专题3匀变速直线运动的规律及其应用
匀变速直线运动的规律及应用

③
2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt
匀变速直线运动的规律

专题一 匀变速直线运动的规律及其应用一、匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a 恒定,即相等时间内速度的变化量恒定.3.规律:(1)v t =v 0+at (2)s =v 0t +21at 2(3)v t 2-v 02=2as 4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即 Δs =s i +1-s i =aT 2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时刻的瞬时速度,即v t /2=v =20t v v + 以上两个推论在“测定匀变速直线运动的加速度”等学生实验中经常用到,要熟练掌握.(3)初速度为零的匀加速直线运动(设T 为等分时间间隔):①1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶……∶v N =1∶2∶3∶…∶n②1T 内、2T 内、3T 内……位移的比为:s 1∶s 2∶s 3∶…∶s N =12∶22∶32∶…∶n 2③第一个T 内、第二个T 内、第三个T 内…… 位移的比为:s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s N =1∶3∶5∶…∶(2n -1)④从静止开始通过连续相等的位移所用时间的比:t 1∶t 2∶t 3∶…∶t N =1∶(2-1)∶(3-2)∶…∶(n -1-n )1 如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1)拍照时B 球的速度;(2)拍摄时s CD =?(3)A 球上面还有几颗正在滚动的钢球2 ,一物体作匀加速直线运动,通过一段位移△x 所用的时间为t 1,紧接着通过下一段位移△x 所用的时间为t 2. 则物体运动的加速度为A .1212122()()x t t t t t t ∆-+ B.121212()()x t t t t t t ∆-+ C .1212122()()x t t t t t t ∆+- D .121212()()x t t t t t t ∆+-3 .某质点P 从静止开始以加速度a 1做匀加速直线运动,经t (s )立即以反向的加速度a 2做匀减速直线运动,又经t (s )后恰好回到出发点,试证明a 2=3a l .4,一个质点从静止开始做匀加速直线运动,已知它在第4s 内的位移是14m ,求它前72m 所用的时间.5 每隔一定时间,从车站以同一加速度沿一笔直的公路开出一辆汽车,当第五辆车开始起动时,第一辆车已离站320m .此时第四辆车与第三辆车的距离是多大?6 一列火车有n 节相同的车厢,一观察者站在第一节车厢的前端,当火车由静止开始做匀加速直线运动时( )A .每节车厢末端经过观察者时的速度之比是1∶2∶3∶…∶nB .每节车厢经过观察者所用的时间之比是1∶(12-)∶(23-)∶…∶(1--n n )C .在相等时间里,经过观察者的车厢节数之比是1∶2∶3∶…∶nD .如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车经过观察者的过程中,平均速度为v /n7,物体沿某一方向做匀变速直线运动,在t (s )内通过的路程为s ,它在s 2处的速度为v 1,在中间时刻的速度为v 2,则v 1和v 2的关系应是( )A .当物体做匀加速直线运动时,v l >v 2B .当物体做匀减速直线运动时,v l >v 2C .当物体做匀速直线运动时,v l =v 2D .当物体做匀减速直线运动时,v l <v 28 某车队从同一地点先后从静止开出n 辆汽车,在平直的公路上沿一直线行驶,各车均先做加速度为a 的匀加速直线运动,达到速度v 后做匀速直线运动,汽车都匀速行驶后,相邻两车距离均为s ,则相邻两车启动的时间间隔为 ( )A .av 2 B .a v 2 C .υ2s D .υs 9.如图1-2-2所示的光滑斜面上,一物体以4m/s 的初速度由斜面底端的A 点匀减速滑上斜面,途经C 和B ,C 为AB 中点,已知v A ∶v C = 4∶3,从C 点到B 点历时(23-)S ,试求:(1)到达B 点的速度?(2)AB 长度?10,有一个物体开始时静止在O 点,先使它向东作匀加速直线运动,经过5秒钟,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5秒钟,又使它加速度方向改为向东,但加速度大小不改变,如此重复共历时20秒,则这段时间内( )A .物体运动方向时而向东时而向西B .物体最后静止在O 点C .物体运动时快时慢,一直向东运动D .物体速度一直在增大11,物体沿光滑斜面匀减速上滑,加速度大小为4 m /s 2,6 s 后又返回原出发点.那么下述结论正确的是( ).A .物体开始沿斜面上滑时速度为12 m /sB .物体开始沿斜面上滑时速度是10 m /sC .物体沿斜面上滑的最大位移是18 mD .物体沿斜面上滑的最大位移是15 m12 ,为了安全,在公路上行驶的汽车之间应保持必要的距离。
匀变速直线运动的规律及应用

3、 第一个T内,第二个T内,第三个T内,…, 位移的比为:
S1 : S2 : S3 : : Sn 1: 3 : 5 : : (2n 1)
三、几个重要推论及特殊规律的应用
1、一物体在时间t内做匀加速直线运动,初速度 为v0,末速度为vt.则物体在这段时间内的平 均速度为D ( )
vt A、 v 0 t
3、做匀加速直线运动的列车驶出车站,车头经过站台 上的工作人员面前时,速度大小为1m/s,车尾经过该 工作人员时,速度大小为7m/s。若该工作人员一直站 在原地没有动,则车身的正中部经过他面前时的速度 大小为多少?
