的方程为1y x =+,联立221143y x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得27880x x +-=,设11(,)C x y ,22(,)D x y , 则1287x x +=-,1287x x =-,所以||CD =247=. (Ⅲ)由(Ⅰ)知(2,0),(2,0)A B -,设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 并整理得22(34)690t y ty +--=,则122634ty y t +=+,123934y y t =-+0<,所以12,y y 异号, 所以121211|||4||4|||22S S y y -=⨯-⨯⨯122||||||y y =-122||y y =+212||34t t =+ 1243||||t t =+≤==当且仅当||t =.所以12||S S -. 【点睛】关键点点睛:第(Ⅲ)问中将三角形面积用,C D 两点的纵坐标表示,并利用韦达定理和基本不等式解决是解题关键.20.(1)221169y x +=;(2)()222413y x --=(1≥x ). 【分析】(1)根据条件先求解出双曲线的半焦距c ,然后结合三角形的面积、勾股定理、椭圆的定义求解出椭圆方程中2a 的值,从而椭圆方程可求;(2)设(),M x y ,()00,B x y ,根据条件用M 点的坐标表示出B 点的坐标,再根据B 在双曲线上求解出,x y 满足的等式即为轨迹方程. 【详解】(1)设双曲线的半焦距为c ,由题2437c =+=,设椭圆方程22221y xa b+=(0a b >>).∴1222212121924282PF PF PF PF c PF PF a⎧=⎪⎪⎪+==⎨⎪+=⎪⎪⎩,∴2221212142+4=64a PF PF PF PF ⎛⎫ ⎪⎝⎭=+∴216a =,∴2221679b a c =-=-=,∴2:C 221169yx +=;(2)由题点()0,4A .设双曲线右支上任意一点B 的坐标为()00,x y ,AB 中点M 的坐标为(),x y ,则00242x x y y ⎧=⎪⎪⎨+⎪=⎪⎩,∴00224x x y y =⎧⎨=-⎩,又点B 在双曲线上,∴2200143x y -=∴()222413y x --=(1≥x ).【点睛】结论点睛:椭圆或双曲线的焦点三角形的顶点为P ,焦点为12,F F ,且12F PF θ∠=,则有:(1)椭圆的焦点三角形的面积为:2tan2b θ(b 为短轴长度一半);(2)双曲线的焦点三角形的面积为:2tan2b θ(b 为虚轴长度一半).21.51-【分析】根据抛物线标准方程有焦点(0,1)F ,准线方程为1y =-,根据抛物线定义||||||||1PA PM PA PF +=+-,结合三角形三边的性质即可求||||PA PM +最小值.【详解】抛物线标准形式为24x y =,则焦点(0,1)F ,准线方程为1y =-,延长PM 交准线于N ,连PF ,由抛物线定义知:||||||||1||||1PA PM PA PN PA PF +=+-=+-,而在△PFA 中,||||||PA PF AF +>,∴仅当F 、P 、A 共线时,||||||PA PF AF +==为最小值,∴此时||||1PA PM +=为最小值.【点睛】关键点点睛:由抛物线的定义将问题转化为求||||||||1PA PM PA PF +=+-最小值,由三角形三边的性质知:三点共线时||||PA PF +有最小值.22.(1)28y x =;(2)480x y +-=.【分析】(1)由题意可设抛物线方程为:22y px =(0p >),再将点()2,4-代入抛物线的方程中得到p 的值,最后写出抛物线的方程即可;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线与抛物线的方程可得28160y my --=,由韦达定理可得128y y m +=,再由线段AB 中点的纵坐标为1-可得122y y +=-,进而求出m 的值,最后写出直线的方程即可.【详解】(1)由题意可设抛物线方程为:22y px =(0p >),∵抛物线过点()2,4-,∴1644p p =⇒=,∴28y x =;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,则由22881602y x y my x my ⎧=⇒--=⎨=+⎩,264640m ∆=+>, 所以128y y m +=, 由题意1212122y y y y +=-⇒+=-,121824y y m m +==-⇒=-, 故124804x y x y =-+⇒+-=, 即直线l 的方程为480x y +-=. 【点睛】方法点睛:对于第二问,有两种方法:方法一:设点()11,A x y ,()22,B x y ,根据中点纵坐标即可利用点差法求得直线的斜率,再由点斜式写出直线的方程;方法二:设出直线的方程,联立直线与抛物线的方程,根据韦达定理和中点的纵坐标,即可求得直线的方程. 23.(1)2y x =;(2)证明见解析,1,0t t ==.【分析】(1)由准线方程为14x =- 求得12p =,得解抛物线C 的方程 (2)设过P 的直线l 方程为:x my t =+(m R ∈),联解后,利用原点O 落在以AB 为直径的圆上得0OA OB ⋅= 得到12120x x y y +=得解【详解】(1)由准线方程为14x =-可设抛物线C 的方程22(0)y px p => 求得12p = 故所求的抛物线C 的方程为:2y x =(2)依题意可设过P 的直线l 方程为:x my t =+(m R ∈),设1122(,),(,)A x y B x y由2x my t y x=+⎧⎨=⎩得:2y my t =+ 依题意可知0∆>,且12y y t =-原点O 落在以AB 为直径的圆上令0OA OB ⋅=即()22212121212t 0x x y y y y y y t +=+=--= 解得:1,0t t ==即t 为常数,∴ 原题得证【点睛】本题利用0OA OB ⋅=得到12120x x y y +=是解题关键.24.(1)22132x y +=;(2. 【分析】(1)根据离心率3c e a ==,将点坐标代入曲线方程,结合222a b c =+,即可求得a ,b ,c 的值,即可求得答案;(2)由题意得右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,与椭圆联立,根据韦达定理,可得12y y +,12y y 的表达式,即可求得12y y -的表达式,根据m 的范围,即可求得12y y -的最大值,代入面积公式,即可求得OAB 的面积的最大值.【详解】(1)由题意得22222392144c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a =b =1c =.故椭圆方程为:22132x y +=. (2)易知椭圆的右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,联立直线l 方程代入椭圆方程221321x y x my ⎧+=⎪⎨⎪=+⎩,整理可得:()2223440m y my ++-=, 设()11,A x y ,()22,B x y ,则222(4)4(23)(4)48(+1)0m m m ∆=-+-=> 122423m y y m -+=+,122423y y m -=+, 所以12y y -===, 因为20m ≥,所以2110,233m ⎛⎤∈ ⎥+⎝⎦, 易知当0m =,即211233m =+时,原式12y y -取得最大值= 此时AOB S的最大值为1211122y F y O ⨯⨯=⨯=-.