空间直角坐标系与大地坐标系转换程序
大地坐标转空间直角坐标方法

大地坐标转空间直角坐标方法1.准备工作:在进行大地坐标转换之前,首先要明确所采用的基准椭球参数,并且将大地坐标系转换为所采用的基准椭球上的坐标。
通常采用的基准椭球有WGS84、北京54和CGCS2000等。
这些基准椭球都有自己的参数,如长半轴a、偏心率e等。
根据所采用的基准椭球的参数,可以计算出该基准椭球的第一偏心率的平方(e^2)和扁率(f)等重要参数。
2.大地坐标转换为大地球面坐标:大地坐标的表示方法通常为经纬度(经度、纬度和高程)。
将经度和纬度转换为弧度形式,通过正弦定理和余弦定理等基本几何关系,可以计算出大地坐标在基准椭球上的投影参数。
利用这些参数,可以将大地坐标转换为大地球面坐标。
3.大地球面坐标转换为空间直角坐标:大地球面坐标是指基于基准椭球的坐标系,它只考虑地球的曲率而不考虑地球的引力场。
为了将其转换为直角坐标系,需要引入地球的引力场因素。
一种常见的方法是采用摄动参数法。
摄动参数法是通过导引纬度和经度等参数,计算出地球的重力梯度和坐标变换矩阵,并利用这些参数将大地球面坐标转换为空间直角坐标。
4.空间直角坐标的后处理:在将大地坐标转换为空间直角坐标之后,还需要进行一些后处理工作,以满足具体应用的要求。
例如,需要确定一个局部坐标系的原点和方向,进行坐标轴旋转和缩放等操作。
这些后处理工作可以在计算中进行,也可以在实际应用中进行。
总结起来,大地坐标到空间直角坐标的转换过程包括准备工作、大地坐标转大地球面坐标和大地球面坐标转空间直角坐标三个步骤。
在每个步骤中,需要根据具体问题选择合适的算法和参数。
同时,还需要注意坐标系之间的转换精度和误差控制,以确保转换结果的准确性。
坐标转换中的大地坐标系与空间直角坐标系转换公式

坐标转换中的大地坐标系与空间直角坐标系转换公式在测量与地理信息领域,坐标转换是一个非常重要的概念。
它涉及将不同坐标系下的位置互相转换,使得地理空间信息能够得到准确而一致地表达。
而在坐标转换的过程中,大地坐标系与空间直角坐标系的相互转换公式则是至关重要的工具。
大地坐标系是一种常用的坐标系,在地理测量和导航等领域广泛应用。
它采用了经纬度和大地高作为坐标参数,可以精确地描述地球上任意一点的位置。
经度表示东西方向上的位置,纬度表示南北方向上的位置,而大地高则表示相对于海平面的高度。
在大地坐标系下,地球被近似看作一个椭球体,因此大地坐标系也被称为椭球坐标系。
然而,由于大地坐标系的曲线性质,它并不适合直接参与复杂三维计算,尤其是在工程测量中需要使用的情况。
因此,我们需要将大地坐标系转换为空间直角坐标系,以便进行进一步的计算和分析。
空间直角坐标系采用了直角坐标的表示方式,其坐标参数分别为X、Y、Z,可以方便地进行几何运算。
在进行坐标转换时,我们需要采用适当的公式来实现大地坐标系到空间直角坐标系的转换。
下面将介绍两种常用的转换公式。
1. 大地坐标系到空间直角坐标系的转换公式大地坐标系到空间直角坐标系的转换公式可以通过三个连续的旋转和平移变换来实现。
具体而言,我们首先将大地坐标系的原点O与空间直角坐标系原点重合,然后进行三次坐标轴的旋转,使得大地坐标系的纬度线与空间直角坐标系的Z轴重合。
接着,我们对大地坐标系进行一个小角度的旋转,使得大地纬线与空间直角坐标系的Y轴重合。
最后,再进行一个小角度的旋转,将大地经线与空间直角坐标系的X轴重合。
通过以上步骤,即可完成大地坐标系到空间直角坐标系的转换。
2. 空间直角坐标系到大地坐标系的转换公式与大地坐标系到空间直角坐标系的转换相反,空间直角坐标系到大地坐标系的转换需要进行三次逆变换。
即首先将空间直角坐标系的原点与大地坐标系原点重合,然后进行三次逆变换,回到大地坐标系。
为了实现空间直角坐标系到大地坐标系的转换,我们需要利用解析几何的知识。
空间直角坐标系与大地坐标系转换程序doc

空间直角坐标系与大地坐标系转换程序.doc本文将介绍一种实现空间直角坐标系与大地坐标系转换的程序实现方法。
在编写程序时,需要使用一些数学库和函数,比如C++标准库中的cmath和iostream 等。
首先,我们需要了解空间直角坐标系和大明坐标系之间的转换公式。
假设空间直角坐标系为(x, y, z),大地坐标系为(L, B, H),则它们之间的转换公式为:x = cosLcosBsinHy = cosLsinBsinHz = sinLsinH其中,L为经度,B为纬度,H为高程。
根据上述公式,我们可以编写一个C++程序来实现空间直角坐标系与大地坐标系之间的转换。