4、物体以一定的初速度冲上固定的光滑斜面,到达 斜面最高点C时速度恰好为零,如图所示,已知物体 运动到斜面长度3/4处的B点时,所用时间为t,求物 体从B滑到C所用的时间
v0 B、 vt t
C、
v1 v0 2
D、
v0 vt 2
2、一质点做匀加速直线运动,第三秒内的位移2m, 第四秒内的位移是2.5m,那么以下说法中不正确 的是( C ) A.这两秒内平均速度是2.25m/s B.第三秒末即时速度是2.25m/s C.质点的加速度是0.125m/s2 D.质点的加速度是0.5m/s2
。
5、从斜面上某位置,每隔0.1 s释放一个小球,在连续 释放几个后,对在斜面上的小球拍下照片,如图所示, 测得sAB =15 cm,sBC =20 cm,试求 (1)小球的加速度. (2)拍摄时B球的速度vB=? (3)拍摄时sCD=? (4)A球上面滚动的小球还有几个?
A B C D
匀变速直线运动的规律及 应用
高一3班
知识点回顾: 1、速度、时间关系: Vt=vo+at 2、位移、时间关系 :S v0t 1 at 2
匀变速直线运动的规律及应用

(3)第1s内、第2s内、第3s内、…第ns内的位移之比
SI:SII:SIII:…:SN=1:3:5:…:(2n-1)
注意:(1)如何描述这几个规律 (2)时间间隔可扩展到任意t秒
5、做匀变速直线运动的物体,在任意相邻相等时间间隔
例3、一汽车在水平路面上行驶时以v=20m/s,遇到障碍刹车, 加速度的大小为4m/s2,求汽车在6s内通过的位移为多少? (汽车距刹车点多远)
解: S=v0t+ at2=20×6+ ×(-4)×36=48m
注意,以上解法是错误的。原因是刹车过程的最后状态是停下 来,即:vt=0。这类题在解的过程中,应首先判断在所给时 间内,物体是否停下来。如果物体没有停下来,所求过程为匀 变速直线运动,直接代公式求解;如果已经停下来了,过程应 该分为两部分:匀变速过程(停下来以前)和静止过程(停下 来以后),整个过程不再是匀变速直线运动。这种情况下,直 接代公式就不行了。但是前一个过程还是匀变速,可以代公式 求前一个过程的位移(注意这时所代时间不再是全部时间而是 匀变速过程的时间)。我们又知道,后一个过程的位移为0, 所以前一个过程的位移与整个过程的位移相同
设物体运动的初速度为v0,加速度为a,则由位移公式有:
S1=v0t1+
at12
7.2=3v0+ a×32 ①
对后3s,v2=v0+at=v0+2a
②
S2=v2t2+
at22
16.8=3v2+ a×32 ③
三式联立可求得:v0=0 a=1.6m/s2 ∴由S= at2有S总= ×1.6×52=20(m)
可以求出a=-2.5m/s2
匀变速直线运动规律及其应用总结

一、匀变速直线运动的公式匀变速直线运动的加速度a 是恒定的. 反之也成立. 加速度方向与初速度方向相同的匀变速直线运运称为匀加速直线运动; 加速度的方向与初速度方向相反叫匀减速直线运动.如果以初速度v 0的方向为正方向,则在匀减速直线运动中,加速度应加一负号表示。
1. 基本规律: (公式)(1) 速度公式: v t = v 0 + a t 或:a =tv v t 0-. (图象为一直线,纵轴截距等于初速度大小) 平均速度: 2v v v t +== X/ t (前一式子只适用于匀变速直线运动,它是指平均速度,不是速度的平均值;后一式子对任何变速运动均适用。
(2) 位移公式: x = v 0t +21at 2注:在v -t 图象中,由v - t 直线与两坐标轴所围的面积等于质点在时间t 内运动的位移(3). 速度、加速度和位移的关系式: as v v t 2202=-说明: 以上各矢量均自带符号,与正方向相同时取正,相反取负.在牵涉各量有不同方向时,一定要先规定正方向. 如果物体做匀加速直线运动时加速度取正值的话,则匀减速直线运动时加速度就取负值代入公式运算. 对做匀减速直线运动的情况,一般要先判断物体经历多少时间停止下来,然后才能进行有关计算.否则可能解出的结果不符合题意.【例】一个质点先以加速度a 1从静止开始做匀加速直线运动,经时间t ,突然加速度变为反方向,且大小也发生改变,再经相同时间,质点恰好回到原出发点。