即三角形OAB . 【点睛】解题的技巧为:设直线l 的方程为:()10x my m =+≠,可联立消去x ,得到关于y 的一元二次方程,进而可直接求得12y y -的表达式,即可得12y y -的最大值,即可求得面积的最大值,考查分析理解,计算求值的能力属中档题.25.(1)24y x =,(2)证明见解析,定点(8,0)【分析】(1)利用抛扔线的焦点坐标,求出p ,然后求抛物线的方程;(2)通过直线的斜率是否存在,设出直线方程,与抛物线方程联立,利用韦达定理以及斜率乘积关系,转化求解即可【详解】解:(1)因为抛物线22(0)y px p =>的焦点坐标为(1,0),所以12p =,得2p =, 所以抛物线的方程为24y x =,(2)①当直线AB 的斜率不存在时,设22(,),(,)44t t A t B t -, 因为直线,OA OB 的斜率之积为12-,所以224412t t t t -⋅=-,化简得232t =, 所以(8,),(8,)A t B t -,此时直线AB 的方程为8x =,②当直线AB 的斜率存在时,设其方程为y kx b =+,1122(,),(,)A x y B x y ,由24y x y kx b⎧=⎨=+⎩,得2440ky y b -+=,则124b y y k =, 因为,OA OB 的斜率之积为12-,所以121212y y x x ⋅=-, 即121220x x y y +=,即可2212122044y y y y ⋅+=, 解得120y y =(舍去),或1232y y =-, 所以432b k=-,即8b k =-,所以8y kx k =-,即(8)y k x =-, 综上所述,直线AB 过x 轴上的一定点(8,0) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系的应用,抛物线的方程的求法,解题的关键是将直线方程y kx b =+与抛物线方程24y x =联立方程组可得2440ky y b -+=,再利用根与系数的关系可得124b y y k =,再结合直线,OA OB 的斜率之积为12-,可得到,k b 的关系,从而可得答案,考查计算能力,属于中档题 26.(1)2212516x y +=;(2)3225890x y +-=. 【分析】(1)由题可得22a b 9-=3=,求出,a b 即得椭圆方程; (2)利用点差法可求直线斜率,即可得出直线方程.【详解】(1)设椭圆M 的方程为22221(0)x y a b a b+=>>,则22a b 9-=, 双曲线N30y ±=,3=,所以4b=,于是5a=,所以椭圆M的方程为2212516x y+=.(2)显然直线l的斜率是存在的,设直线l的斜率为k,设A,B的坐标分别为11(,)x y,22(,)x y,则221122221251612516x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,相减得2222121202516x y yx--+=,整理得121212121625y y x xx x y y-+=-⨯-+,所以162232252125k⨯=-⨯=-⨯,所以直线l的方程为321(2)25y x-=--,即3225890x y+-=.【点睛】方法点睛:点差法解决中点弦问题:设直线与圆锥曲线的交点(弦的端点)坐标为11(,)A x y,22(,)B x y,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.。
圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线与方程椭圆双曲线抛物线章节综合检测专题练习(一)含答案人教版高中数学新高考指导

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年高考重庆文)设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是 “128x x +=”的( A )(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要2.(汇编全国1理)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 (A )23(B )23(C )26(D )3323.(汇编湖北文9)若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是( )A.[122-,122+]B.[12-,3]C.[-1,122+]D.[122-,3]4.(汇编全国卷1理数)(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( )(A)32 (B)62(C) 3 (D) 65.(汇编全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B )2 (C )3 (D )26.(汇编山东理)(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的 ( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 37.(汇编湖南卷文)抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0) 【解析】由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B.8.(汇编全国卷Ⅱ文)已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。
(易错题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)(4)

一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B .5 C .3 D .6 2.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( ) A .2B .51-C .1D .52-3.如图,已知曲线2yx 上有定点A ,其横坐标为()0a a >,AC 垂直于x 轴于点C ,M 是弧OA 上的任意一点(含端点),MD 垂直于x 轴于点D ,ME AC ⊥于点E ,OE 与MD 相交于点P ,则点P 的轨迹方程是( )A .()310y x x a a=≤≤ B .()31022ay x x x a a =+≤≤ C .()220y x ax x a =-≤≤D .()2022a ay x x x a =+≤≤4.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( ) A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦5.