程序实现如下:#include <iostream>#include <cmath>using namespace std;void transform() {double x, y, z;double L, B, H;cout << "Enter x, y, and z coordinates: ";cin >> x >> y >> z;cout << "Enter L and B coordinates: ";cin >> L >> B;H = acos(z / sqrt(x * x + y * y + z * z));cout << "The converted coordinates are: " << x << " " << y << " " << H << endl;}int main() {transform();return 0;}在上述程序中,我们首先定义了变量x、y、z、L、B和H,分别代表空间直角坐标系和大明坐标系的坐标值。
空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换1.空间直角坐标系/笛卡尔坐标系坐标轴相互正交的坐标系被称作笛卡尔坐标系。
三维笛卡尔坐标系也被称为空间直角坐标系。
在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。
以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。
在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。
空间直角坐标系2.空间大地坐标系由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。
大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:2.1椭球的大小和形状2.2椭球的短半轴的指向:通常与地球的平自转轴平息。
2.3椭球中心的位置:根据需要确定。
若为地心椭球,则其中心位于地球质心。
2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。
以大地基准为基础建立的坐标系被称为大地坐标系。
由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。
大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。
过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。
由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。
过P点的椭球法线与赤道面的夹角叫P点的大地纬度。
由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。
大地坐标与空间直角坐标的转换程序代码

#include "stdio、h"#include "math、h"#include "stdlib、h"#include "iostream"#define PI 3、14323double a,b,c,e2,ep2;int main(){int m,n,t;double RAD(double d,double f,double m);void RBD(double hd);void BLH_XYZ();void XYZ_BLH();void B_ZS();void B_FS();void GUS_ZS();void GUS_FS();printf(" 大地测量学\n");sp1:printf("请选择功能:\n");printf("1、大地坐标系到大地空间直角坐标的转换\n");printf("2、大地空间直角坐标到大地坐标系的转换\n");printf("3、贝塞尔大地问题正算\n");printf("4、贝塞尔大地问题反算\n");printf("5、高斯投影正算\n");printf("6、高斯投影反算\n");printf("0、退出程序\n");scanf("%d",&m);if(m==0)exit(0);sp2:printf("请选择椭球参数(输入椭球序号):\n");printf("1、克拉索夫斯基椭球参数\n");printf("2、IUGG_1975椭球参数\n");printf("3、CGCS_2000椭球参数\n");printf("0、其她椭球参数(自行输入)\n");scanf("%d",&n);switch(n){case 1:a=6378245、0;b=6356863、0188;c=6399698、9018;e2=0、297;ep2=0、468;break;case 2:a=6378140、0;b=6356755、2882;c=6399596、6520;e2=0、959;ep2=0、947;break;case 3:a=6378137、0;b=6356752、3141;c=6399593、6259;e2=0、290;ep2=0、547;break;case 0:{printf("请输入椭球参数:\n");printf("长半径a=");scanf("%lf",&a);printf("短半径b=");scanf("%lf",&b);c=a*a/b;ep2=(a*a-b*b)/(b*b);e2=(a*a-b*b)/(a*a);break;}default:printf("\n\n输入错误!