试分析两段时间内的加速度大小关系,以及两段时间的末速度大小关系。
2. 推论公式:(1) 2v v v t += = v t 2 (匀变速直线运动某段过程的平均速度等于这段过程初速度与末速度之和的一半,也等于这段过程中间时刻的瞬时速度) (2) x =v 0+v t 2·t (仅适用匀变速直线运动)(3) v s 2=√v 02+v t22(匀变速直线运动某段过程中间位置的瞬时速度等于这段过程初速度平方与末速度平方之和的一半)(4)v s2>v t2(图像法和公式法两种证明)(5)∆x=aT2 (匀变速运动中,任意连续相等的两段时间T内位移之差为定值)x m-x n=(m-n)aT2 (逐差法)【例1】.一颗子弹水平射入静止在光滑水平面上的木块中. 已知子弹的初速度为v0, 射入木块深度为L后与木块相对静止,以共同速度v 运动,求子弹从进入木块到与木块相对静止的过程中,木块滑行的距离.【例2】. 羚羊从静止开始奔跑,经过50m距离加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x m时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹加速阶段分别做匀加速运动,且均沿同一直线索奔跑.求:⑴猎豹要在其最大速度减速前追到羚羊,x值应在什么范围? ⑵猎豹要在其加速阶段追上羚羊, x 值应在什么范围?【例3】. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0.若前车突然以恒定的加速度刹车,在它刚停住后,后车以前车刹车时的加速度开始刹车. 已知前车在刹车过程中行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A. s ;B. 2s ;C. 3s ; D 4s .3.初速度为零的匀加速直线运动的比例规律:(一)从静止开始连续相等时间T分段(1)1T末, 2T末, 3T末, … n T末瞬时速度之比为:v1∶v2∶v3∶…:∶v n = 1∶2 ∶3 ∶…∶n .(2) 1T内, 2T内, 3T内,… n T内位移之比为:s1∶s2∶ s3∶…∶s n = 12∶ 22∶32∶…∶n2 .(3)第一个T 内, 第二个T 内, 第三个T 内, …, 第n 个T 内位移之比为. s Ⅰ∶s Ⅱ∶s Ⅲ∶…s N = 1∶3∶5 ∶… ∶(2n -1).(二)从静止开始连续相等位移S 分段(1)1S 末, 2S 末, 3S 末, … n S 末瞬时速度之比为:v 1 ∶v 2∶ v 3 ∶…:∶v n = √1∶√2 ∶√3 ∶… ∶√n .(2) 1S 内, 2S 内, 3S 内, … n S 内时间之比为:t 1 ∶t 2 ∶ t 3 ∶… t n = √1∶√2 ∶√3 ∶… ∶√n .(3)第一个S 内, 第二个S 内, 第三个S 内, …, 第n 个S 内时间之比为. t Ⅰ ∶t Ⅱ ∶t Ⅲ ∶ … ∶ t N ∶:)23(:)12--… ∶ (1--n n ).【例1】. 三块完全相同的木块固定在地板上. 一初速度为v 0的子弹水平射穿第三块木板后速度恰好为零. 设子弹在三块木板中的加速度相同,求子弹分别通过三块木板的时间之比.【例2】. 一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速运动,到达B 点时恰好速度减为零. 若AB 间总长度为S ,试求质点从A 到B 所用的时间 t. 【例3】.已知O 、A 、B 、C 为同一直线上的四点。
匀变速直线运动的规律及应用

由x2-x1=aT2得
a= x2 x1 64 24 m/s2=2.5 m/s2 2 2
再由x1=v0t+ 答案
T 4 1 at2解得v =1 0 2
m/s.