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 6.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =D .y =7.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C S SS+=,则a 的值为( )A .9B .11C .17D .198.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1e <<B .eC .e >D .1e <<9.在平面直角坐标系中,双曲线C 的标准方程为2221(0)4x y t t t-=>+,则双曲线的离心率取得最大值时,双曲线的渐近线方程为( ) A .2y x =±B .3y x =±C .12y x =±D .13y x =±10.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦11.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( )A .25B .100C .9D .3612.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .B .(6,8)C .D .(6,10)二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 的直线:2230l kx y ka --=与双曲线C 交于A 、B 两点.若7AF FB =,则实数k =________.15.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______. 16.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________.17.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c ,(4,M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.18.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且||PF =,则双曲线C 的标准方程为_________. 三、解答题21.已知椭圆22:11612x y E +=,1F 、2F 为左、右焦点,()2,3A .(1)求12tan F AF ∠及12F AF ∠的角平分线所在直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出:若不存在,说明理由.22.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.23.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值. 24.已知抛物线28y x =的焦点为F ,且A 是抛物线上一点. (1)若4AF =求点A 的坐标;(2)直线l :y x m =+与抛物线交于两个不同的点P ,Q ,若OP OQ ⊥,求实数m 的值.25.已知点3(1,)-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为32. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.26.如图,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),||3CD =.(1)求椭圆E 的方程;(2)设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+,又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.3.A解析:A 【分析】设点(),P x y ,求出点M 、E 的坐标,利用O 、P 、E 三点共线可得出//OP OE 可求得点P 的轨迹方程. 【详解】设点(),P x y ,其中0x a ≤≤,则点()2,M x x,ME 与直线x a =垂直,则点()2,E a x ,因为O 、P 、E 三点共线,则//OP OE ,可得3ay x =,31y x a∴=, 因此,点P 的轨迹方程是()310y x x a a=≤≤. 故选:A. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.4.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭, ()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.5.B解析:B 【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.6.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-, 即112122,M F F D F D E M =∴=,可知四边形12M F DE 为平行四边形; 又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故3==ce a, 故双曲线C 的渐近线方程为2y x = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.7.C解析:C【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n +=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=, 所以,双曲线的渐近线b y x a =的倾斜角α满足30α>,则123tan b PF F a >∠= 因此,该双曲线的离心率为222222231c c a b b e a a a a +⎛⎫====+> ⎪⎝⎭. 故选:B. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.C解析:C 【分析】依题意可得c e a ==t ,从而求出双曲线方程,即可求出渐近线; 【详解】解:因为0t >,依题意可得双曲线2221(0)4x y t t t-=>+的离心率c e a ====≤=当且仅当4t t=即2t =时,等号成立,此时离心率最大, 故双曲线的标准方程为22182y x -=,所以双曲线的渐近线方程为y x =,即12y x =±故选:C 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=, 又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C 【点睛】关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.11.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值. 