《相交线与平行线》 基础知识详解
相交线与平行线知识点总结

相交线与平行线知识点总结1.直线的定义:直线是平面上的一组点,这些点的任意两个点都可以用直线上的一段有向线段连接起来。
直线也可以看作没有端点的线段。
2.相交线的性质:(1)相交线:两条直线在平面上的交点。
两条相交的直线不可能平行。
(2)轴:两条相交线的交点称为轴。
(3)垂直交线:两条相交线互相垂直,即交角为90度。
(4)垂线:一条直线与另一条直线垂直,称为垂线。
(5)垂直平分线:两条相交直线的交点到两条直线距离相等的直线,称为垂直平分线。
3.平行线的性质:(1)平行线:在同一个平面内,两条直线不相交,称为平行线。
(2)平行符号:在直线上标记一对箭头表示平行关系。
(3)平行线定理:-同位角定理:两条平行线与同一条横截线相交,所得相对应的内角相等,相对应的外角相等。
-平行线之间的任意一对同位角互相相等。
(4)平行线判定定理:-直线与直线平行判定定理:直线与一条直线平行,则与这条直线平行的所有直线都平行。
-同位角平行判定定理:两条直线被一条横截线所截,使同位角相等,则这两条直线平行。
-垂直线判定定理:两条直线互相垂直,则这两条直线平行于同一直线。
(5)平行线的性质:-平行线之间的距离相等:两条平行线上任意两点之间的距离相等。
-平行线的夹角:两条平行线被一条直线截断所得的内角和为180度。
-平行线的斜率:两条平行线的斜率相等或者其中一条线的斜率不存在。
4.平行四边形:(1)平行四边形定义:有两对对边分别平行的四边形。
(2)平行四边形的性质:-对边相等:平行四边形的对边相等。
-对角线:平行四边形的对角线互相平分。
-同位角:平行四边形的同位角互相相等。
5.直线的倾斜角:(1)倾斜角定义:一条直线倾斜角的正切值等于该直线的斜率。
(2)平行线的倾斜角:平行线具有相同的倾斜角。
(3)垂直线的倾斜角:垂直线的倾斜角之和等于90度。
6.平行线与欧几里得公设:(1)欧几里得公设五:经过点外的一条直线上至少有两条平行线。
相交线与平行线知识点总结

相交线与平行线知识点总结在几何学中,相交线和平行线是基础概念。
它们在理解和解决几何问题时起着重要的作用。
本文将对相交线和平行线的概念、性质以及应用进行总结。
一、相交线的概念及性质相交线是指在同一个平面内交于一点或多个点的两条或多条线段。
我们来看一下相交线的性质。
1. 相交线的定义:两条线段在平面内交于一点或多个点。
2. 相交线的种类:根据其相交方式,相交线可以分为垂直相交线和斜交线两种。
垂直相交线是指交于一点且互相垂直的两条线段;斜交线是指交于一点但不互相垂直的两条线段。
3. 相交线上的角:相交线会形成一些特殊的角,主要包括相邻角、对顶角、内错角和外错角。
相邻角是指在同一侧的相交线上,且共享一个端点的两个角;对顶角是指在相交线的对立面上,且互相垂直的两个角;内错角是指在同一侧的相交线上,且不相邻的两个角;外错角是指在同一侧的相交线上,且与内错角互补的两个角。
4. 直线的平分线:两条相交直线的交点处的角被称为直线的平分线。
平分线将原角分成两个相等的角。
二、平行线的概念及性质平行线是指在同一平面内,永不相交的两条直线。
接下来我们来了解一下平行线的性质。
1. 平行线的定义:在同一平面内,两条直线如果不相交,则它们是平行线。
2. 平行线的判定:常用方法有欧几里得假设、对角线法、平行线法则等。
3. 平行线的性质:平行线之间相互平行;平行线与同一条直线的交线上的对应角相等;平行线与同一平行线的交线上的对应角相等;平行线与平行线之间的距离相等。
4. 平行线的应用:平行线在实际问题中有着广泛的应用,比如在测量、建筑、地理等领域。
通过平行线的性质,我们可以解决许多与位置、角度、距离等有关的问题。
三、相交线与平行线的关系相交线和平行线之间有着紧密的联系,它们的性质可以相互应用。
1. 垂直相交线与平行线:如果两条平行线被一条垂直相交线所截,那么所截得的对应角互为互补角。
2. 斜交线与平行线:如果两条平行线被一条斜交线所截,那么所截得的对应角互为相等角或互为互补角。
相交线与平行线的知识点