1 m/s
2.5 m/s2
方法提炼 如何合理地选取运动学公式解题? (1)注意公式中涉及的物理量及题目中的已知量 之间的对应关系,根据题目的已知条件中缺少的 量去找不涉及该量的公式. (2)若题目中涉及不同的运动过程,则应重点寻 找各段运动的速度、位移、时间等方面的关系. (3)利用匀变速直线运动的四个推论往往能使解 题过程简化. (4)运动学公式众多,同一题目可以选用不同公 式解题,在学习中应加强一题多解训练,加强解 题规律的理解,提高自己运用所学知识解决实际 问题的能力,促进发散思维的发展.
图1
③能量对称性 物体从A→B和从B→A重力势能变化量的大小相 等,均等于mghAB.
(2)多解性
当物体经过抛出点上方某个位置时,可能处于上 升阶段,也可能处于下降阶段,造成双解.
题型探究
题型1 匀变速运动公式的灵活选用 【例1】一个做匀加速直线运动的物体,在连续相 等的两个时间间隔内,通过的位移分别是24 m和
第2课时 匀变速直线运动的规
律及应用
考点自清
一、匀变速直线运动 1.定义:沿着一条直线,且 加速度 不变的运动. 2.分类:
匀加速直线运动:a与v 同向
匀减速直线运动:a与v 反向
二、匀变速直线运动的规律 1.三个基本公式 v=v 速度公式: 0+at 位移速度关系式: 2-v02=2ax v 2.两个推论 (1)做匀变速直线运动的物体在一段时间内的平 均 速 度 等 于 这 段 时 间 初 末时 刻 速 度矢 量 和 的
匀变速直线运动的规律及应用(解析版)
匀变速直线运动的规律及应用目录题型一匀变速直线运动基本规律的应用类型1 基本公式和速度位移关系式的应用类型2逆向思维法解决匀变速直线运动问题题型二匀变速直线运动的推论及应用类型1平均速度公式类型2位移差公式类型3初速度为零的匀变速直线运动比例式类型4第n秒内位移问题题型三自由落体运动和竖直上抛运动类型1自由落体运动基本规律的应用类型2自由落体运动中的“两物体先后下落”问题类型3竖直上抛运动的基本规律类型4自由落体运动和竖直上抛运动的相遇问题题型四多过程问题题型一匀变速直线运动基本规律的应用【解题指导】1.v=v0+at、x=v0t+12at2、v2-v20=2ax原则上可解任何匀变速直线运动的问题,公式中v0、v、a、x都是矢量,应用时要规定正方向.2.对于末速度为零的匀减速直线运动,常用逆向思维法.3.对于汽车刹车做匀减速直线运动问题,要注意汽车速度减为零后保持静止,而不发生后退(即做反向的匀加速直线运动),一般需判断减速到零的时间.【必备知识与关键能力】1.基本规律2 0(1)速度-时间关系:v=v0+at(2)位移-时间关系:x=v0t+12at2(3)速度-位移关系:v2-v=2ax----→初速度为零v0=0v=atx=12at2v2=2ax2.对于运动学公式的选用可参考下表所列方法题目中所涉及的物理量(包括已知量、待求量和为解题设定的中间量)没有涉及的物理量 适宜选用的公式v0、v、a、t x【速度公式】v=v0+atv0、a、t、x v【位移公式】x=v0t+12at2 v0、v、a、x t【速度位移关系式】v2-v20=2axv0、v、t、x a【平均速度公式】x=v+v0 2t类型1 基本公式和速度位移关系式的应用1(2024·北京·高考真题)一辆汽车以10m/s的速度匀速行驶,制动后做匀减速直线运动,经2s停止,汽车的制动距离为()A.5mB.10mC.20mD.30m【答案】B【详解】速度公式汽车做末速度为零的匀减速直线运动,则有x=v0+v2t=10m故选B。
