2018年上海市青浦区中考数学一模试卷
中考试题集萃-2018上海一模试题集

6、如图,如果把抛物线 y = x 2 沿直线 y = x 向上平移 2 2 个单位后,其顶点在直 线 y = x 上的 A 处,那么平移后的抛物线解析式是( A. y = x+2 2 C. y = x−2 2 )
(
)
2
+ 2 2 B. y =( x + 2 ) + 2
2
(
)
2
+2 2
D. y =( x − 2 ) + 2
1 AB 2
B. BD =
1 AD 2
2 C. CD = AD ⋅ BD
2 D零向量,下列判断错误的是(
)
r r r r A.如果 a = 2b ,那么 a / / b ; r C. 0 的方向不确定,大小为 0
r r r r r r B.如果 a = b ,那么 a = b 或 a = −b ; r r r r D. 如果 e 为单位向量且 a = 2e ,那么 a = 2 .
)
4、二次函数 y = x 2 + 2 x + 3 的图像开口方向为( A.向上 B.向下 C. 向左 D. 向右
5、 如果从某一高处甲看低处乙的俯角为 30o , 那么从乙处看甲处, 甲在乙的 ( A.俯角 30o 方向 B. 俯角 60o 方向 C. 仰角 30o 方向
)
D. 仰角 60o 方向
中考试题集萃(1)--2018年上海市一模试题集
【数学】 【数学】宝山区2018年一模试卷及答案.pdf 【数学】崇明区2018年一模试卷及答案.pdf 【数学】奉贤区2018年一模试卷及答案.pdf 【数学】虹口区2018年一模试卷及答案.pdf 【数学】黄浦区2018年一模试卷及答案.pdf 【数学】嘉定区2018年一模试卷及大答案.pdf 【数学】金山区2018年一模试卷及答案.pdf 【数学】静安区2018年一模试卷及答案.pdf 【数学】闵行区2018年一模试卷及答案.pdf 【数学】浦东新区2018年一模试卷及答案.pdf 【数学】普陀区2018年一模试卷及答案.pdf 【数学】青浦区2018年一模试卷及答案.pdf 【数学】松江区2018年一模试卷及答案.pdf 【数学】徐汇区2018年一模试卷及答案.pdf 【数学】杨浦区2018年一模试卷及答案.pdf 【数学】长宁区2018年一模试卷及答案.pdf 【英语】 2018宝山区中考英语一模.pdf 2018崇明区中考英语一模.pdf 2018虹口区中考英语一模.pdf 2018黄浦区中考英语一模.pdf 2018金山区中考英语一模.pdf 2018青浦区中考英语一模.pdf 2018松江区中考英语一模.pdf 2018徐汇区中考英语一模.pdf 2018杨浦区中考英语一模.pdf 2018长宁区中考英语一模.pdf 2018静安区中考英语一模.pdf 2018浦东新区中考英语一模.pdf 【化学】 2018届宝山区中考化学一模.pdf 2018届崇明区中考化学一模.pdf 2018届奉贤区中考化学一模.pdf 2018届虹口区中考化学一模.pdf 2018届黄浦区中考化学一模.pdf 2018届嘉定区中考化学一模.pdf 2018届金山区中考化学一模.pdf 2018届静安区中考化学一模.pdf 2018届闵行区中考化学一模.pdf 2018届浦东新区中考化学一模.pdf 2018届普陀区中考化学一模.pdf 2018届青浦区中考化学一模.pdf 2018届松江区中考化学一模.pdf 2018届徐汇区中考化学一模.pdf 2018届杨浦区中考化学一模.pdf 2018届长宁区中考化学一模.pdf
2018届上海市青浦区高三上学期期末考试(即一模)数学试题及答案

青浦区高考数学一模卷(满分150分,答题时间120分钟)学生注意:1.本试卷包括试题纸和答题纸两部分.2.在试题纸上答题无效,必须在答题纸上的规定位置按照要求答题.3.可使用符合规定的计算器答题.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(1月青浦)在直角坐标系内,到点(1,0)和直线1x =-距离相等的点的轨迹方程是24y x = .【解析】(解释性理解水平/点的轨迹方程)由题意知,该点的轨迹是抛物线,其中抛物线的焦点坐标为(1,0),故点的轨迹方程为24y x =.2. (1月青浦)已知全集U =R ,集合{}{},12A x x a B x x =<=-<<,且U A B ð=R ,则实数a 的取值范围是 2a … .【解析】(探究性理解水平/集合的并集、补集运算,集合的描述法)由(][),12,U B =-∞-+∞ ð,且U A B =R ð,则易得2a ….3. (1月青浦)各项为实数的等比数列中7191,8a a =-=-,则13a 【解析】(探究性理解水平/等比数列的性质,等比中项)由等比数列的性质得:()2661978,a q q a ===,()61371a a q =⋅=-⋅=-. 4. (1月青浦)已知点(1,1)(12)(21)(34)A B C D --、,、,、,,则向量AB在CD 方向上的投影为【解析】(探究性理解水平/平面向量的数量积,向量的投影) 依题意,(2,1),AB =[来源:Z §xx §](5,3)CD = ,设AB 与CD 夹角为θ,则cos AB CD AB CDθ⋅==⋅AB ∴ 在CD方向上的投影为cos AB θ⋅==来源:学§科§网Z §X §X §K] 5. (2014年1月青浦)已知5π1cos()123α+=,且ππ2α-<<-,则πcos()12α-=【解析】(探究性理解水平/同角三角比的关系,诱导公式) ππ2α-<<- ,则7π5ππ121212α-<+<-,5πsin()12α∴+==πcos()12α-=πcos()12α-=π5π5πcos[()]sin()21212αα-+=+=6. (1月青浦)已知圆锥底面圆的周长为4π,侧棱与底面所成角的大小为arctan 2,则该圆锥的体积是3. 【解析】(探究性理解水平/圆锥的体积)设圆锥底面圆的半径为r ,高为h ,侧棱与底面所成角为θ,则4π=2π,r 2r ∴=,又tan 2,4h h rθ==∴=,所以圆锥的体积为21π3V h r =⋅⋅16π3=. 7. (1月青浦)要使函数23y x ax =-+在区间[2,3]上存在反函数,则实数a 的取值范围是4a …或6a … .【解析】(探究性理解水平/反函数,函数的单调性)要使函数23y x ax =-+在区间[]2,3上存在反函数,则函数23y x ax =-+在区间[]2,3上单调,则22a…或32a …,即4a …或6a ….8. (1月青浦)已知lim(1)1n n q →∞-=,则实数q 的取值范围是 11q -<< . 【解析】(解释性理解水平/极限的计算)因为lim(1)1n n q →∞-=,故lim 0n n q →∞=,故1q <,则q 的取值范围为11q -<<.9. (1月青浦)已知定义域为R 上的偶函数f(x )在(,0]-∞上是减函数,且1()22f =,则不等式(2)2x f >的解集为 {|1}x x >- .[来源:Z#xx#]【解析】(探究性理解水平/函数的奇偶性、单调性)由题意可知函数()f x 在(0,)+∞上是增函数,则有122x >,即1x >-,所以不等式(2)2x f >的解集为{|1}x x >-.10. (1月青浦)已知集合{}1,2,3,4,5A =,从A 的非空子集中任取一个,该集合中所有元素之和为奇数的概率是1631. 【解析】(解释性理解水平、探究性理解水平/随机事件的概率,加法原理,组合与组合数)因为A 中有5个元素,所以其非空子集的个数为52131-=.该集合中所有元素之和为奇数的情况有5种情况:①集合中含有1个元素的情况有13C 3=种;②集合中含有2个元素的情况有1132C C 6=种;③集合中含有3个元素的情况有321323C C C 4+=种;④集合中含有4个元素的情况有3132C C 2=种;⑤集合中含有5个元素的情况有1种,故该集合中所有元素之和为奇数的概率为:36421163131++++=.11. (1月青浦)点P 在22125144x y -=上,若116PF =,则2PF = 26 .【解析】(探究性理解水平/双曲线的简单几何性质)由题意知5,12a b ==,设12F F 、分别为双曲线的左、右焦点,则点P 在双曲线的右支上,根据双曲线的几何性质,有12||||210PF PF a -==,所以2||26PF =.12. (1月青浦)已知扇形的周长为定值l ,写出扇形的面积y 关于其半径x 的函数解析式 1(2),(,)222π2l ly l x x x =-∈+ . 【解析】(探究性理解水平/扇形的周长、面积公式)由题意,扇形的半径为x ,周长为l ,则扇形的弧长为2l x -,所以扇形的面积为1(2)2y l x x =-. 又2022πl x l x x->⎧⎨-<⎩,解得22π2l l x <<+,故1(2),(,)222π2l ly l x x x =-∈+ 13. (1月青浦)**已知直角坐标平面上任意两点()()1122,,,P x y Q x y ,定义[来源:Z §xx §()212121212121,,,x x x x y y d P Q y y x x y y ⎧---⎪=⎨---⎪⎩…<为,P Q 两点的“非常距离”.当平面上动点(),M x y 到定点(),A a b 的距离满足3MA =时,则(),d M A 的取值范围是⎤⎥⎣⎦. 