2017-2018学年北京市丰台区初三第一学期期末数学试卷(含答案)

合集下载

2017-2018学年九年级数学期末试卷及答案

2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。

2017年_2018度丰台上学期初三年级数学期末考试试题和答案解析

2017年_2018度丰台上学期初三年级数学期末考试试题和答案解析

丰台区2016-2017学年度第一学期期末练习初 三 数 学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如图,点D ,E 分别在△ABC 的AB ,AC 边上,且DE ∥BC ,如果AD ∶AB =2∶3,那么DE ∶BC 等于 A. 3∶2 B. 2∶5 C. 2∶3 D. 3∶5 2. 如果⊙O 的半径为7cm ,圆心O 到直线l 的距离为d ,且d =5cm ,那么⊙O 和直线l 的位置关系是 A. 相交 B. 相切 C. 相离D. 不确定 3. 如果两个相似多边形的面积比为4∶9,那么它们的周长比为A. 4∶9B. 2∶3C.2∶3D. 16∶814. 把二次函数422+-=x x y 化为()k h x a y +-=2的形式,下列变形正确的是 A. ()312++=x y B. ()322+-=x y C. ()512+-=x yD. ()312+-=x y5. 如果某个斜坡的坡度是1:3,那么这个斜坡的坡角为 A. 30° B. 45° C. 60° D. 90°6. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上, 如果∠C =40°,那么∠ABD 的度数为 A. 40° B. 50° C. 70° D. 80°7. 如果A (2,1y ),B (3,2y )两点都在反比例函数xy 1=的图象上,那么1y 与2y 的大小关系是 A. 21y y <B. 21y y >C. 21y y =D. 21y y ≥8. 如图,AB 为半圆O 的直径,弦AD ,BC 相交于点P ,如果CD = 3,AB = 4, 那么S △PDC ∶S △PBA 等于 A. 16∶9B. 3∶4C. 4∶3D. 9∶169. 如图,某校数学兴趣小组利用自制的直角三角A BA DECA OAB形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,则旗杆的高度为 A. 105米 B.(105+1.5)米 C. 11.5米D. 10米10. 如图,在菱形ABCD 中,AB =3,∠BAD =120°,点E从点B 出发,沿BC 和CD 边移动,作EF ⊥直线AB 于点F ,设点E 移动的路程为x ,△DEF 的面积为y ,则y 关于x 的函数图象为A. B. C. D.二、填空题(本题共18分,每小题3分)11. 二次函数()5122--=x y 的最小值是__________.12. 已知34=y x ,则=-y yx __________.13. 已知一扇形的面积是24π,圆心角是60°,则这个扇形的半径是 . 14. 请写出一个符合以下两个条件的反比例函数的表达式: .①图象位于第二、四象限;②如果过图象上任意一点A 作AB ⊥x 轴于点B ,作AC ⊥y 轴于点C ,那么得到的矩形ABOC 的面积小于6.15. 如图,将半径为3cm 的圆形纸片折叠后,劣弧中点C 恰好与圆心O 距离1cm ,则折痕AB 的长为 cm .16. 太阳能光伏发电是一种清洁、安全、便利、高效的新兴能源,因而逐渐被推广使用.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,支撑角钢EF 长为33290cm ,AB 的倾斜角为30°,BE =CA =50 cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,FE ⊥AB 于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为 30 cm ,点A 到地面的垂直距离为50 cm ,则支撑角钢CD 的长度是 cm ,AB 的长度是 cm .三、解答题(本题共35分,每小题5分) 17. 计算:6tan 30°+cos 245°-sin 60°.18. 如图,在Rt △ABC 中,∠C =90°,43=A tan ,BC =12, 求AB 的长.19. 已知二次函数c x x y ++-=2的图象与x 轴只有一个交点.(1)求这个二次函数的表达式及顶点坐标; (2)当x 取何值时,y 随x 的增大而减小.20. 如图,已知AE 平分∠BAC ,ACADAE AB =. (1)求证:∠E =∠C ;ABDABC(2)若AB =9,AD =5,DC =3,求BE 的长.21. 如图,在平面直角坐标系xOy 中,反比例函数ky =的图象与一次函数1+-=x y 的图象的一个交点为A (-1,m ). (1)求这个反比例函数的表达式;(2)如果一次函数1+-=x y 的图象与x 点B (n ,0),请确定当x <n 比例函数xky =的值的范围.22. 如图,已知AB 为⊙O 的直径,PA ,PC 是⊙O 的切线,A ,C 为切点,∠BAC =30°. (1)求∠P 的度数; (2)若AB =6,求PA 的长.23. 已知:△ABC .(1)求作:△ABC 的外接圆,请保留作图痕迹; (2)至少写出两条作图的依据.