高三物理匀变速直线运动的规律及应用
(2)双向可逆类的运动 例如:一个小球沿光滑斜面以一定初速度v0向上运动, 到达最高点后就会以原加速度匀加速下滑,整个过程加速 度的大小、方向不变,所以该运动也是匀变速直线运动, 因此求解时可对全过程列方程,但必须注意在不同阶段v、 x、a等矢量的正负号。 3.解题步骤 (1)根据题意,确定研究对象。 (2)明确物体做什么运动,并且画出运动示意图。 (3)分析研究对象的运动过程及特点,合理选择公式, 注意多个运动过程的联系。 (4)确定正方向,列方程求解。 (5)对结果进行讨论、验算。
要点二
追及和相遇问题
1.分析方法 当两个物体在同一直线上同向运动,当前面物体的运动 速度大于后面物体的运动速度时,两者间的距离将逐渐增大, 不论两物体做什么运动均如此。反之,两者间的距离将逐渐 减小。可见,当两物体速度相等时,两者间的距离将最大或 最小。 2.求解追及和相遇问题的基本思路 (1)分别对两物体研究; (2)画出运动过程示意图; (3)列出位移方程; (4)找出时间关系、速度关系、位移关系; (5)解出结果,必要时进行讨论。
图1-2-2
分析时两车的自身长度可以略去,当作两质点进行分析。根据以上数据,进行计算,填写下表。 项目 制动前车速 v0/(km· h-1) 60 90 制动加速度 a/(m· s-2) 制动距离 x/m 事故地点车速 v′/(m·s-1)
匀变速直线运动的规律及应用
匀变速直线运动的规律及应用1. 匀变速直线运动的基础概念1.1 什么是匀变速直线运动?匀变速直线运动,其实就是物体在运动过程中,速度在不断变化,但变化的速度是恒定的。
说白了,就是车子加速或减速的速度保持不变。
就像你骑自行车,如果每秒钟都加速10公里,那么你就是在做匀变速直线运动。
1.2 匀变速直线运动的公式说到公式,别怕复杂。
其实也就那么几个关键点。
首先,我们有位移公式:( s = v_0 t + frac{1}{2} a t^2 ),其中 ( s ) 是位移,( v_0 ) 是初速度,( a ) 是加速度,( t ) 是时间。
接着,速度公式是:( v = v_0 + a t )。
只要掌握了这些,匀变速运动也就搞定了。
2. 匀变速直线运动的实际应用2.1 交通工具中的匀变速我们在交通工具上最常见的就是匀变速运动了。
例如,汽车起步的时候,加速度是比较均匀的,车速逐渐增加。
这个时候,如果你有个车速表,就能看到车速稳步上升。
再比如地铁,刚启动时加速也是匀速的,让你在车上也能感受到“平稳”的感觉。
2.2 日常生活中的应用不仅限于交通工具,我们平常玩滑板、溜冰,甚至走路时,也会遇到匀变速运动的情况。
当你加速走路或减速时,速度的变化往往是均匀的。
比如你在跑步机上慢跑,跑步机的速度增加得比较平稳,这就是匀变速的典型表现。
3. 如何利用匀变速直线运动提高生活质量。
3.1 提高运动效果利用匀变速运动的规律,我们可以更科学地安排运动计划。
比如你要增加跑步的强度,可以在跑步时逐渐增加速度,这样可以避免突然加速带来的不适,同时提高运动效果。
3.2 安全驾驶在驾驶过程中,掌握匀变速运动的知识也非常重要。
比如,当你在高速公路上超车时,平稳加速不仅让驾驶更安全,也能提高车辆的稳定性。
懂得运用匀变速的原理,你的驾驶体验会更舒适,车子也能更省油。
结语所以呢,匀变速直线运动不仅是物理课上的难题,更是我们日常生活中的重要部分。
了解它的规律,应用到实际生活中,不仅能让我们在运动时更有效率,还能在驾驶时更安全。