【解析】(探究性理解水平/数学概念的新定义,数形结合的思想)由题意可知点M 在以A 为圆心,3r =为半径的圆周上,如图所示:第13题图由“非常距离”的新定义可知:当x a y b -=-时,(,)d M A 取得最小值,()min ,d M A2=;当3,0x a y b -=-=或0,3x a y b -=-=时,(,)d M A 取得最大值,()max ,3d M A =,故(),d M A的取值范围为2⎡⎤⎢⎥⎣⎦14. (1月青浦)**若不等式()()11131n na n +--⋅++<对任意自然数n 恒成立,则实数a 的取值范围是 3a -…<2 .【解析】(探究性理解水平/不等式恒成立,求参数)当n 为奇数时,不等式可化为113311a a n n -+⇒--++<>,要使不等式对任意自然数n 恒成立,则3a -…;当n 为偶数时,不等式可化为131a n -+<,要使不等式对任意自然数n 恒成立,则(3a <min 11)32101n -=-=++,即2a <.综上,3a -…<2. 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. (1月青浦)指数函数()()0,1x f x a a a =≠且>在R 上是减函数,则函数()()22g x a x =-在R上的单调性为A.单调递增B.单调递减C.在(),0-∞上递减,在()0,+∞上递增D.在(),0-∞上递增,在()0,+∞上递减 【解析】(探究性理解水平/指数函数的单调性,二次函数的单调性)因为指数函数()x f x a =在R 上是减函数,则01a <<,所以221a ---<<,故函数()()22g x a x =-开口向下,故()g x 在区间(),0-∞上递增,在区间()0,+∞上递减,故选D. 16. (1月青浦)直线()21210ax ay +-+=的倾斜角的取值范围是(C )A.π0,4⎡⎤⎢⎥⎣⎦B.ππ,42⎡⎤⎢⎥⎣⎦C.π3π,44⎡⎤⎢⎥⎣⎦D.π3π0,,π44⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【解析】(探究性理解水平/直线的倾斜角与斜率的关系,基本不等式)①当0a =时,斜率不存在,即倾斜角为π2;②当0a >时,直线的斜率211121222a a a k a ++==⨯=…,即直线的倾斜角的取值范围为ππ[,)42.当0a <时,直线的斜率21122a a a k a ++==-1212-⨯=-…,即直线的倾斜角的取值范围为π3π(,]24.综上,直线的倾斜角的取值范围为π3π[,]44,故选C.17. (1月青浦)设等差数列{}n a 的前n 项和为n S 且满足15160,0,S S ><则3151212315,,,,S S S S a a a a 中最大的项为(C ) A.66S a B.77S a C.88S a D.99Sa 【解析】(探究性理解水平/等差数列的性质及其前n 项和) 由于()11515152a a S +=8150a =>,()()11616891680,2a a S a a +==+<所以可得890,0a a ><且公差0d <. 所以89101512128910150,0,,0,0,0,,0,S S S S S Sa a a a a a >>><<<又1280,S S S < <<<且1280a a a > >>>,所以在15121215,,,S S S a a a 中最大的项是88S a ,故选C.18. (1月青浦)**对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423x x f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是(B )A.11m1mC.m -1m -【解析】(探究性理解水平/函数奇偶性的新定义,二次函数的性质,换元法)()f x 为“局部奇函数”,∴存在实数x 满足()()f x f x -=-,即24223x x m m ---+-24223x x m m =-+-+,令2(0)xt t =>,则222112()260t m t m t t+-++-=,即[来源:学科网]2211()2()280t m t m t t +-++-=在t >0有解,再令1(2)h t h t=+≥,则 22()2280g h h mh m =-+-=在2h ≥有解.函数关于h 的对称轴为h =m ,①当2m ≥时,()()g h g m ≥,222()2280g m m m m ∴=-+-≤,解得m 2≤≤;②当2m <时,则2(2)44280g m m =-+-≤,即2220m m --≤,解得12m <.综合①②,可知1m ≤.故选B.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (1月青浦) (本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,向量(cos ,1)2Cm =u r ,(1,sin())n A B =-+r ,且m n ⊥u r r .(1)求角C 的大小;(2)若32CA CB ⋅=uu r uu r , 且4a b +=,求c 的边长.【解】(探究性理解水平/向量的数量积,二倍角公式,余弦定理)(1)m n ⊥ ,0m n ∴⋅= ,cos sin()02CA B ∴-++=…………………2分cos sin 02C C ∴-+=,cos 2sin cos 0222C C C∴-+=,……………………………4分且0C <<π022C π∴<<,1cos 0sin 222C C ∴≠∴=,263C C ππ∴=∴=……6分(2)13cos 322CA CB ab C ab ab ⋅===∴= , ………………………………8分又4a b += ,22222cos ()21697c a b ab C a b ab ab ∴=+-=+--=-= ……11分c ∴=……………………………………………………………12分20. (1月青浦) (本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 如图,在直三棱柱111ABC A B C -中,90BAC ∠=o ,1AB AC AA ==.(1)求证:1AB ⊥平面11A BC ;成的角的大(2)若D 为11B C 的中点,求异面直线AD 与1A B 所小.【解】(解释性理解水平、探究性理解水平/空间线面垂直关系的判定和异面直线的夹角,余弦定理,空间向量及其运算)(1)由题意知四边形11AA B B 是正方形,故11AB BA ⊥.…………… 2分 由1111AA A B C ⊥平面得111AA AC ⊥.又1111AC A B ⊥,所以1111AC AA B B ⊥平面, 故11AA AB ⊥ ………………………………………………………… 4分 从而得111AB A BC ⊥平面.……………………………………………… 6分(第20题图)(2)解法一:在线段1B D 上取中点M ,连结OM OM AD ∴直线OM 与1A B 所成角等于直线AD 与1A B 所成的角. ………………………………… 8分 设1=AB AC AA a ==,在△1OMA中,12OM AD ==,1,OA =1A M =……………………………………………………………11分2221111cos 26OM OA A M AOM OM OA +-∠==⋅ …………………………………13分1AOM ∠=AD 与1A B所成角的大小是. …14分 解法二:设1=AB AC AA a ==,以1A 为坐标原点建立空间直角坐标系可得(0,0,)A a ,(,,0)22a aD ,1(0,0,0)A ,(,0,)B a a ,1(,0,)A B a a ∴= , (,,)22a aAD a ∴=- ………………………………………………………10分直线AD 与1A B 所成的角为θ,向量1AD A B与的夹角为ϕ2111cos 6a AD A BAD A Bϕ-⋅===-⋅ ……………………………………12分又cos cos θϕ==θ=, 即异面直线AD 与1A B所成角的大小是.……………………………14分 (说明:两种方法难度相当)21. (1月青浦) **(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求12,a a 的值; (2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.【解】(探究性理解水平/等差数列的性质及其前n 项和,对数的运算,解不等式组) (1)由已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立21212222a a S S a a S S =+⎧∴⎨=+⎩即21122212222a a a a a a a =+⎧⎨=+⎩ 解方程组得1200a a =⎧⎨=⎩或12a a ⎧=⎪⎨=⎪⎩1212a a ⎧=⎪⎨=⎪⎩……………………… 各2分 (2)112102a a a ⎧=⎪>⎨=+⎪⎩即…………………………………… 7分又22n n a a S S =+,当2n ?