【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=,所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MFMF a '-=,不能混淆. 12.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PFPF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,25P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.【分析】由直线方程过右焦点得的关系设直线方程与双曲线方程联立消去应用韦达定理得出由得这样结合起来可得值【详解】在中令得所以则设由消去得由得所以化简得故答案为:【点睛】方法点睛::本题考查直线与双曲线解析:【分析】由直线方程过右焦点得,a b 的关系,设1122(,),(,)A x y B x y ,直线方程与双曲线方程联立消去x ,应用韦达定理得出1212,y y y y +,由7AF FB =,得127y y =-,这样结合起来可得k 值.【详解】在2230kx y ka --=中令0y =得32a x =,所以32a c =,则222254a b c a =-=,设1122(,),(,)A x y B x y ,由222212230x y a bkx y ka ⎧-=⎪⎨⎪--=⎩,消去x 得22222223504b ab a b a y y k k ⎛⎫-++= ⎪⎝⎭, 2122223kab y y a k b+=-,2221222254()k a b y y b a k =-, 由7AF FB =得127y y =-,212222236kab y y y a k b +=-=-,222222()kab y a k b =--, 所以224222212222222225774()4()k a b k a b y y y a k b b a k =-=-⨯=--,化简得2221235b k a==,k =.故答案为: 【点睛】方法点睛::本题考查直线与双曲线相交问题,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,由直线方程与双曲线方程联立,消元后应用韦达定理(本题得)1212,y y y y +,已知条件又得127y y =-,这样结合起来可求得k 值.15.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意. 易知抛物线C 的焦点为1,02F ⎛⎫⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 16.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大,抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=, 264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228xy ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.17.【分析】根据题意结合椭圆定义可得设代解得代回方程即可【详解】解:因为是椭圆上一点且成等差数列所以所以故椭圆方程可设为代解得所以椭圆方程为故答案为:【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性解析:2212015x y += 【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,3)M -解得25c =代回方程即可. 【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c +=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.18.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAOCFO a c ∠=∠=,根据离心率可求出223b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.20.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,2b a =,结合222c a b =+,整理求得结果.【详解】根据题意,可知2b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.三、解答题21.(1)124tan 3F AF ∠=,直线l 的方程为210x y --=;(2)不存在,理由见解析. 【分析】(1)分析得出2AF x ⊥轴,进而可得出12122tan F F F AF AF ∠=,设122F AF θ∠=,求出tan θ的值,可得出直线l 的斜率,进而可得出直线l 的方程;(2)假设椭圆E 上存在关于直线l 对称的相异两点()11,M x y 、()22,N x y ,进而可设直线MN 的方程为2xy t =-+,与椭圆E 的方程联立,列出韦达定理,求出线段MN 的中点P 的坐标,根据点P 在直线l 上,求出t 的值,可得出点P 的坐标,由此可得出结论.【详解】(1)在椭圆E 中,4a =,23b =,2c =,则()12,0F -、()22,0F ,因为222311612+=,即点A 在椭圆E 上,且2AF x ⊥轴,121224tan 3F F F AF AF ∠==,设122F AF θ∠=,则22tan 4tan 21tan 3θθθ==-,整理可得22tan 3tan 20θθ+-=, 易知θ为锐角,则tan 0θ>,解得1tan 2θ=, 设直线l 的倾斜角为α,则sin cos 12tan tan 22sin tan cos 2πθπθαθπθθθ⎛⎫- ⎪⎛⎫⎝⎭=-==== ⎪⎛⎫⎝⎭- ⎪⎝⎭,因此,直线l 的方程为()322y x -=-,即210x y --=;(2)假设椭圆E 上是否存在关于直线l 对称的相异两点()11,M x y 、()22,N x y , 则直线MN 的斜率为12-,设直线MN 的方程为2xy t =-+, 联立22123448y x t x y ⎧=-+⎪⎨⎪+=⎩,整理可得22120x tx t -+-=, 由韦达定理可得12x x t +=,则()121213222y y x x t t +=-++=, 所以,线段MN 的中点为3,24t t P ⎛⎫⎪⎝⎭,点P 在直线l 上,所以,32110244t t t⨯--=-=,解得4t =, 所以点()2,3P ,此时,点P 与点A 重合,不合乎题意. 因此,椭圆E 上不存在关于直线l 对称的相异两点. 【点睛】思路点睛:圆锥曲线中的探索性问题求解思路如下: 第一步:假设结论存在.第二步:结合已知条件进行推理求解.第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范. 22.