\n请重新输入!\n\n");goto sp2 ;}while(1){switch(m){case 1:BLH_XYZ();break;case 2:XYZ_BLH();break;case 3:B_ZS();break;case 4:B_FS();break;case 5:GUS_ZS();break;case 6:GUS_FS();break;default:printf("\n\n输入错误!\n请重新输入!\n\n");goto sp1 ;}printf("就是否继续进行此功能计算? \n\n");printf("( 若继续进行此功能计算,则输入1;\n 若选择其她功能进行计算,则输入2;\n 若退出, 则输入0、)\n");scanf("%d",&t);switch(t){case 1:break;case 2:goto sp1;case 0:exit(0);}}}double RAD(double d,double f,double m) {double e;double sign=(d<0、0)?-1、0:1、0;if(d==0){sign=(f<0、0)?-1、0:1、0;if(f==0){sign=(m<0、0)?-1、0:1、0;}}if(d<0)d=d*(-1、0);if(f<0)f=f*(-1、0);if(m<0)m=m*(-1、0);e=sign*(d*3600+f*60+m)*PI/(3600*180);return e;}void RBD(double hd){int t;int d,f;double m;double sign=(hd<0、0)?-1、0:1、0;if(hd<0)hd=fabs(hd);hd=hd*3600*180/PI;t=int(hd/3600);d=sign*t;hd=hd-t*3600;f=int(hd/60);m=hd-f*60;printf("%d'%d'%lf'\n",d,f,m);}void BLH_XYZ(){double B,L,H,N,W;double d,f,m;double X,Y,Z;printf(" 请输入大地坐标(输入格式为角度(例如:30'40'50')):\n");printf(" 大地经度L=");scanf("%lf'%lf'%lf'",&d,&f,&m);L=RAD(d,f,m);printf(" 大地纬度B=");scanf("%lf'%lf'%lf'",&d,&f,&m);B=RAD(d,f,m);printf(" 大地高H=");scanf("%lf",&H);W=sqrt(1-e2*sin(B)*sin(B));N=a/W;X=(N+H)*cos(B)*cos(L);Y=(N+H)*cos(B)*sin(L);Z=(N*(1-e2)+H)*sin(B);printf("\n\n 转换后得到大地空间直角坐标为:\n\n");printf("X=%lf\nY=%lf\nZ=%lf\n\n",X,Y,Z);}void XYZ_BLH(){double B,L,H,N,W;double X,Y,Z;double tgB0,tgB1;printf(" 请输入大地空间直角坐标:\n");printf(" X=");scanf("%lf",&X);printf(" Y=");scanf("%lf",&Y);printf(" Z=");scanf("%lf",&Z);printf("\n\n 转换后得到大地坐标为:\n\n");L=atan(Y/X);printf(" 大地经度为: L=");RBD(L);printf("\n");tgB0=Z/sqrt(X*X+Y*Y);tgB1=(1/sqrt(X*X+Y*Y))*(Z+a*e2*tgB0/sqrt(1+tgB0*tgB0-e2*tgB0*tgB0));while(fabs(tgB0-tgB1)>5*pow(10,-10)){tgB0=tgB1;tgB1=(1/sqrt(X*X+Y*Y))*(Z+a*e2*tgB0/sqrt(1+tgB0*tgB0-e2*tgB0*tgB0));}B=atan(tgB1);printf(" 大地纬度为:B=");RBD(B);printf("\n");W=sqrt(1-e2*sin(B)*sin(B));N=a/W;H=sqrt(X*X+Y*Y)/cos(B)-N;printf(" 大地高为:H=%lf\n\n",H);}void B_ZS(){double