相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
相交线与平行线知识点总结

相交线与平行线第一节相交线一:相交线对顶角与邻补角二:垂线垂线段最短点到直线的距离第二节平行线及其判定一:平行线平行线平行线公理及推论二:平行线的判定同位角、内错角同旁内角平行线的判定第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截;同位角相等.简单说成:两直线平行;同位角相等.定理2:两条平行线被地三条直线所截;同旁内角互补..简单说成:两直线平行;同旁内角互补.定理3:两条平行线被第三条直线所截;内错角相等.简单说成:两直线平行;内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)2应用平行线的判定和性质定理时;一定要弄清题设和结论;切莫混淆.(3)3平行线的判定与性质的联系与区别(4)区别:性质由形到数;用于推导角的关系并计算;判定由数到形;用于判定两直线平行.(5)联系:性质与判定的已知和结论正好相反;都是角的关系与平行线相关.(6)4辅助线规律;经常作出两平行线平行的直线或作出联系两直线的截线;构造出三类角平行线之间的距离(1)平行线之间的距离(2)从一条平行线上的任意一点到另一条直线作垂线;垂线段的长度叫两条平行线之间的距离.(3)2平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念2、在平面内;把一个图形整体沿某一的方向移动;这种图形的平行移动;叫做平移变换;简称平移.3、2、平移是指图形的平行移动;平移时图形中所有点移动的方向一致;并且移动的距离相等.4、3、确定一个图形平移的方向和距离;只需确定其中一个点平移的方向和距离平移的性质②新图形中的每一点;都是由原图形中的某一点移动后得到的;这两个点是对应点.连接各组对应点的线段平行且相等作图----平移变换。
相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中的重要概念,它们在解决平面几何问题中起着重要作用。
本文将对相交线和平行线的基本概念、性质以及相关定理进行总结。
通过深入理解这些知识点,我们可以更好地应用它们解决几何问题。
1. 相交线的基本概念和性质相交线是指在平面上有一个或多个公共点的线段。
对于两条相交线,有以下基本性质:- 相交线的交点称为交点,两条相交线的交点只有一个。
- 相交线之间不存在夹角大小的关系,夹角的大小取决于相交线的具体角度。
2. 平行线的基本概念和性质平行线是指在同一个平面内不相交且永远也不会相交的两条直线。
对于平行线,有以下基本性质:- 平行线之间的距离始终保持相等。
- 平行线之间不存在夹角,夹角大小为0°。
- 平行线的斜率相等。
3. 相交线与平行线的关系相交线与平行线之间存在一些重要的关系:- 若两条线段相交于一点,并且这两条线段中至少有一条是平行线,则其他线段也必然是平行线。
- 若两条直线与同一条直线相交而呈同侧内角,且这两条直线之一与另一条平行线,则这两条直线也必然平行。
- 若两条直线都与同一条直线相交,并且两直线的内角和为180°,则这两条直线是平行线。
4. 相关定理在相交线与平行线的研究中,存在一些重要的定理:- 同一侧内角定理:如果一条直线与另外两条直线相交,形成的两个内角,那么这两个内角要么同时是锐角,要么同时是钝角。
- 交叉线定理:如果两条平行线分别与某一第三条直线相交,那么这两条交线的内外角之和为180°。
- 锐角平分线定理:如果射线是一条直线的角平分线且与这条直线的另一射线相交,那么这两条交线将构成一对平行线。
5. 解决几何问题的应用相交线与平行线的知识在解决几何问题时起着重要作用,常见的应用包括:- 判断两条线段是否相交,并找到相交点的坐标。
- 判断两条线段是否平行或垂直。
- 证明两条线段的平行性、垂直性等。
总之,相交线与平行线是解决平面几何问题的基础概念。
七年级下册数学第五章相交线与平行线