时,2121n n a a S S --=+ 作差得()211n n n n a a a S S ---=-1(2)n n n a a a --=1n n a -∴=,1(1n n a -⇒=…………… 10分令110lgn n a b a =,则110lg 1(n n a b n a ===--可知{}n b 是首项为1,公差为- 11分 解法一:12n n T b b b =+++2(1)14(lg 2[(1)]24lg 2n n n n n -=+⋅-=--+…………………………… 13分由计算器可得41lg 27.142+≈,所以n =7时n T 的最大值为7217lg 22T =-…… 14分解法二:1217.6301(0lg 2702106.63lg 2n n n b n n b n n +⎧≈⎪⎧--⎧⎪⎪⇒⇒⇒=⎨⎨⎨-⎩⎪⎪⎩≈⎪⎩+……………… 14分解法三:也可以用两边夹的方法计算得到11217.63lg 272 6.63lg 2n n n n n T T n T T n -+⎧≈⎪⎧⎪⇒⇒⇒=⎨⎨⎩⎪≈⎪⎩+……卼… ………………………………… 14分22. (1月青浦) **(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题8分,第(3)小题4分.椭圆C :22221(0)x y a b a b+=>>的长轴是短轴的两倍,点1)2A 在椭圆上.不过原点的直线l 与椭圆相交于A 、B 两点,设直线OA 、l 、OB 的斜率分别为1k 、k 、2k ,且1k 、k 、2k 恰好构成等比数列,记△ABC 的面积为S .(1)求椭圆C 的方程.(2)试判断22OA OB +是否为定值?若是,求出这个值;若不是,请说明理由? (3)求S 的最大值.【解】(探究性理解水平/椭圆的标准方程,直线与椭圆的位置关系,等比数列的性质,基本不等式)(1)由题意可知2a b =且223114a b+=21b ⇒=,……………………………… 2分 所以椭圆的方程为2214x y +=……………………………… 4分 (2)设直线l 的方程为y kx m =+,1122(,)(,)A x y B x y 、由2244y kx mx y =+⎧⎨+=⎩⇒222(14)8440k x kmx m +++-=……………………………… 5分12221228144414km x x k m x x k -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩且2216(14)0k m ∆=+->……………………………… 6分 12k k k 、、恰好构成等比数列.2121212y y k k k x x ∴===1212()()kx m kx m x x ++ 即()222222221484444m k k m k k m m +-=++--⇒22240k m m -+= ……………………………… 8分 214k ∴=⇒12k =± 此时216(2)0m ∆=->,即(m ∈ ……………………………… 9分 12212222x x m x x m +=±⎧∴⎨⋅=-⎩ 2222221122OA OB x y x y +=+++=()2212324x x ++ =()2121232254x x x x ⎡⎤+-+=⎣⎦ ……………………………… 11分 所以22OA OB +是定值为5. ……………………………… 12分(3)1212S AB d x =⋅=- ……………………………… 13分m (14)分1= 当且仅当21m =即1m =±时,S 的最大值为1. ……………………………… 16分23. (1月青浦)**(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分. 设集合1()(0,),()()M f x x f x f x ⎧⎫=∈+∞=⎨⎬⎩⎭. (1)已知函数2()(0)1x f x x x =>+,求证:()f x M ∈; (2)对于(1)中的函数()f x ,求证:存在定义域为[2,)+∞的函数()g x ,使得1()()g x f x x+=对任意0x >成立. (3)对于任意()f x M ∈,求证:存在定义域为[2,)+∞的函数()g x ,使得等式1()()g x f x x+=对任意0x >成立. 【证明】(探究性理解水平/函数性质的综合运用)(1)由2()1x f x x =+可得,2211()111x x f x x x ==++,……………………… 3分 因此1()()f x f x =.又0x >,所以()f x M ∈. ……………………………… 4分(2)由2()1x f x x =+=11x x +,设函数()1()g x x x =≥2,当0x >时,1x x +≥=2. …………………………… 8分 则1()g x x +=11x x +=21x x+=()f x . ……………………………10分 即存在定义域为[)2,+∞的函数()g x ,使得等式1()g x x+=()f x 对任意0x >成立.(3)当0x >时,设1x x +=t ,则2t ≥,可得210x tx -+=,解得x =, ……………………………12分 设函数()g x=f ()x ≥2,当0x >时,1x x +≥………13分 则1()g x x +=11()2x x x x f f ++-=.……………………14分 当01x <≤时,x ≤1x ,1()g x x +=11()2x x xx f +-+=1()f x =()f x ………16分 当1x >时,x >1x ,1()g x x +=11()2x x xx f ++-=()f x . ……………18分 即存在定义域为[)2,+∞的函数()g x ,使得等式1()g x x +=()f x 对任意0x >成立.。
2018年上海市浦东新区中考一模数学

解析:(1)根据相似三角形的判定和性质解答即可; (2)根据平行四边形的性质和相似三角形的相似比解答即可. S C FH 1 答案(1)∵ , S四 边 形 C D G H 8 ∴
S S
CFH DFG
=
1 . 9
∵□ABCD 中,AD∥BC, ∴△CFH∽△DFG. 2 S CH 1 ∴ C FH = = . S D FG DG 9
5 1 MN, 2 而 MN=4cm,
∴MP=
∴MP=4×
5 1 =(2 5 ﹣2)cm. 2
答案:(2 5 ﹣2) 9.已知△ABC∽△A1B1C1,△ABC 的周长与△A1B1C1 的周长的比值是 应边上的中线,且 BE=6,则 B1E1=_____. 解析:∵△ABC∽△A1B1C1,△ABC 的周长与△A1B1C1 的周长的比值是 ∴ 即
解析: (1)由 DE∥BC 推出 AD: AB=AG: AF=DE: BC=2: 3, 推出 DE=
2 C a பைடு நூலகம்BC, 由B 3
, 推出 D E
2 a; 3
(2)作△ABC 的中线 AF,结论: A F 就是所要求作的向量;
答案:(1)如图设 G 是重心,作中线 AF. ∵DE∥BC, ∴AD:AB=AG:AF=DE:BC=2:3, 2 ∴DE= BC, 3 ∵ BC a , 2 ∴ DE a . 3 2 答案: a 3 (2)作△ABC 的中线 AF,
BE 3 , B1 E 1 2 6 3 , B1 E 1 2
3 , 2 3 ,BE、B1E1 分别是它们对 2
解得 B1E1=4. 答案:4 10.计算: 3 a 2 a 解析: 3 a 2 a 答案: 5 a b
上海市2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案

上海2018届九年级上学期期末(一模)数学试卷分类汇编计算题专题含答案宝山区19.(本题满分10分) 计算:01sin 60tan60cos 45sin 30π︒︒︒︒-+(+)- 长宁区19.(本题满分10分) 计算:︒-︒-︒︒30cos 60tan 45sin 445cot 2. 崇明区19.(本题满分10分) 计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒奉贤区虹口区19.(本题满分10分) 计算:22sin 60sin 30cot 30cos30°°°°+-. 黄浦区19.(本题满分10分) 计算:2cot452cos 30sin60tan301︒︒+-︒︒+. 嘉定区19. (本题满分10分,每小题5分)计算:︒-︒+︒-︒45tan 30cos 2260sin 30cot金山区19.(本题满分10分) 计算:cos30cot 45sin 30tan 60cos 60︒-︒︒⋅︒+︒. 静安区19.(本题满分10分)计算: 60sin 60tan 160cos 2130cos 45cot 3⨯-++. 20.(本题满分10分)解方程组: . 闵行区浦东新区普陀区19.(本题满分10分)计算: 21tan60sin 452cos30cot 45-⋅- . 青浦区19.(本题满分10分)计算:()021--+- .20.(本题满分10分) 解方程:21421242x x x x +-=+--. 松江区徐汇区① ② ⎩⎨⎧=----=+03)(2)(52y x y x y x杨浦区19.(本题满分10分) 计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒参考答案 宝山区长宁区19. (本题满分10分)解:原式= 233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+ (2分) 崇明区19、解:原式322-⨯ …………………………………………5分=………………………………………………3分= ………………………………………………………2分 虹口区黄浦区19.