L1,B1,A1,s,d,f,mi;double u1,u2,m,M,k2,alfa,bt,r,kp2,alfap,btp,rp;double sgm0,sgm1,lmd,lmd1,lmd2,A2,B2,l,L2;printf("请输入已知点的大地坐标(输入格式为角度(例如:30'40'50'),下同):\nL1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);L1=RAD(d,f,mi);printf("\nB1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);B1=RAD(d,f,mi);printf("请输入大地方位角:\nA1=");scanf("%lf'%lf'%lf'",&d,&f,&mi);A1=RAD(d,f,mi);printf("请输入该点至另一点的大地线长:\ns=");scanf("%lf",&s);u1=atan(sqrt(1-e2)*tan(B1));m=asin(cos(u1)*sin(A1));M=atan(tan(u1)/cos(A1));m=(m>0)?m:m+2*PI;M=(M>0)?M:M+PI;k2=ep2*cos(m)*cos(m);alfa=(1-k2/4+7*k2*k2/64-15*k2*k2*k2/256)/b;bt=k2/4-k2*k2/8+37*k2*k2*k2/512;r=k2*k2/128-k2*k2*k2/128;sgm0=alfa*s;sgm1=alfa*s+bt*sin(sgm0)*cos(2*M+sgm0)+r*sin(2*sgm0)*cos(4*M+2*sgm0); while(fabs(sgm0-sgm1)>2、8*PI/180*pow(10,-7)){sgm0=sgm1;sgm1=alfa*s+bt*sin(sgm0)*cos(2*M+sgm0)+r*sin(2*sgm0)*cos(4*M+2*sgm0); }sgm0=sgm1;A2=atan(tan(m)/cos(M+sgm0));A2=(A2>0)?A2:A2+PI;A2=(A1>PI)?A2:A2+PI;u2=atan(-cos(A2)*tan(M+sgm0));lmd1=atan(sin(u1)*tan(A1));lmd1=(lmd1>0)?lmd1:lmd1+PI;lmd1=(m<PI)?lmd1:lmd1+PI;lmd2=atan(sin(u2)*tan(A2));lmd2=(lmd2>0)?lmd2:lmd2+PI;lmd2=(m<PI)?(((M+sgm0)<PI)?lmd2:lmd2+PI):(((M+sgm0)>PI)?lmd2:lmd2+PI);lmd=lmd2-lmd1;B2=atan(sqrt(1+ep2)*tan(u2));kp2=e2*cos(m)*cos(m);alfap=(e2/2+e2*e2/8+e2*e2*e2/16)-e2/16*(1+e2)*kp2+3*e2*kp2*kp2/128;btp=e2*(1+e2)*kp2/16-e2*kp2*kp2/32;rp=e2*kp2*kp2/256;l=lmd-sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos(2*M+sgm0)+rp*sin(2*sgm0)*cos(4*M+2*sg m0));L2=L1+l;printf("\n\n得到另一点的大地坐标与大地线在该点的大地方位角为:\n\n");printf("L2=");RBD(L2);printf("\n");printf("B2=");RBD(B2);printf("\n");printf("A2=");RBD(A2);printf("\n");}void B_FS(){double L1,B1,L2,B2,s,A1,A2,du,f,mi,m0,m,M;double l,u1,u2,alfa,bt,r,lmd0,dit_lmd,lmd,sgm,dit_sgm,sgm0,sgm1,alfap,btp,rp,k2,kp2;printf("请输入第一个点大地坐标(输入格式为角度(例如:30'40'50'),下同):\n大地经度L1=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L1=RAD(du,f,mi);printf("大地纬度B1=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B1=RAD(du,f,mi);printf("\n请输入第二个点大地坐标:\n大地经度:L2=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L2=RAD(du,f,mi);printf("大