七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。
在相交线中,我们主要研究的是对顶角和邻补角。
对顶角相等,邻补角互补。
同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。
2. 平行线:平行线是指两条直线在同一平面内,且不相交。
平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。
此外,我们还学习了平行线的性质和判定方法。
3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。
这些性质是平行线的基本性质,也是解决相关问题的关键。
4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。
通过这些判定方法,我们可以确定两条直线是否平行。
5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。
同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。
以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。
相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中常见的概念,对于理解和解决空间几何问题非常重要。
本文将对相交线与平行线的基本概念、性质和应用进行整理。
一、相交线的基本概念1. 相交线:两条线段或线相交的现象称为相交线。
2. 相交点:两条线段或线相交的点称为相交点。
3. 直线:两个不同点之间的所有点都是直线上的点。
直线无限延伸,没有起始和终止点。
4. 射线:起点固定,延伸方向唯一的直线部分,一个点和一条直线组成的图形。
二、相交线的性质1. 相交线的两条直线面对面相互穿过,相交点只有一个。
2. 相交线的两条射线面对面相互穿过,起始点相同,相交点朝向不同。
3. 相交线的两条直线分割了平面成为四个部分,称为四个角落。
三、平行线的基本概念1. 平行线:在同一个平面内,永远不会相交的线段或直线称为平行线。
2. 平行线的符号:两条平行线的符号是“||”,例如AB || CD表示线段AB与CD平行。
3. 平行关系:如果一条直线与平面内的另外两条直线都平行,那么这两条直线互相平行。
四、平行线的判定方法1. 对应角相等法则:如果两条直线被一条交线切割,且相邻两个内角互为对应角相等,则这两条直线平行。
2. 同位角相等法则:如果两条直线被一条交线切割,且同侧内角互为同位角相等,则这两条直线平行。
3. 平行线的性质:平行线的两条直线之间的距离是相等的,平行线的两个内角互为对应角相等,同位角相互等。
五、相交线与平行线的应用1. 几何证明:相交线和平行线是几何证明中常用的重要工具,可用于证明两条线段、线性、平面等之间的关系。
2. 高中数学题解:相交线与平行线的概念和性质经常在高中数学题目中出现,掌握这些知识点有助于解决相关题目。
3. 实际应用:相交线和平行线的知识在日常生活和工程设计中有广泛的应用,例如建筑设计中的平行道路规划、交通信号灯的设置等。
综上所述,相交线与平行线是几何学中的重要概念,掌握相交线的基本概念以及平行线的判定方法和性质对于解决几何问题至关重要。
(完整版)初一数学下册《相交线与平行线》知识点归纳

相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线目录一、相交线,垂线二、同位角、内错角、同旁内角三、平行线及其判定四、平行线的性质及平移五、《相交线与平行线》全章复习与巩固一、相交线,垂线基础知识讲解【要点梳理】知识点一、邻补角与对顶角1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.要点诠释:(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.(2)邻补角是成对出现的,而且是“互为”邻补角.(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.(4)邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.2.对顶角及性质:(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.(2)性质:对顶角相等.要点诠释:(1)由定义可知只有两条直线相交时,才能产生对顶角.(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.3.邻补角与对顶角对比:角的名称特征性质相同点不同点对顶角①两条直线相交形成的角;②有一个公共顶点;③没有公共边.对顶角相等.①都是两条直线相交而成的角;②都有一个公共顶点;③都是成对出现①有无公共边;②两直线相交时,对顶角只有2对;邻补角有4对.的.邻补角①两条直线相交而成;②有一个公共顶点;③有一条公共边.邻补角互补.知识点二、垂线1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.要点诠释:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).要点诠释:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.要点诠释:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点诠释:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.《初中数学典型题思路分析》价格及说明1.全套资料共7册14本(七上—九下+综合共7册);每册分解析版和原题版两本;有和教材同步的多个版本可选。
2.每册(2本)包邮价格60元;两册及以上每册50元包邮;全套7册(14本)300元包邮;已购买者需购买全套补尾款即可。
3.赠送说明:(百度网盘发送,购买全套以下全部赠送)A.全套初中数学重难点名师精品视频课程(保证全部名师精讲)。
B.购买满2册即赠送重点推荐的《初中几何解题思路方法培训》视频课程。
C.基础典型题电子版资料(亮点:初中数学基础知识讲解分析)。
4.免费qq资料群(群号453495932)提供数学专题资料和基础典型题资料免费下载,微信:2781202173。
5.更多典型题分析见公众号,微信搜索公众号“初中数学解题思路”或“lishi_shuxue”关注即可。
注:《初中数学典型题思路分析》已被多位老师选用备课。
可提供样本!《初中数学典型题思路分析》亮点:内容为王!A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。
B.整体难度较大.严格选题,标注难度,不用浪费时间重复做简单题。
二、同位角、内错角、同旁内角基础知识讲解【要点梳理】要点一、同位角、内错角、同旁内角的概念1.“三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1要点诠释:⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2.同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点诠释:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.要点二、同位角、内错角、同旁内角位置特征及形状特征要点诠释:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.三、平行线及其判定基础知识讲解【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.四、平行线的性质及平移基础知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2)两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点四、平移1.定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2.性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3.作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.五、《相交线与平行线》全章复习与巩固【学习目标】1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2.区别平行线的判定与性质,并能灵活运用;3.了解命题的概念及构成,并能通过证明或举反例判定命题的真假;4.了解平移的概念及性质.【知识网络】【要点梳理】知识点一、相交线1.对顶角、邻补角邻补角有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.邻补角互补即∠3+∠4=180°要点诠释:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2.垂线及性质、点到直线的距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作:AB ⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直(与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P 到直线AB 的距离是垂线段PO 的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.知识点二、平行线1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB 与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.知识点三、命题及平移。