解:原式=2222⎛⨯+- ⎝⎭4分)=33222+-————————————————————————(4分)=3(2分)嘉定区19. (本题满分10分,每小题5分)计算: 【解答】金山区︒-︒+︒-︒45tan 30cos 2260sin 30cot 12331232223345tan 30cos 2260sin 30cot +=-⋅+-=︒-︒+︒-︒静安区三、解答题:19.解:原式=…………………………………(5分)=23212-+……………………………………………………(3分)=1 ……………………………………………………(2分)20.解:由②得0)1)(3(=+---yxyx, ……………………………………(2分)得03=--yx或01=+-yx, ………………………………(2分)原方程组可化为⎩⎨⎧=-=+;3,5yxyx⎩⎨⎧-=-=+;1,5yxyx…………………………………(2分)解得,原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx…………………………………(4分)∴原方程组的解为⎩⎨⎧==;1,411yx⎩⎨⎧==3222yx.闵行区浦东新区普陀区19.解:原式2=·····································································(4分)=··················································································(4分)12=. ·····························································································(2分)青浦区19.解:原式=1+22⨯.…………………………………………………………233121212313⨯-+⨯+⨯(8分)=2.………………………………………………………………………(2分)20.解:方程两边同乘()()22+-x x 得 ()224224-+-+-=x x x x .…………………………(4分)整理,得2320-+=x x .………………………………………………………………(2分)解这个方程得11=x ,22=x .…………………………………………………………(2分)经检验,22=x 是增根,舍去.…………………………………………………………(1分)所以,原方程的根是1=x .……………………………………………………………(1分)松江区徐汇区杨浦区19.(本题满分10分)解:原式=12231122⋅+⨯ --------------------------------------------------(6分)=1222-----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分)。
上海市16区2018届中考一模数学试卷分类汇编:平面向量(含答案).docx

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编平面向量专题宝山区20.(本题满分10分,每小题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果AE记作a,BF记作b,求CD(用a、b表示).长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BC于点E、F,且23=ECAE.(1)求BCBF的值;(2)联结EF,设aBC=,bAC=,用含a、b的式子表示EF.崇明区20.(本题满分10分,每小题各5分)如图,在ABC△中,BE平分ABC∠交AC于点E,过点E作ED BC∥交AB于点D,已知5AD=,4BD=.(1)求BC的长度;(2)如果AD a=,AE b=,那么请用a、b表示向量CB.奉贤区20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE、BD想交于点F,过点F作FG∥BC,交边DC于点G. (1)求FG的长;(2)设AD a=,DC b=,用、a b的线性组合表示AF.第20题图FBACD EAB CD E(第20题图)第20题图虹口区如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若AB a=,AC b=,用向量、a b表示向量AG;(2)若∠B=∠ACE,AB=6,26AC=,BC=9,求EG的长.黄浦区嘉定区金山区如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=AB a,=AD b,求向量MN关于a、b的分解式.静安区闵行区浦东新区20.(本题满分10分,每小题5分)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC的重心,设BC a=.(1)=DE▲(用向量a表示);(2)设AB b=,在图中求作12b a+.(不要求写作法,但要指出所作图中表示结论的向量.)普陀区22.(本题满分10分)下面是一位同学做的一道作图题:已知线段a、b、(如图),求作线段x,使::a b c x=.他的作法如下:1.以点O为端点画射线OM,ON.2.在OM上依次截取OA a=,AB b=.3.在ON上截取OC c=.4.联结AC,过点B作BD∥AC,交ON于点D.(第20题图)AB CD EbacMOABC Dabc N所以:线段____________就是所求的线段x .(1)试将结论补完整:线段 ▲ 就是所求的线段x . (2)这位同学作图的依据是 ▲ ;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .松江区20.(本题满分10分,每小题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF //AB ,2CF ADFA DB ==. (1)设AB a =,AC b =.试用a 、b 表示AE(2)如果△ABC 的面积是9,求四边形ADEF 的面积.徐汇区19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5. (1)求AC 的长(2)若设,CA a CB b ==,试用a 、b 的线性组合表示向量CD .杨浦区20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB =90°,sin B =35,点D 、E 分别在边AB 、BC上,且AD ∶DB =2∶3,DE ⊥BC .(1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .参考答案宝山区长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)(第20题图)CE F BAD(第20题图)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE //BC ∴52==AC EC AB BD (2分) 又∵DF //AC ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,与方向相反 ∴aCF 53-= (2分) 同理:52= (2分) 又∵→+=CF EC EF ∴→-=a 5352 (1分) 崇明区20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE ==∵ED BC ∥ ∴DE AD BCAB =……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC =………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BCAB = ∴95BC DE= …………………………………………………………1分 又∵ED 与CB 同向 ∴95CB ED= ………………………………1分∵AD a =,AE b = ∴ED a b =- ……………………………1分∴9955CB a b=- …………………………………………………………2分 奉贤区虹口区黄浦区 金山区静安区闵行区20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a 、b 和p ,求作:(1)向量132a b-+. (2)向量p 分别在a 、b 方向上的分向量.20.解:(1)作图.…………………………………………………………………………(3分)结论. …………………………………………………………………………(1分) (2)作图.…………………………………………………………………………(4分)结论. …………………………………………………………………………(2分)浦东新区20.解:(1)=DE 23a.……………………………(5分)(2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).普陀区22.解: (1)CD ;(2分)(2)平行线分线段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或:三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(2分)(3)∵BD ∥AC ,∴AC OABD OB =.