地纬度:B2=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B2=RAD(du,f,mi);l=L2-L1;u1=atan(sqrt(1-e2)*tan(B1));u2=atan(sqrt(1-e2)*tan(B2));sgm0=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l));m0=asin(cos(u1)*cos(u2)*sin(l)/sin(sgm0));dit_lmd=0、003351831*sgm0*sin(m0);lmd0=l+dit_lmd;dit_sgm=sin(m0)*dit_lmd;sgm1=sgm0+dit_sgm;m=asin(cos(u1)*cos(u2)*sin(lmd0)/sin(sgm1));A1=atan(sin(lmd0)/(cos(u1)*tan(u2)-sin(u1)*cos(lmd0)));A1=(A1>0)?A1:A1+PI;A1=(m>0)?A1:A1+PI;M=atan(sin(u1)*tan(A1)/sin(m));M=(M>0)?M:M+PI;k2=ep2*cos(m)*cos(m);alfa=(1-k2/4+7*k2*k2/64-15*k2*k2*k2/256)/b;bt=k2/4-k2*k2/8+37*k2*k2*k2/512;r=k2*k2/128-k2*k2*k2/128;kp2=e2*cos(m)*cos(m);alfap=(e2/2+e2*e2/8+e2*e2*e2/16)-e2/16*(1+e2)*kp2+3*e2*kp2*kp2/128;btp=e2*(1+e2)*kp2/16-e2*kp2*kp2/32;rp=e2*kp2*kp2/256;sgm0=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l));sgm1=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l+sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos( 2*M+sgm0))));while(fabs(sgm0-sgm1)>1*PI/180*pow(10,-8)){sgm0=sgm1;sgm1=acos(sin(u1)*sin(u2)+cos(u1)*cos(u2)*cos(l+sin(m)*(alfap*sgm0+btp*sin(sgm0)*cos( 2*M+sgm0))));}sgm=sgm1;lmd=l+sin(m)*(alfap*sgm+btp*sin(sgm)*cos(2*M+sgm));s=(sgm-bt*sin(sgm)*cos(2*M+sgm)-r*sin(2*sgm)*cos(4*M+2*sgm))/alfa;A1=atan(sin(lmd)/(cos(u1)*tan(u2)-sin(u1)*cos(lmd)));A1=(A1>0)?A1:A1+PI;A1=(m>0)?A1:A1+PI;A2=atan(sin(lmd)/(sin(u2)*cos(lmd)-tan(u1)*cos(u2)));A2=(A2>0)?A2:A2+PI;A2=(m<0)?A2:A2+PI;printf("\n\n得到两点间大地线长S与大地正反方位角A1、A2如下:\n\n");printf("s=%lf\n",s);printf("A1=");RBD(A1);printf("\n");printf("A2=");RBD(A2);printf("\n");}void GUS_ZS(){double B,L,x3,x6,y3,y6,Y3,Y6,du,f,mi,X,N,n,t;double At,Bt,Ct,Dt,m3,m6,l3,l6,W,L03,L06;int DH3,DH6;printf("请输入大地坐标(输入格式为角度(例如:30'40'50')):\n大地经度L=");scanf("%lf'%lf'%lf'",&du,&f,&mi);L=RAD(du,f,mi);printf("\n大地纬度B=");scanf("%lf'%lf'%lf'",&du,&f,&mi);B=RAD(du,f,mi);At=1+3*e2/4+45*e2*e2/64+175*e2*e2*e2/256;Bt=3*e2/4+15*e2*e2/16+525*e2*e2*e2/512;Ct=15*e2*e2/64+105*e2*e2*e2/256;Dt=35*e2*e2*e2/512;X=a*(1-e2)*(At*B-Bt*sin(2*B)/2+Ct*sin(4*B)/4-Dt*sin(6*B)/6);W=sqrt(1-e2*sin(B)*sin(B));N=a/W;n=sqrt(ep2)*