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =, 联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=, 由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1-,半径为152, 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴22621133a ab b ⎧=⎪==⇒⎨=⎪⎩ 椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥ ⎪----⎝⎭⎣⎦()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241************121244105122210512212k k k k k k k k k k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)点A 的坐标为()()2,4,2,4-;(2)8-. 【分析】(1)由4AF =根据焦半径公式求出点A 的横坐标,再代入抛物线方程求得纵坐标;(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,利用韦达定理,结合向量垂直的坐标表示,列方程可求实数m 的值. 【详解】(1)设()00,A x y ,042p AF x =+=,22p=,02x ∴=所以20082164y y =⨯=⇒=±,∴点A 的坐标为()()2,4,2,4-.(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,设()11,P x y ,()22,Q x y ,则1282x x m +=-,212x x m =,121228y y x x m ∴+=++=,()()()2121212128y y x m x m x x m x x m m =++=+++=,又OP OQ ⊥,0OP OQ ∴⋅=,2121280x x y y m m ∴+=+=,0m ∴=或8m =-,经检验,当0m =时,直线与抛物线交点中有一点与原点O 重合:不符合题意,当8m =-时,2(24)4640∆=--⨯>,符合题意. 综上,实数m 的值为8-. 【点睛】方法点睛:解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.25.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314ab +=,又椭圆的离心率为2,∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k +=-+,1221214x x k ⋅=+, 由COB ∠为锐角, ∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.26.(1)22143x y +=;(2)是定值,理由见解析.【分析】(1)由焦点及通经长,用待定系数法求椭圆的标准方程;(2)设出直线AB :y kx m =+,与椭圆联立,用“设而不求法”表示ACD BCD ∠=∠,整理得12k =. 【详解】(1)由2321b a c ⎧=⎪⎨⎪=⎩得:24a =,23b =∴椭圆E 的方程:22143x y +=(2)依题意知直线AB 的斜率存在,设AB 方程:y kx m =+()11,A x y ,()22,B x y代入椭圆方程22143x y +=得:()2224384120k x kmx m +++-=(*)122843km x x k ∴+=-+,212241243m x x k -=+ 由ACD BCD ∠=∠得0AC BC k k +=31,2C ⎫⎛ ⎪⎝⎭,121212123333222201111y y kx m kx m x x x x --+-+-∴+=+=---- ()1212322302kx x m k x x m ⎫⎛∴+--+-+= ⎪⎝⎭22241238223043243m km k m k m k k -⎛⎫⎛⎫∴⋅+----+= ⎪⎪++⎝⎭⎝⎭整理得:(63)(223)0k k m -+-=2230k m ∴+-=或630k -=当2230k m +-=时,直线AB 过定点31,2C ⎛⎫⎪⎝⎭,不合题意 630k ∴-=,12k =,∴直线AB 的斜率是定值12另解:设直线AB 的方程为3(1)12m x n y ⎫⎛-+-= ⎪⎝⎭椭圆E 的方程即:22333[(1)1]41222x y ⎡⎤⎫⎛-++-+= ⎪⎢⎥⎝⎭⎣⎦即:22334126(1)3(1)022y y x x ⎫⎫⎛⎛-+-+-+-= ⎪ ⎪⎝⎝⎭⎭联立得:233(412)(126)22n y m n y ⎫⎫⎛⎛+-++- ⎪ ⎪⎝⎝⎭⎭2(1)(63)(1)0x m x -++-=即23322(412)(126)(63)011y y n m n m x x ⎛⎫-- ⎪+++++= ⎪-- ⎪⎝⎭ ∴由ACD BCD ∠=∠得121233(126)22011(412)AC BCy y m n k k x x n --++=+=-=--+即:2n m =- ∴直线AB 的斜率为12m n -=,是定值. 【点睛】(1)待定系数法可以求二次曲线的标准方程;。
圆锥曲线与方程椭圆双曲线抛物线午练专题练习(四)含答案新教材高中数学

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(汇编年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 2.(汇编山东理6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( )OxyA BF 1F 2(第9题A .0B .1C .2D .23.(汇编重庆理10)已知双曲线22221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43B .53C .2D .734.(汇编全国1理4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -= 5.(汇编山东理)13.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( ) (A) ①③ (B) ②④ (C) ①②③ (D) ②③6.(汇编全国卷3)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A .22B .212- C .22- D .21-7.若双曲线222(0)x y a a -=>的左、右顶点分别为A 、B ,点P 是第一象限内双曲线上的点。
圆锥曲线与方程椭圆双曲线抛物线章节综合检测专题练习(五)附答案人教版高中数学
(A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同
5.(汇编山东理)13.已知两点 给出下列曲线方程:
① ② ③ ④
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )
(A)①③(B)②④(C)①②③(D)②③
6.(汇编福建卷文)若双曲线 的离心率为2,则 等于( )
评卷人
得分
二、填空题
11.已知椭圆 的左、右焦点分别为 ,若椭圆上存在一点 使 ,则该椭圆的离心率的取值范围为.
12.已知点A(2,1),F是椭圆 的右焦点,P是椭圆上的点,则 PA+PF的最小值____▲____.