(1分)ap(第20题图)b (第20题图)B∵4OA =,5AB =,∴49AC BD =. (2分)得94BD AC =.(1分)∵94BD AC =,AC m =,DB 与AC 反向,∴94DB m=-. (2分)青浦区松江区20.解:(1)∵EF //AB∴CF CEFA EB = 又CF AD FA DB =∴CE ADEB DB =…………………………………………(1分) ∴DE ∥AC , ………………………………………(1分) ∴四边形ADEF 是平行四边形………………………(1分)AE AF AD =+ ……………………………………(1分)∵2CF ADFA DB ==,AB a =,AC b =∴13AF b =, 23AD a= 2133AE a b =+………………………………………(1分)(2)∵EF //AB ,2CFFA =∴9:4:=∆∆ABC CEF S S ………………………………(1分)∵△ABC 的面积是9, ∴4=∆CEF S ……………………………………………(1分)由(1)得DE ∥AC ,且2ADDB =∴9:1:=∆∆ABC BDE S S ………………………………(1分)∴1=∆BDE S …………………………………………(1分) ∴四边形ADEF 的面积=9-4-1=4……………………(1分)徐汇区19.(1)在△ABC 中,∠ACD =∠B ,∠A =∠A ,∴ ACDABC ∆. ……………………………………………………(2分)∴AD ACAC AB =,即2AC AD AB = ∴249AC =⨯, 6.AC = ……………………………………………(2分)(2)49CD CA AD a AB =+=+……………………………………………(2分)4()9a AC CB =++4()9a a b =+-+ ………………………………(2分)。
2018年上海初三年级数学各区一模压轴题汇总[15套全]
![2018年上海初三年级数学各区一模压轴题汇总[15套全]](https://img.taocdn.com/s3/m/37ab745932687e21af45b307e87101f69f31fb52.png)
2018年上海初三年级数学各区一模压轴题汇总[15套全]2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,D 为直角ABC D 的斜边AB 上一点,DE AB ^交AC 于E ,如果AED D 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC =,1tan 2A =,那么:___________.CF DF =24(宝山)如图,二次函数232(0)2y ax x a =-+?的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知点(4,0)A -.(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.第18题第24题25(宝山)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC --运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。
设P Q 、同时出发t 秒时,BPQ D 的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求05t(2)求出线段BC BE ED 、、的长度;(3)当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE D 相似;(4)如图(3)过点E 作EF BC ^于F ,BEF D 绕点B 按顺时针方向旋转一定角度,如果BEF D 中E F 、的对应点H I 、恰好和射线BE CD 、的交点G 在一条直线,求此时C I 、两点之间的距离.(3)(2)(1)第25题BB崇明县一模压轴题18(崇明)如图,已知 ABC ?中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将B H D V 绕点H 旋转,得到EHF ?(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为;24(崇明)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD = ,联结AD 、将线段AD 绕着点D 顺时针旋转90?,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求cot EDF ∠的值;(3)点G 在直线l 上,且45EDG ?∠=,求点G 的坐标.25(崇明)在ABC ?中,90ACB ?∠=,3cot 2A =,AC =,以BC 为斜边向右侧作等腰直角EBC ?,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ?,CD 交线段BE 于点F ,联结BD .(1)求证:PC CECD BC=;(2)若PE x =,BDP ?的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ?为等腰三角形时,求PE 的长.奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是__ ____.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线2y x bx c =-++与x 轴相交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
上海市16区2018届中考一模数学试卷分类汇编:押轴题(含答案)
上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H . (1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图备用图图1DCBA DCA F EP D CB A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F ECA(第25题图3)奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。
2018年上海市青浦区高考数学一模试卷含详解
2018年上海市青浦区高考数学一模试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩∁U M.2.(4分)已知复数(i为虚数单位),则=.3.(4分)不等式2>()3(x﹣1)的解集为.4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.10.(5分)已知函数f(x)=有三个不同的零点,则实数a 的取值范围是.11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C﹣1在同一直线上,则S2018=.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2D.415.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个B.2个C.4个D.无数个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n 的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.2018年上海市青浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩∁U M {﹣2,﹣1,0} .【考点】1H:交、并、补集的混合运算.【分析】先由补集的含义求出C U M,再由交集的含义求解.【解答】解:∁U M═{x|x∈Z,且x≠1,2},故P∩∁U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}【点评】本题考查集合的基本运算,属基本题.2.(4分)已知复数(i为虚数单位),则=.【考点】A5:复数的运算.【专题】11:计算题.【分析】根据两个复数代数形式的乘除法法则,化简复数z,从而求出,进而求得的值.【解答】解:复数==,∴=,∴=•==,故答案为.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i 的幂运算性质,属于基础题.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【考点】7J:指、对数不等式的解法.【专题】33:函数思想;4R:转化法;59:不等式的解法及应用.【分析】根据指数函数的单调性把不等式化为关于x的一元二次不等式,求出解集即可.【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).【点评】本题考查了指数函数的不等式应用问题,是基础题.4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【考点】HW:三角函数的最值.