cos(B);t=tan(B);DH3=(L-(1、5*PI/180))/(3*PI/180)+1;DH6=L/(6*PI/180)+1;L03=DH3*(3*PI/180);L06=DH6*(6*PI/180)-(3*PI/180);l3=L-L03;l6=L-L06;m3=cos(B)*l3;m6=cos(B)*l6;x3=X+N*t*(m3*m3/2+(5-t*t+9*n*n+4*n*n*n*n)*m3*m3*m3*m3/24+(61-58*t*t+t*t*t*t)* m3*m3*m3*m3*m3*m3/720);x6=X+N*t*(m6*m6/2+(5-t*t+9*n*n+4*n*n*n*n)*m6*m6*m6*m6/24+(61-58*t*t+t*t*t*t)* m6*m6*m6*m6*m6*m6/720);y3=N*(m3+(1-t*t+n*n)*m3*m3*m3/6+(5-18*t*t+t*t*t*t+14*n*n-58*n*n*t*t)*m3*m3*m3 *m3*m3/120);y6=N*(m6+(1-t*t+n*n)*m6*m6*m6/6+(5-18*t*t+t*t*t*t+14*n*n-58*n*n*t*t)*m6*m6*m6 *m6*m6/120);Y3=DH3*1000000+500000+y3;Y6=DH6*1000000+500000+y6;printf("\n\n 得到的高斯平面坐标为:\n\n");printf(" 对于3度带:\n 纵坐标x=%、3lf\n 横坐标y=%、3lf(通用坐标Y=%、3lf)\n\n",x3,y3,Y3);printf(" 对于6度带:\n 纵坐标x=%、3lf\n 横坐标y=%、3lf(通用坐标Y=%、3lf)\n\n",x6,y6,Y6);}void GUS_FS(){double x,y,Y,B,B0,B1,Bf,Vf,tf,Nf,nf,L,At,Bt,Ct,Dt,L3,L6;long DH;printf(" 请输入高斯平面坐标:\n\n");printf(" 纵坐标X=");scanf("%lf",&x);printf("\n");printf(" 自然坐标y=");scanf("%lf",&y);printf("\n");printf(" 通用坐标Y=");scanf("%lf",&Y);printf("\n");At=1+3*e2/4+45*e2*e2/64+175*e2*e2*e2/256;Bt=3*e2/4+15*e2*e2/16+525*e2*e2*e2/512;Ct=15*e2*e2/64+105*e2*e2*e2/256;Dt=35*e2*e2*e2/512;B0=x/(a*(1-e2)*At);B1=(x-a*(1-e2)*(-Bt*sin(2*B0)/2+Ct*sin(4*B0)/4-Dt*sin(6*B0)/6))/(a*(1-e2)*At);while(fabs(B1-B0)>1*pow(10,-8)){B0=B1;B1=(x-a*(1-e2)*(-Bt*sin(2*B0)/2+Ct*sin(4*B0)/4-Dt*sin(6*B0)/6))/(a*(1-e2)*At);}Bf=B1;nf=sqrt(ep2)*cos(Bf);tf=tan(Bf);Vf=sqrt(1+ep2*cos(Bf)*cos(Bf));Nf=c/Vf;B=Bf-Vf*Vf*tf/2*((y/Nf)*(y/Nf)-(5+3*tf*tf+nf*nf-9*nf*nf*tf*tf)*pow((y/Nf),4)/12+(61+90*tf *tf+45*tf*tf)*pow((y/Nf),6)/360);L=((y/Nf)-(1+2*tf*tf+nf*nf)*(y/Nf)*(y/Nf)*(y/Nf)/6+(5+28*tf*tf+24*pow(tf,4)+6*nf*nf+8*nf *nf*tf*tf)*pow((y/Nf),5)/120)/cos(Bf);DH=Y/1000000;L3=3*PI/180*double(DH)+L;L6=6*PI/180*double(DH)-3*PI/180+L;printf("\n\n 得到的大地坐标为:\n\n");printf(" 大地纬度B=");RBD(B);printf("\n");printf(" 若为6度带,大地经度L=");RBD(L6);printf("\n");printf(" 若为3度带,大地经度L=");RBD(L3);printf("\n"); }。
大地坐标转空间直角坐标方法

大地坐标转空间直角坐标方法大地坐标(经纬度)是地球表面上用于描述位置的一种坐标系统,常用的表示方式是用经度和纬度来表示一个位置。
而空间直角坐标是一种三维坐标系统,它由东西、南北和垂直地面三个方向组成。
大地坐标转换为空间直角坐标的方法分为两步:首先将大地坐标转换为大地平面坐标系坐标,然后再将大地平面坐标转换为空间直角坐标。