13.已知 是椭圆 上一点, 为该椭圆的焦点,若 ,则 的面积为
14.在平面直角坐标系 中,双曲线 的离心率为▲.
即ac-c2≤b2≤ac+c2∴ 又e∈(0,1)
故e∈
4.A
5.D
6.AD
解析:D由 ,解得a=1或a=3,参照选项知而应选D.
7.AB
解析:A直线 与抛物线 交于 两点,过 两点向抛物线的准线作垂线,垂足分别为 ,联立方程组得 ,消元得 ,解得 ,和 ,∴|AP|=10,|BQ|=2,|PQ|=8,梯形 的面积为48,选A.
高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.(汇编山东文)在给定双曲线中,过焦点垂直于实轴的弦长为 ,焦点到相应准线的距离为 ,则该双曲线的离心率为(C)
圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(四)附答案人教版高中数学
高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编年高考北京卷(理))若双曲线22
221x y a b
-=的离心率为3,则其渐近线方程为 ( ) A .y =±2x B .y =2x ± C .12y x =± D .22
y x =± 2.(汇编广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12
,则m=( ) A .3(B)32(C)83(D)23
3.(汇编山东理)(12) 椭圆3
122
2y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的 ( )
(A) 7倍 (B) 5倍 (C) 4倍 (D) 3。
圆锥曲线与方程椭圆双曲线抛物线一轮复习专题练习(四)含答案人教版高中数学高考真题汇编
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.若AB是过椭圆中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,,分别表示直线AM,BM的斜率,则=( )A. B. C.D.2.(汇编年高考浙江卷(文))如图F1.F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点()A.B分别是C1.C2在第二.四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )A .2 B .3 C .32D .623.(汇编年高考大纲卷(文))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12B .22C .2D .24.(汇编年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A .316B .38C .233D .4335.1 .(汇编大纲理)已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35 C .34D .45答案C 【解析】6.(汇编山东理6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( )A .0B .1C .2D .27.(汇编重庆文12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线(第9题图)043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .248.(汇编福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是( )A .3332B .32 C .22 D .239.(汇编)曲线221(6)106x y m m m +=<--与曲线221(59)59x y n n n+=<<--的( ) A.离心率相等 B.焦距相等 C.焦点相同 D.准线相同10.双曲线方程为2221x y -=,则它的右焦点坐标为A 、2,02⎛⎫⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为12.设12F F 、为椭圆22142x y +=的两个焦点,过椭圆中心任作一条直线与椭圆交于P 、Q 两点,当四边形12PF QF 的面积最大时,12PF PF 的值等于_________.13.若17222=-y x ,点),(y x P 到点)0,3(-的距离为23,则点P 到点)0,3(的距离为14. 已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则acb +的取值范围是15.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线l 1和直线l 2的距离之和的最小值是 .16. 抛物线24y x =的焦点到准线的距离是 △ . 评卷人得分三、解答题17.(汇编年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x . (1)求椭圆C 的方程;(2) AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ?若存在求λ的值;若不存在,说明理由.18.过椭圆221164x y +=的上顶点A 作两条直线分别交椭圆于点B ,C (不同于点A ),且它们的斜率分别为k 1,k 2,若k 1k 2 = - 4,求证:直线BC 恒过一个定点.19.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为________________.解析:如图,易知|AF →|=|AC →|,已知AF →=FB →,即|AF →|=|FB →|,又AC ⊥BC ,∴∠ABC =30°.∵BA →·BC →=|BA →|·|BC →|·cos 30°=|BA →|·|BA →|·cos 30°·cos 30°=|BA →|2cos 230°=48,∴|BA →|=8,∴|AC →|=4,p =|FD →|=2.∴抛物线的方程为y 2=4x.20.已知直线l 与x 轴正方向、y 轴正方向交于A ,B 两点,M ,N 是线段AB 的三等分点,椭圆C 经过M ,N 两点.(1)若直线l 的方程为260x y +-=,求椭圆C 的标准方程;(2)若椭圆的中心在原点,对称轴在坐标轴上,其离心率)21,0(∈e ,求直线l 的斜率k 的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B【解析】本题可用特殊值法.不妨设弦AB 为椭圆的短轴.M 为椭圆的右顶点,则A (0,b ),B (0,-b ),M (a ,0).所以.故选B .2. D .3.D 4.D5.由题意可知,2,2a b c ==∴=,设12||2,||PF x PF x ==,则12||||222PF PF x a -===,故12||42,||22PF PF ==,124F F =,利用余弦定理可得22222212121212(42)(22)43cos 2422242PF PF F F F PF PF PF +-+-∠===⋅⨯⨯.6.B 7.C 8.A9.B10.双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,02⎛⎫ ⎪ ⎪⎝⎭. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b =+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 12. 13. 14. 15.2 16.; 评卷人得分三、解答题17.解:(1)由3(1,)2P 在椭圆上得,221914a b += ① 依题设知2a c =,则223b c = ②②代入①解得2221,4,3c a b ===.故椭圆C 的方程为22143x y +=. (2)方法一:由题意可设AB 的斜率为k ,则直线AB 的方程为(1)y k x =- ③代入椭圆方程223412x y +=并整理,得2222(43)84(3)0k x k x k +-+-=,设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++ ④ 在方程③中令4x =得,M 的坐标为(4,3)k .从而121231233331222,,11412y y k k k k k x x ---====----. 注意到,,A F B 共线,则有AF BF k k k ==,即有121211y yk x x ==--. 所以1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------ 1212122322()1x x k x x x x +-=-⋅-++ ⑤④代入⑤得22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++, 又312k k =-,所以1232k k k +=.故存在常数2λ=符合题意. 方法二:设000(,)(1)B x y x ≠,则直线FB 的方程为:00(1)1y y x x =--, 令4x =,求得003(4,)1y M x -, 从而直线PM 的斜率为0030212(1)y x k x -+=-,联立0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩ ,得0000583(,)2525x y A x x ---,则直线PA 的斜率为:00102252(1)y x k x -+=-,直线PB 的斜率为:020232(1)y k x -=-,所以00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---,故存在常数2λ=符合题意. 18. 19.y 2=4x20.解:(1)依题意A (3,0),B (0,6),∵M 、N 是线段AB 的三等分点,∴不妨记M (1,4),N (2,2) ……………3分 设椭圆方程为122=+by ax (),0,0b a b a ≠>>,则⎩⎨⎧=+=+116144b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==51201a b , ……………6分 ∴椭圆方程为152022=+x y . ……………7分 (2)设A (m ,0),B (0,n ),()0,0m n >>,则M (3m ,32n ),N (32m ,3n), ……………8分①当焦点在x 轴上时,设椭圆方程为12222=+by a x ()0>>b a ,则⎪⎪⎩⎪⎪⎨⎧=+=+1994194922222222b n a m b n a m ,∴⎪⎪⎩⎪⎪⎨⎧==22229595n b m a ,得222222221e a c a a b m n -=-==,……………11分 又∵m n k -=,)21,0(∈e , ∴∈k (-1,-23); ……………13分②当焦点在y 轴上时,同法可得∈k (-233,-1), 综上∈k (-1,-23)∪(-233,-1). ……………16分。
圆锥曲线与方程椭圆双曲线抛物线章节综合检测专题练习(一)含答案人教版高中数学
高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编山东文)在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( C ) (A)22(B)2 (C) 2 (D)222.1 .(汇编福建理)已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( )A .5B .42C .3D .53.2 .(汇编新课标理)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )A .2B .22C .4D .84.(汇编山东文数9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )(A )1x = (B)1x =- (C)2x = (D)2x =-5.(汇编辽宁理数7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如果直线AF 的斜率为-3,那么|PF|=( ) (A)43 (B)8 (C)83 (D) 166.(汇编全国卷2理数)(12)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B )2 (C )3 (D )27.(汇编全国理7)设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A .5B . 5C .25 D .45 8.(汇编全国卷2) 双曲线22149x y -=的渐近线方程是( )A . 23y x =±B . 49y x =±C . 32y x =±D . 94y x =±9.(汇编年上海理15) 过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在解析 x y 42=的焦点是(1,0),设直线方程为0)1(≠-=k x k y (1),将(1)代入抛物线方程可得0)42(2222=++-k x k x k ,x 显然有两个实根,且都大于0,它们的横坐标之和是33243542222±=⇒=⇒=+k k k k ,选B. 10.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215 B .y =±x 215 C .x =±y 43 D .y =±x 43(汇编北京文,10)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.椭圆()222210x y a b a b=>>+的右焦点为1F ,右准线为1l ,若过点1F 且垂直于x 轴的弦的弦长等于点1F 到1l 的距离,则椭圆的离心率是 .12. 已知双曲线221x y -=,点12,F F 为其两个焦点,点P 为双曲线上一点,若12PF PF ⊥,则12||||PF PF +的值为__________________.13.过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = .14. 若抛物线22y px =的焦点与双曲线22163x y -=的右焦点重合,则p 的值为 ▲ .15.已知双曲线1922=-my x 的一个焦点在圆05422=--+x y x 上,则双曲线的渐近线方程为 ▲ .16.已知双曲线032122=+-=-y x ay x 的一条渐近线与直线垂直,则a= 评卷人得分三、解答题17.已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M . (1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,判断直线AK 与圆M 的位置关系.18. 