【专题】35:转化思想;48:分析法;56:三角函数的求值.【分析】运用二倍角的正弦公式和余弦公式、以及辅助角公式,结合正弦函数的值域,即可得到所求最大值.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.【点评】本题考查二倍角公式和辅助角公式的运用,以及正弦函数的值域,考查运算能力,属于基础题.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【考点】K4:椭圆的性质;KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),再由双曲线经过抛物线y2=4x焦点F(1,0),能求出双曲线方程.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.【点评】本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线简单性质的合理运用.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;44:数形结合法;5F:空间位置关系与距离.【分析】根据圆锥的侧面展开图的弧长为圆锥底面周长得出圆锥底面半径,从而得出圆锥的高,代入体积公式计算即可.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.【点评】本题考查了圆锥的结构特征,侧面展开图,属于基础题.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】由a k是a1与a2k的等比中项,知a k2=a1a2k,由此可知k2﹣2k﹣8=0,从而得到k.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细解答.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【考点】DA:二项式定理.【专题】35:转化思想;4O:定义法;5P:二项式定理.【分析】根据二项式系数的性质求得a,利用展开式的通项公式求得系数的最大值b,再求的值.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.【点评】本题主要考查了二项式系数的性质以及通项公式的应用问题,属于中档题.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;37:集合思想;4O:定义法;5I:概率与统计.【分析】基本事件总数n=6×6=36,利用列举法求出两个点数之积小于4包含的基本事件(a,b)有5个,由此能求出两个点数之积不小于4的概率.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.【点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)已知函数f(x)=有三个不同的零点,则实数a 的取值范围是[1,+∞).【考点】53:函数的零点与方程根的关系.【专题】11:计算题;31:数形结合;34:方程思想;49:综合法;51:函数的性质及应用.【分析】由题意可得需使对数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,由函数图象的平移和二次函数的顶点可得关于a的不等式,解之可得答案.【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).【点评】本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C ,,满足=(a n﹣1在同一直线上,则S2018=2.【考点】8L:数列与向量的综合;9H:平面向量的基本定理.【专题】11:计算题;34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】根据条件“平面内三个不共线的向量,,,满足=(a n+a n+1)﹣1 +(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1=a n,由S n为数列{a n}的前n项和,a1=a2=1,得到数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,由此能求出S2018.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面+a n+1)+(1﹣a n),n 内三个不共线的向量,,,满足=(a n﹣1≥2,n∈N*,A,B,C在同一直线上,”+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,得出a n﹣1∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.【点评】本题考查数列的前2018项和的求法,考查周期数列、共线向量性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【考点】57:函数与方程的综合运用.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】由于g(x)=3x﹣3≥0时,x≥1,根据题意有f(x)=m(x﹣m)(x+m+2)<0在x≥1时成立;由于x∈(﹣∞,﹣2),f(x)g(x)<0,而g(x)=3x ﹣3<0,则f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)时成立.由此结合二次函数的性质可求出结果.【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).【点评】本题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键,是中档题.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4R:转化法;5L:简易逻辑.【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2D.4【考点】H1:三角函数的周期性.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】由题意根据正弦函数的最值和周期性,可得|x2﹣x1|的最小值为函数f (x)的半个周期,计算求得结果.【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.【点评】本题主要考查正弦函数的最值和周期性,属于基础题.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;33:函数思想;41:向量法;5A:平面向量及应用.【分析】分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),进而可求出tanθn,结合函数的单调性即可判断.【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.【点评】本题主要考查了向量的数量积的坐标表示,解题的关键是根据已知条件把所求问题坐标化.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个B.2个C.4个D.无数个【考点】JA:圆与圆的位置关系及其判定.【专题】31:数形结合;44:数形结合法;5B:直线与圆.【分析】根据题意画出图形,结合图形得出满足条件的四边形AMQN能构成矩形的个数为无数个.【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,若MN=AQ,且∠AMQ=∠ANQ=90°,则四边形AMQN是矩形,由作图知,四边形AMQN能构成无数个矩形.故选:D.【点评】本题考查了两圆的位置关系应用问题,是难题.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】5G:空间角.【分析】(1)利用三棱锥的体积计算公式即可得出;(2)由于BC∥AD,可得∠ECB或其补角为异面直线EC和AD所成的角θ,由PA ⊥平面ABCD,可得BC⊥PB,再利用直角三角形的边角关系即可得出.【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,∴S==1.△ABC==.故V P﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.【点评】本题考查了三棱锥的体积计算公式、异面直线所成的角,考查了推理能力和计算能力,属于基础题.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【考点】K8:抛物线的性质;KN:直线与抛物线的综合.【专题】11:计算题;34:方程思想;44:数形结合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【考点】HR:余弦定理.【专题】34:方程思想;48:分析法;58:解三角形.