第一步,将大地坐标转换为大地平面坐标系坐标,常用的方法有三角形式法和高斯投影法。
1.三角形式法:三角形式法是根据大地三角形的性质,通过计算大地纬度和经度的变化量,将大地坐标转换为大地平面坐标。
具体步骤如下:(1)选取一个参考点,确定该点的大地坐标和大地平面坐标。
(2)计算待转换点的纬度和经度的变化量,即ΔB和ΔL。
(3)根据大地坐标的定义,计算待转换点的大地平面坐标,即X和Y。
2.高斯投影法:高斯投影法是一种常用的大地平面坐标投影方法,它是根据高斯球面正轴投影的原理,通过计算大地纬度和经度的变化量,将大地坐标转换为大地平面坐标。
具体步骤如下:(1)确定投影中央经线,选择一个参考点,确定该点的大地坐标和大地平面坐标。
(2)计算待转换点的纬度和经度的变化量,即ΔB和ΔL。
(3)根据高斯投影的计算公式,计算待转换点的大地平面坐标,即X和Y。
第二步,将大地平面坐标转换为空间直角坐标,常用的方法有高斯变换法和椭球投影法。
1.高斯变换法:高斯变换法是将大地平面坐标通过高斯投影法计算得到的坐标转换为空间直角坐标。
具体步骤如下:(1)选择一个参考点,确定参考点的大地平面坐标和空间直角坐标。
(2)计算待转换点的大地平面坐标与参考点的大地平面坐标之差,即ΔX和ΔY。
(3)根据高斯变换的计算公式,计算待转换点的空间直角坐标,即X、Y和Z。
2.椭球投影法:椭球投影法是将大地平面坐标通过椭球投影的原理,将大地平面坐标转换为空间直角坐标。
具体步骤如下:(1)选择一个参考点,确定参考点的大地平面坐标和空间直角坐标。
大地坐标系与空间直角坐标系的相互转换python

大地坐标系与空间直角坐标系的相互转换Python在地理信息系统(GIS)中,常常需要将大地坐标系(地理坐标系)与空间直角坐标系(笛卡尔坐标系)进行相互转换。
大地坐标系使用经纬度来表示地球表面上的任意点,而空间直角坐标系使用直角坐标来表示点在三维空间中的位置。
Python提供了一些库和工具,可以方便地进行这种转换。
大地坐标系与空间直角坐标系的基本概念大地坐标系(地理坐标系)大地坐标系是一种用经纬度来表示地球表面上任意点的坐标系。
经度表示点相对于本初子午线的位置(东经为正、西经为负),纬度表示点相对于赤道的位置(北纬为正、南纬为负)。
空间直角坐标系(笛卡尔坐标系)空间直角坐标系是一种使用直角坐标来表示点在三维空间中的位置的坐标系。
在空间直角坐标系中,每个点的位置由其相对于三个互相垂直的坐标轴的坐标值确定。
大地坐标系与空间直角坐标系的转换大地坐标系与空间直角坐标系之间的转换涉及到各种地球椭球参数和数学公式。
幸运的是,Python的一些库和工具已经实现了这些转换,使得我们可以很方便地进行转换操作。
Geopy库Geopy是一个Python库,提供了许多地理坐标系之间相互转换的功能。
使用Geopy,我们可以方便地进行大地坐标系到空间直角坐标系的转换。
首先,我们需要安装Geopy库。
可以使用pip命令来进行安装:pip install geopy接着,我们可以使用以下代码将大地坐标系的经纬度转换为空间直角坐标系的三维坐标:```python from geopy import Point from geopy.distance import distance定义大地坐标系的经纬度latitude = 40.7128 longitude = -74.0060将经纬度转换为空间直角坐标系的三维坐标point = Point(latitude, longitude) x, y, z = point.to_cartesian() print(f。
大地坐标与空间直角坐标转换

大地坐标与空间直角坐标转换在地理空间相关的领域中,大地坐标和空间直角坐标是两种常用的坐标系统。
大地坐标通常用经度和纬度表示,是为了描述地球表面上的点的位置而设计的坐标系统;而空间直角坐标则是一种常用的三维笛卡尔坐标系,用来描述平面内的点的位置。
在实际应用中,有时候我们需要将一个点从大地坐标系转换到空间直角坐标系,或者反过来进行转换,这就需要进行一定的坐标转换计算。
大地坐标的表示大地坐标通常是以经度(Longitude)和纬度(Latitude)表示的。
经度表示东西方向,是一个0到360度的值,通常以东经为正值,西经为负值。
纬度表示南北方向,是一个-90到90度的值,赤道为0度,南纬为负值,北纬为正值。
空间直角坐标的表示空间直角坐标是以直角坐标系表示的,通常是三维笛卡尔坐标系,包括X、Y和Z三个坐标轴。
X轴和Y轴在平面内垂直,Z轴垂直于平面,组成一个右手坐标系。
一个点在空间直角坐标系中的位置可以由其X、Y和Z坐标值表示。
大地坐标与空间直角坐标的转换大地坐标和空间直角坐标之间的转换涉及到地球的椭球面和大地水准面的关系,通常需要考虑椭球体参数、大地水准面的高度等因素。
实际转换过程中可能涉及到大圆距离、球面三角计算等复杂的数学运算。