已知抛物线1C 的顶点在坐标原点,它的准线经过椭圆2C :)0(12222>>=+b a by a x 的一个焦点1F 且垂直于2C 的两个焦点所在的轴,若抛物线1C 与椭圆2C 的一个交点是226(,)33M .求抛物线1C 及椭圆2C 的方程;19.如图,在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a by ax E 的焦距为2,且过点)26,2(. (1) 求椭圆E 的方程;(2) 若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M(ⅰ)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值; (ⅱ)设过点M 垂直于PB 的直线为m . 求证:直线m 过定点,并求出定点的坐标.20.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为21,F F ,线段 的中点分别为21,B B ,且△21B AB 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过 做直线l 交椭圆于P ,Q 两点,使22QB PB ⊥,求直线l 的方程ABMPOlxym【汇编高考真题重庆理20】(本小题满分12分(Ⅰ)小问5分(Ⅱ)小问7分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.ABCE解析:不妨设双曲线方程为22221x y a b -=(a >0,b >0),则依题意有222122b ac a c =-=且, 据此解得e =2,选C 2.A【解析】∵抛物线的焦点是(3,0)F ,∴双曲线的半焦距3c =,22435,4b b a ∴+=⇒==,故双曲线的渐近线的方程为52y x =±3.选C 设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=4.B 5.AF解析:B 抛物线的焦点F (2,0),直线AF 的方程为3(2)y x =--,所以点(2,43)A -、(6,43)P ,从而|PF|=6+2=86.ABE解析:B 设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B为垂足,过B作BE垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.7.C 8.C 9.B 10.D解析:由双曲线方程判断出公共焦点在x 轴上 ∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2 ∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅·x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 1212.13.【汇编高考真题重庆理14】【解析】抛物线的焦点坐标为,准线方程为,设A,B 的坐标分别为的,则,设,则,所以有,解得或,所以. 解析:65【汇编高考真题重庆理14】 【解析】抛物线22y x =的焦点坐标为)0,21(,准线方程为21-=x ,设A,B 的坐标分别为的),(),,(2211y x y x ,则414221==p x x ,设n BF m AF ==,,则21,2121-=-=n x m x ,所以有⎪⎪⎩⎪⎪⎨⎧=+=--122541)21)(21(n m n m ,解得65=m 或45=n ,所以65=AF . 14.615.x y 322±= 16.4 评卷人得分三、解答题17.解:(1)抛物线.2,524,222=∴=+-==p pp x px y 于是的准线为 ∴抛物线方程为y 2= 4x .(2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2), 又∵F (1,0), ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为y=34(x -1),MN 的方程为.432x y -=- *k *s *5*u解方程组).54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得(3)由题意得,圆M 的圆心是点(0,2),半径为2.当m=4时,直线AK 的方程为x =4,此时,直线AK 与圆M 相离, 当m ≠4时,直线AK 的方程为),(44m x my --=即为,04)4(4=---m y m x 圆心M (0,2)到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得1>∴m 当时,直线AK 与圆M 相离; 当m=1时,直线AK 与圆M 相切; 当1<m 时,直线AK 与圆M 相交.18. ;4:21x y C = 134:222=+y x C19.⑴由题意得22c = ,所以1c =,又222312a b =+,…………………………………2分消去a 可得,422530b b --=,解得23b =或212b =-(舍去),则24a =,所以椭圆E 的方程为22143x y +=.……………………………………………………4分⑵(ⅰ)设111(,)(0)P x y y ≠,0(2,)M y ,则012y k =,1212yk x =-,因为,,A P B 三点共线,所以10142y y x =+, 所以,20111221142(2)2(4)y y y k k x x ==--,8分因为11(,)P x y 在椭圆上,所以22113(4)4y x =-,故211221432(4)2y k k x ==--为定值.10分(ⅱ)直线BP 的斜率为1212y k x =-,直线m 的斜率为112m x k y -=, 则直线m 的方程为1012(2)x y y x y --=-,…………………………………………12分111101111222(2)4(2)2x x x y y x y x y y y x ---=-+=-++2211111122(4)4(2)x x y x y x y --+=++ 2211111122(4)123(2)x x x x y x y --+-=++=111122x x x y y --+=112(1)x x y -+,所以直线m 过定点(1,0)-. ………………………………………………………16分 20.【命题立意】本题考查椭圆的标准方程,平面向量数量积的基本运算,直线的一般式方程以及直线与圆锥曲线的综合问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考四川卷(文))从椭圆22
221(0)x y a b a b
+=>>上一点P 向x 轴作垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是
( ) A .24 B .12 C .22 D .32
2.(汇编年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线
1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限
的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p = ( )。