匀变速直线运动规律的公式总结与应用
匀变速直线运动规律的公式总结与应用一、基本公式:1. 速度—时间公式:v t=v0+at;2.位移—时间公式: x v0t1at222-v2 4. 位移—平均速度公式:X V0V3. 位移—速度公式:v t0 =2ax2t t二、推导公式:v0v t X1.平均速度公式:v.=2Tv0v t2.某段的中刻的瞬速度等于段内的平均速度:v t223.某段位移的中位置的瞬速度公式:v 02v t2v x2。
无匀加或匀减速都有。
24.匀速直运中,在任意两个相等的T 内的位移差是恒量,即X=X n+l–X n=aT 2= 恒量。
5.初速零的匀速直运中的比例关系(T 相等的隔, x 相等的位移隔):⑴、 T 末、 2T 末、 3T 末⋯⋯的瞬速度之比: v1:v2:v3:⋯⋯:v n=1 :2 :3 :⋯⋯:n;⑵、 T 内、 2T 内、 3T 内⋯⋯的位移之比: x1: x2:x3:⋯⋯:x n=1 :4:9 :⋯⋯:n 2;⑶、第一个 T 内、第二个 T 内、第三个 T 内⋯⋯的位移之比: xⅠ:xⅡ: xⅢ:⋯⋯:s n=1 :3 :5 :⋯⋯:(2n-1) ;⑷、前一个 x、前两个 x、前三个 x⋯⋯所用的之比: t 1:t 2:t 3:⋯⋯:t n =1 :⋯⋯:;⑸、第一个 x、第二个 x、第三个 x⋯⋯所用的之比 tⅠ、 t Ⅱ、t Ⅲ:⋯⋯:t N =1 :⋯⋯:。
三、追及相遇问题:Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):相遇问题的常见情况:1、同向运动的两物体追及即相遇;2、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.相同时间内位移的变化相同 B.相同时间内速度的变化相同 C.相同时间内加速度的变化相同
D.相同路程内速度的变化相同
解析:匀变速直线运动的定义是质点在一条直线上运 动,相等的时间内速度的变化相等,显然只有B正确. 答案:B
(单选Ⅰ)物体由静止开始做匀加速直线运 动,它最初10 s内通过的位移为80 m,则它经过5 m处时 的速度等于( A.2 m/s C.6 m/s ) B.4 m/s D.10 m/s
二、匀变速直线运动的规律 1.匀变速直线运动的规律和基本分析方法
(1)要熟记基本公式和推导公式
基本公式 ①vt=v0+at 1 2 ②s=v0t+ at 2
推导公式 ①v2-v2=2as t 0 vt+v0 ②s= · t 2
说明:以上四个公式中只有两个是独立的,解题时 要适当的选择其中的两个即可.
(单选Ⅰ)某同学从楼顶让一石块自由下落,
测得石块到达地面的时间是2 s,则楼房的高度为(g=10 m/s2)( )
A.20 m
C.45 m
B.40 m
D.60 m
1 2 1 解析:由公式 h= gt = ×10 m/s2×(2 s)2=20 m. 2 2 答案:A
(单选Ⅰ)在匀变速直线运动中,下列说法中 正确的是( )
C.2 s/n2
D.2 s/(n+1)
1 2 1 2s 2 解析:由 s= at 可知,s= a×n ⇒a= 2 ,故选 C. 2 2 n 答案:C
单项选择题.对于匀减速直线运动的理解,下列说法正确 的是( ) A.加速度越来越小 C.加速度不变 B.位移越来越小 D.速度不变
解析:匀变速运动是加速度恒定不变的运动,故选C.
2
此式可描述为初速度为零的匀加速直线运动,在连续 相等时间内位移的比等于连续奇数的比.