结论大地坐标与空间直角坐标之间的转换是地理信息处理中一个重要的问题,通常需要借助专业的地理信息系统软件或者编程语言进行计算。
在进行坐标转换时,需要考虑到地球的椭球体特征以及大地水准面的高度影响,以确保转换的准确性。
对于从事地理测绘、地图制作、地理信息系统等领域的人员,熟练掌握大地坐标与空间直角坐标之间的转换方法是非常重要的。
以上就是关于大地坐标与空间直角坐标转换的一些内容,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系与大地坐标系转换程序
#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
#define PI (2.0*asin(1.0))
void main()
{ double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e;
//cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<<endl;
//cin>>a>>b;
a=6378137; //以WGS84为例
b=6356752.3142;
e=sqrt(a*a-b*b)/a;
c=a*a/b;
int x;
cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<<endl;
cin>>x;
switch(x)
{
case 0:
{
cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<<endl;
cin>>d1>>f1>>m1>>d2>>f2>>m2>>H;
B=PI*(d1+f1/60+m1/3600)/180;
L=PI*(d2+f2/60+m2/3600)/180;
W=sqrt(1-e*e*sin(B)*sin(B));
N=a/W;
X=(N+H)*cos(B)*cos(L);
Y=(N+H)*cos(B)*sin(L);
Z=(N*(1-e*e)+H)*sin(B);
cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<<fixed<<setprecision(6)<<X<<" "<<fixed<<setprecision(6)<<Y<<" "<<fixed<<setprecision(6)<<Z<<endl;break;
}
case 1:
{
cout<<"请分别输入空间直角坐标系中X,Y,Z的值(国际单位)"<<endl;
cin>>X>>Y>>Z;
double t,m,n, P,k,B0;
m=Z/sqrt(X*X+Y*Y); //t0
B0=atan(m); //初值
n=Z/sqrt(X*X+Y*Y);
P=c*e*e/sqrt(X*X+Y*Y);
k=1+(a*a-b*b)/(b*b);
t=m+P*n/sqrt(k+n*n); //现在为t1,之后代替t2,t3...
B=atan(t);
W=sqrt(1-e*e*sin(B)*sin(B));
N=a/W;
H=Z/sin(B) - N*(1-e*e);
int i;
for(i=1;fabs(B-B0)>10E-10;i++)//每一次新的B与上一次计算的B比较,误差小于10E-10 rad
{B0=B;
n=t;
t=m+P*n/sqrt(k+n*n);//迭代
B=atan(t);
}
W=sqrt(1-e*e*sin(B)*sin(B));
N=a/W;
//if((X<0)&(Y>0))
//L=atan(Y/X)+PI;
//if((X<0)&(Y<0))
// L=atan(Y/X)+PI;
// if((X>0)&(Y<0))
//L=2*PI-atan(Y/X);
L=atan2(Y,X);
H=sqrt(X*X+Y*Y)/cos(B)-N;
int Bd,Bf,Ld,Lf;
double Bm,Lm;
B=180*B/PI;//B转化为度做单位
Bd=B;
Bf=(B-Bd)*60;
Bm=((B-Bd)*60-Bf)*60;
L=180*L/PI;//L转化为度做单位
Ld=L;
Lf=(L-Ld)*60;
Lm=((L-Ld)*60-Lf)*60;
cout<<"大地坐标系中纬度,经度,大地高(国际单位)分别为"<<Bd<<" "<<Bf<<" "<<fixed<<setprecision(6)<<Bm<<endl<<Ld<<" "<<Lf<<" "<<fixed<<setprecision(6)<<Lm<<endl<<fixed<<setprecision(6)<<H<<endl;
break;
}
}
}
运行结果
Welcome !!! 欢迎您的下载,资料仅供参考!。