【分析】(1)由解直角三角形可得∠C=30°,在△BPC中由余弦定理可得BP的值;(2)设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,讨论0≤t≤1时,当1≤t≤4时,分别在△AMQ和△AMB中,运用余弦定理和二次不等式的解法,即可得到所求结论.【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+16>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.【点评】本题考查解三角形的实际问题的解法,注意运用余弦定理,考查化简整理的运算能力,属于中档题.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n 的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【考点】3R:函数恒成立问题.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)﹣=,在n≥2时表示双曲线,进而可得a n=n,S n=n2,(3)由S m+S n﹣λS k>0恒成立等价于λ<=恒成立,结合m+n=3k,且m≠n,及基本不等式,进而得到答案【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n(﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为【点评】本题考查了双曲线的性质,数列求和,集合的元素,考查了运算能力和转化能力,属于中档题21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【考点】57:函数与方程的综合运用.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】(1)由f(x)﹣g(x),化简整理,结合反比例函数的单调性和值域,即可判断;(2)由指数函数和一次函数的单调性,可得满足①,说明不满足②,即可得证;(3)由新定义,可得y=x+﹣ax为[0,+∞)的减函数,求得导数,由不等式恒成立思想,可得a的范围;再由值域为(0,1],结合不等式恒成立思想可得a的范围,即可得到a的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.【点评】本题考查新定义的理解和运用,考查函数的单调性和值域的求法和运用,考查导数的运用,以及不等式恒成立问题的解法,属于中档题.。
2018年上海市各区中考一模压轴题图文解析.Removed-Output
图1
图
图
动感体验
请打开几何画板文件名“18 崇明一模 25”,拖动点 E 运动,可以体验到,△CQF 有三
次机会成为等腰三角形.
图文解析
( )在 Rt△ABC 中,AC=8,os A= 4 ,所以 AB=10,BC=6. 5
当 DE⊥AC 时,四边形 DECF 是矩形.此时 DE BC,DF AC.
C△BAF
AF 2
2x . 2 x2 4
22
9
整理,得 y 2 2 .定义域是 <x< . 2 x
( )如图 ,在 Rt△ABE 中,由 tan∠ABE= AE = 3 ,得 AB= 5 AE = 5 (2 x) .
AB 5
3
3
由△BAF∽△CAE,根据相似三角形的周长比等于相似比,得 y= C△CAE = AC .
边上一点,联结 DE,过点 D 作 DF⊥DE 交 BC 边于点 F,联结 EF.
( )如图 ,当 DE⊥AC 时,求 EF 的长;
( )如图 ,当点 E 在 AC 边上移动时,∠DFE 的正切值是否会发生变化,如果变化
请说出变化情况;如果保持不变,请求出∠DFE 的正切值;
( )如图 ,联结 CD 交 EF 于点 Q,当△CQF 是等腰三角形时,请直接写出 BF 的长.
C△BAF
AB
所以
22 2 x
5
2 (2
2 x)
.解得
x=
1 2
.所以
AB=
5 3
(2
x)
=
5 2
.
3
图4
图
第( )题的过程很繁,结果为什么很简单?
由△CEF∽△BAF(如图 ),可得△AEF∽△BCF(如图6).
(完整版)2018上海初三数学一模压轴题汇总(各区23~25题)
崇明23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第23题图)ABDECGF崇明24.(本题满分12分,每小题各4分)如图,抛物线24yx bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点M 与点A 不重合),过点((((第24题图) (备用图)崇明25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCDFEBDFECA(第25题图2)BDFECA(第25题图3)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE:AC=AG:AD,求证:EG:CF=ED:DF.y ax bx与y轴相交于点C,与x轴正半轴相交于平面直角坐标系xOy中(如图),已知抛物线23x,顶点为P.点A,OA OC,与x轴的另一个交点为B,对称轴是直线1(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.金山25. (本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)如图,已知在△ABC中,45,cos5AB AC B,P是边AB一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB =x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD CA CE CB⋅=⋅.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC=,求证:AB AD AF AE⋅=⋅.AB CDEF图8青浦24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图9,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于点A (—1,0)和点B ,与y 轴交于点C ,对称轴为直线1x =.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成中心对称,当△CGF 为直角三角形时,求点Q 的坐标.图9青浦25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图10,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点 D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC =∠BPQ .(1)当QD =QC 时,求∠ABP 的正切值;(2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.图10QPD C BA备用图A BCD黄浦23、(本题满分12分)如图,BD 是ABC △的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共25页) 2018年上海市青浦区中考数学一模试卷 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.(4.00分)计算(﹣x3)2所得结果是( ) A.x5 B.﹣x5 C.x6 D.﹣x6 2.(4.00分)如果一次函数y=kx+b的图象经过一、二、三象限,那么k、b应满足的条件是( ) A.k>0,且b>0 B.k<0,且b<0 C.k>0,且b<0 D.k<0,且b>0 3.(4.00分)下列各式中,的有理化因式是( ) A. B. C. D.. 4.(4.00分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是( )
A.3:2 B.2:3 C. D.. 5.(4.00分)如图,在▱ABCD中,点E在边AD上,射线CE、BA交于点F,下列等式成立的是( )
A. B. C. D. 6.(4.00分)在梯形ABCD中,AD∥BC,下列条件中,不能判断梯形ABCD是等腰梯形的是( ) A.∠ABC=∠DCB B.∠DBC=∠ACB C.∠DAC=∠DBC D.∠ACD=∠DAC
二、填空题:(本大题共12题,每题4分,满分48分) 第2页(共25页)
7.(4.00分)因式分解3a2+a= . 8.(4.00分)函数的定义域是 . 9.(4.00分)如果关于x的一元二次方程x2+2x﹣a=0没有实数根,那么a的取值范围是 . 10.(4.00分)抛物线y=x2+4的对称轴是 . 11.(4.00分)将抛物线y=﹣x2平移,使它的顶点移到点P(﹣2,3),平移后新抛物线的表达式为 . 12.(4.00分)如果两个相似三角形周长的比是2:3,那么它们面积的比是 . 13.(4.00分)如图,传送带和地面所成斜坡AB的坡度为1:,把物体从地面A处送到坡顶B处时,物体所经过的路程是12米,此时物体离地面的高度是 米.