(3)1T 内、2T 内、3T 内……位移之比:s1∶s2∶s3∶… 1 2 2 2 2 =1 ∶2 ∶3 ∶….(此式可由 s= at 导出) 2 (4)通过连续相等的位移所用时间之比: t1∶t2∶t3∶…∶tn =1∶( 2-1)∶( 3- 2)∶…( n- n-1). 1 2 2s (此式可由 s= at 、t= 导出) 2 a
答案:C
单项选择题.汽车在平直的公路上以20 m/s的速度做 匀速运动,刹车后,汽车以4 m/s2的加速度做匀减速直线 运动,那么经过4 s,汽车的位移是( ) A.48 m B.50 m
C.32 m
D.以上都不对
解析:汽车从刹车开始到停止所需时间为 t, 则 vt=v0-at⇒t=5 s>4 s,故汽车在 4 s 内还在运动, 1 2 1 由 s=v0t- at 可知,s=(20×4- ×4×42)m=48 m, 2 2 故选 A. 答案:A
2*.初速度为零的匀变速直线运动的比例式 从t=0开始计时,以T为时间单位,则:
(1)1T末、2T末、3T末……瞬时速度之比: v1∶v2∶v3∶…=1∶2∶3∶….(此式可由vt=at直接推出)
(2)第一个T内、第二个T内、第三个T内、……位移之 比:sⅠ∶sⅡ∶sⅢ∶…∶sn=1∶3∶5∶…∶(2n-1).(此式 1 可由位移公式S= at2推导)
3.物体在连续相邻的相同时间 T 内的位移之差为一 个恒量.Δs=sⅡ-sⅠ=sⅢ-sⅡ=sⅣ-sⅢ=……=aT2.
52.关于匀加速直线运动,下列表述正 确的是 A.平抛运动是匀加速直线运动 B.斜抛运动是匀加速直线运动 c.匀加速直线运动的加速度大小恒定 D.匀加速直线运动的加速度方向与速 度方向相同
(2)要分清运动过程是加速还是减速的. (3)要清楚这四个公式都是矢量式,求解问题时首先 要规定一个正方向,并以此来确定其他各矢量的正负,一 般选取v0为正方向. (4)一个匀变速直线运动的过程,一般用五个物理量 来描述,v0、vt、a、s和t,只要知道其中三个量,就可以 求解其他两个未知量,即知三求二. (5)有的问题中,某个物理量不是直接给出的,但通 过某种联系,给出特殊的物理情景,同样可以转化为上述 的某种类型.
AC
“飞流直下三千尺,疑是银河落九天” 是唐代诗人李白描写庐山瀑布的佳句。 某瀑布中的水下落的时间是4 秒,若把 水的下落近似简化为自由落体,g 取10 米/秒2,则下列计算结果正确的是 A.瀑布高度大约是80米 B.瀑布高度大约是10米 C.瀑布高度大约是1000米 D.瀑布高度大约是500米
A
CD
2011.T33.一物体从A点由静止开始做匀 加速直线运动,到达B点时速度为v,再 运动到C点时的速度为2v,则AB与BC 的位移大小之比为 A.1:3 B.1:4 C.1:2 D.1:1处理,要通过两质点的速度比较进 行分析,找到隐含条件(即速度相同时,而质点距离最大 或最小).再结合两个运动的时间关系、位移关系建立相 应的方程求解,必要时可借助两质点的速度图象进行分 析. 1.两个关系:即时间关系和位移关系 2.一个条件:即两者速度相等,它往往是物体间能 否追上,追不上或(两者)距离最大、最小的临界条件,也 是分析判断的切入点.
高二学业水平测试物理复习 第二讲
主题 匀变速直线 运动的规律
内容 匀变速直线运动及其公 式、图象
要求
Ⅱ
一、自由落体运动 1.条件:初速度为零、只受重力作用. 2.性质:初速度为零、加速度为 g 的匀加速直线运动. 3.自由落体运动规律 1 2 速度:vt=gt 位移:s= gt 2 速度与位移关系:v2=2gs t
57.图26是测量人的反应时间的小实验,乙 同学在甲同学的大拇指与食指之间的正上方 捏 住一把直尺,甲同学的大拇指与食指之 间距离较小(约3cm),乙同学突然放开尺子 , 甲同学尽快用手指去夹住.下列表述正 确的有( ) A.测的是甲同学的反应时间 B.测的是乙同学的反应时间 C.实验原理是 D.实验原理是
1 2 2s 解析:由 s= at ⇒a= 2 =1.6 m/s2, 2 t 所以 vt= 2as= 2×1.6×5 m/s=4m/s. 答案:B
2.(单选Ⅱ)(2010年福建水平测试)某物体从二 层楼高处自由下落,则物体下落到地面所用时间大约 是( ) A.0.01 s C.2 s B.0.8 s D.10 s
解析:由匀变速直线运动的速度公式vt=v0+at 有当v0=3 m/s,vt=4 m/s,t=1 s时得到a=1 m/s2.