14.(4.00分)如图,在△ABC中,点D是边AB的中点.如果,,那么= (结果用含、的式子表示).
15.(4.00分)已知点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,如果BC=3DE,AC=6,那么AE= . 16.(4.00分)在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是 . 17.(4.00分)将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是 . 第3页(共25页)
18.(4.00分)如图,在△ABC中,AB=7,AC=6,∠A=45°,点D、E分别在边AB、BC上,将△BDE沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD⊥AB,垂足为点D,那么MN的长是 .
三、解答题:(本大题共7题,满分78分) 19.(10.00分)计算:﹣(﹣2)0+|1﹣|+2cos30°. 20.(10.00分)解方程:+﹣=1.
21.(10.00分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C. (1)求直线AB的表达式; (2)求AC:CB的值.
22.(10.00分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米). (参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.) 第4页(共25页)
23.(12.00分)如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD•CA=CE•CB. (1)求证:∠CAE=∠CBD; (2)若,求证:AB•AD=AF•AE.
24.(12.00分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1. (1)求点C的坐标(用含a的代数式表示); (2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式; (3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.
25.(14.00分)如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ. (1)当QD=QC时,求∠ABP的正切值; (2)设AP=x,CQ=y,求y关于x的函数解析式; (3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由. 第5页(共25页) 第6页(共25页)
2018年上海市青浦区中考数学一模试卷 参考答案与试题解析
一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.(4.00分)计算(﹣x3)2所得结果是( ) A.x5 B.﹣x5 C.x6 D.﹣x6 【分析】根据幂的乘方计算即可. 【解答】解:(﹣x3)2=x6, 故选:C. 【点评】此题考查幂的乘方,关键是根据法则进行计算.
2.(4.00分)如果一次函数y=kx+b的图象经过一、二、三象限,那么k、b应满足的条件是( ) A.k>0,且b>0 B.k<0,且b<0 C.k>0,且b<0 D.k<0,且b>0 【分析】可画出符合条件的一次函数的图象,由图象可求得答案. 【解答】解: ∵一次函数y=kx+b的图象经过一、二、三象限, ∴其图象如图所示, ∴直线从左向右逐渐上升, ∴k>0, ∵直线与y轴的交点在x轴的上方, ∴b>0, 故选:A. 第7页(共25页)
【点评】本题主要考查一次函数的图象,根据条件画出函数图象是解题的关键. 3.(4.00分)下列各式中,的有理化因式是( ) A. B. C. D.. 【分析】根据平方差公式即可求出答案. 【解答】解:∵()(+2)=x﹣4,而x﹣4是有理式, ∴的有理化因式是+2, 故选:C. 【点评】本题考查分母有理化,解题的关键熟练运用二次根式的性质,本题属于基础题型.
4.(4.00分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是( )
A.3:2 B.2:3 C. D.. 【分析】只要证明△ACD∽△CBD,可得===,由此即可解决问题. 【解答】解:∵∠ACB=90°,CD是AB边上的高, ∴∠ADC=∠CDB=∠ACB=90°, ∵∠A+∠B=90°,∠A+∠ACD=90°, ∴∠ACD=∠B, ∴△ACD∽△CBD, ∴===
∴=, 故选:B. 【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 第8页(共25页)
5.(4.00分)如图,在▱ABCD中,点E在边AD上,射线CE、BA交于点F,下列等式成立的是( )
A. B. C. D. 【分析】根据平行四边形的性质及平行线分线段成比例的性质即可得出答案. 【解答】解:A、∵△AEF∽△EDC,∴,错误;
B、∵△AEF∽△EDC,∴,错误; C、∵△AEF∽△EDC,∴,∵AE∥BC,∴,∴,正确; D、∵△AEF∽△EDC,∴,错误; 故选:C. 【点评】本题主要考查了相似三角形的判定和性质,关键是根据平行四边形的性质及平行线分线段成比例的性质解答.
6.(4.00分)在梯形ABCD中,AD∥BC,下列条件中,不能判断梯形ABCD是等腰梯形的是( ) A.∠ABC=∠DCB B.∠DBC=∠ACB C.∠DAC=∠DBC D.∠ACD=∠DAC 【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可. 【解答】解:A、∵∠ABC=∠DCB, ∴BD=BC, ∴四边形ABCD是等腰梯形,故本选项错误; B、∵∠DAC=∠DBC,AD∥BC, ∴∠ADB=∠DBC,∠DAC=∠ACB, ∴∠OBC=∠OCB,∠OAD=∠ODA 第9页(共25页)
∴OB=OC,OD=OA, ∴AC=BD, ∴四边形ABCD是等腰梯形,故本选项错误; C、∵∠ADB=∠DAC,AD∥BC, ∴∠ADB=∠DAC=∠DBC=∠ACB, ∴OA=OD,OB=OC, ∴AC=BD, ∵AD∥BC, ∴四边形ABCD是等腰梯形,故本选项错误; D、根据∠ACD=∠DAC,不能推出四边形ABCD是等腰梯形,故本选项正确. 故选:D.
【点评】本题考查了对等腰梯形的判定定理的应用,主要考查学生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.
二、填空题:(本大题共12题,每题4分,满分48分) 7.(4.00分)因式分解3a2+a= a(3a+1) . 【分析】直接提公因式a即可. 【解答】解:3a2+a=a(3a+1), 故答案为:a(3a+1). 【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.
8.(4.00分)函数的定义域是 x≠﹣1 . 【分析】根据分式的意义,分母不等于0,可以求出x的范围. 【解答】解:根据题意得:x+1≠0, 解得:x≠﹣1.