答案:A 点评:匀变速直线运动的规律是本专题的重点 内容之一,要熟练掌握基本公式和推论式.
4.(单选Ⅰ)(2011年深圳模拟)一物体由静止开始 做匀加速运动,它在n秒内的位移为s,则其加速度大小 为( ) A.2 s/(2n-1) B.2 s/(n-1)
多项选择题.由静止开始做匀加速直线运动的火车, 在第10 s末的速度为2 m/s,下列叙述中正确的是( )
A.头10 s内通过的路程为10 m B.每秒速度变化0.2 m/s C.10 s内平均速度为1 m/s D.第10 s内通过2 m
1 2 2 解析:由 s= at ,vt=at 可知,a=0.2 m/s ⇒ 2 1 s10= ×0.2×102 m=10 m,A、B 均对,10 s 内的平 2 s10 10 均速度 v10= = m/s=1 m/s,C 对,第 10 s 内 t10 10 1 1 2 2 1 位移,s=s10-s9= a×10 - a×9 = ×0.2×19 m 2 2 2 =1.9 m.故 D 错. 答案:ABC
说明:(1)以上四个式子只适用于初速度为零的匀加速 运动,对于做匀减速且速度一直减小到零的运动可等效于 反向初速度为零的匀加速运动,也可以用此比例式. (2)应用比例关系时,可任意从比例中取出两个或一部 分进行应用,但比例顺序要对应,不能颠倒、比例数值也 不能改变.
三、匀变速运动的三条特殊规律 1.物体在某段时间的中间时刻的瞬时速度等于这段 v1+v2 t 时间内的平均速度:v = v = . 2 2 2.物体在某段位移中点位置的瞬时速度与这段位移 s 初末位置的瞬时速度的关系:v = 2 v2+v2 1 2 . 2
解析:二层楼高处的含义;地面为一层,故二层 楼高处h约为3 m ,由h=gt2⇒t≈0.8 s 故选B.
答案:B
3.(单选Ⅱ)某质点做匀加速直线运动,零时刻的 速度大小为3 m/s,经过1 s后速度大小为4 m/s,该质点 的加速度大小是( ) A.1 m/s2 C.3 m/s2 B.2 m/s2 D.4 m/s2
常见的情况有: ①匀加速运动追及匀速运动,当二者速度相同时相 距最远. ②匀速运动追及匀加速运动,当二者速度相同时追 不上以后就永远追不上了.此时二者相距最近. ③匀减速直线运动追匀速运动,当二者速度相同时 相距最近,此时假设追不上,以后就永远追不上了.
④匀速运动追匀减速直线运动,当二者速度相同时 相距最远.
3.解题思路和方法 分析两物体运动过程,画运动示意图 → 由示意图找两物体位移关系 → 据物体运动性质列含有时间位移方程
五、汽车行驶的安全距离
1.反应时间 人从发现情况到采取相应的措施经过的时间,叫做反 应时间.汽车驾驶员的反应时间与其注意力集中程度、驾 驶经验和身体状况有关,正常情况下一般为0.5 s~1.5 s左 右.如果是酒后驾驶,反应时间至少会增加2~3倍,反应 时间内汽车作匀速直线运动.
2.反应距离 汽车在行驶过程中,驾驶员发现前方有情况需要停车或 避让时必须先经过一段时间(反应时间)Δt后,大脑才会控制人 做出制动动作.在反应时间内汽车仍然会以原来的速度v匀速 行驶,所行驶的距离称为反应距离. 3.刹车距离 从刹车开始,到汽车完全停止下来,汽车做减速运动, 所通过的距离叫做刹车距离.刹车距离的长短,取决于路面 情况、汽车行驶的速度和汽车轮胎的性能等因素. 由计算可知:汽车行驶的速度每增加一倍,刹车距离就 会增加三倍.所以各种道路都会根据道路情况和周围环境情 况设定一个安全行驶速度,严禁驾驶员超速行驶.