四、解答题(本题共22分,第24至25题,每小题5分,第26至27题,每小题6分) 24. 青青书店购进了一批单价为20元的中华传统文化丛书.在销售的过程中发现,这种图书每天的销售数量y (本)与销售单价x (元)满足一次函数关系:1083+-=x y ()3620<<x .如果销售这种图书每天的利润为p (元),那么销售单价定为多少元时,每天获得的利润最大?最大利润是多少?25. 如图,将一个Rt △BPE 与正方形ABCD 叠放在一起,并使其直角顶点P 落在线段CD上(不与C ,D 两点重合),斜边的一部分与线段AB 重合. (1)图中与Rt △BCP 相似的三角形共有________个,分别是______________;(2)请选择第(1)问答案中的任意一个三角形,完成该三角形与△BCP 相似的证明.26. 有这样一个问题:探究函数xx y 2+=的图象与性质.小美根据学习函数的经验,对函数xx y 2+=的图象与性质进行了探究.下面是小美的探究过程,请补充完整: AB CD E FA CB P(1)函数xx y 2+=的自变量x 的取值范围是___________; (2)下表是y 与x 的几组对应值.求m 的值;(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:.27. 如图,以△ABC 的边AB 为直径作⊙O ,与BC 交于点D ,点E 是BD 的中点,连接AE 交BC 于点F ,2ACB BAE ∠=∠.(1)求证:AC 是⊙O 的切线;(2)若32=B sin ,BD=5,求BF 的长.五、解答题(本题共15分,第28题7分,第29题8分)28. 已知抛物线G 1:()22+-=h x a y 的对称轴为x = -1,且经过原点. (1)求抛物线G 1的表达式;⌒(2)将抛物线G1先沿x轴翻折,再向左平移1个单位后,与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于C点,求A点的坐标;(3)记抛物线在点A,C之间的部分为图象G2(包含A,C两点),如果直线m:2y与图象G2只有一个公共点,请结合函数图象,求直线m与抛物-=kx线G2的对称轴交点的纵坐标t的值或范围.29. 如图,对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:如果线段AB上存在两个点M ,N ,使得∠MPN =30°,那么称点P 为线段AB 的伴随点.(1)已知点A (-1,0),B (1,0)及D (1,-1),E ⎪⎭⎫ ⎝⎛-325 , ,F (0,32+), ①在点D ,E ,F 中,线段AB 的伴随点是_________;②作直线AF ,若直线AF 上的点P (m ,n )是线段AB 的伴随点,求m 的取值范围;(2)平面内有一个腰长为1的等腰直角三角形,若该三角形边上的任意一点都是某条线段a 的伴随点,请直接写出这条线段a 的长度的范围.丰台区2016-2017学年度第一学期期末练习初 三 数 学 参 考 答 案二、填空题(本题共18分,每小题3分) 11. -5; 12.31; 13. 12; 14. 答案不唯一,如:xy 5-=; 15.52; 16. 45,300. 三、解答题(本题共35分,每小题5分)17.解:原式=23223362-⎪⎪⎭⎫ ⎝⎛+⨯-----3分 =232132-+=2133+ -----5分18.解: ∵∠C =90°,BC =12,43==AC BC A tan ,∴AC =16. -----3分 ∵AB 2= AC 2 +BC 2,∴AB 2= 162 +122=400, AB =20. -----5分 19.解:(1)由题意得△=1+4c =0,∴41-=c . ∴412-+-=x x y . -----2分 ∵当212=-=a b x 时,0=y ,∴顶点坐标为⎪⎭⎫⎝⎛0,21. -----3分(2)∵01<-=a ,开口向下, ∴当21>x 时,y 随x 的增大而减小. -----5分 20.(1)证明:∵AE 平分∠BAC , ∴∠BAE =∠EAC . -----1分又∵AC AD AE AB =, 得到ACAEAD AB = ∴△ABE ∽△ADC . -----2分 ∴∠E =∠C . -----3分(2)解:∵△ABE ∽△ADC , ∴DCBEAD AB =. -----4分 设BE =x , ∵359x =, ∴527=x ,即BE =527. -----5分21.解:(1)∵点A 在一次函数1+-=x y 的图象上,∴m =2. ∴A (-1,2).∵点A 在反比例函数xky =的图象上,∴k = -2.∴xy 2-=. (2) 令y = -x +1=0,x =1,∴B (1,0). ∴当x = 1时,xy 2-== -2. 由图象可知,当x <1时,y >0或y <-2. -----5分 22. 解:(1)∵PA 、PC 是⊙O 的切线,∴P A =PC ,∠PAB =90°. -----2分∵∠BAC =30°, ∴∠PAC =60°.∴△ACP 为等边三角形. ∴∠P =60°. -----3分 (2)连接BC ,∵AB 为⊙O 的直径,∴∠ACB =90°. -----4分∵∠BAC =30°, AB =6,23==∠AB AC CAB cos . ∴AC =33.∴P A = AC =33. -----5分23.解:作图正确 -----3分 作图依据:(1(2)两点确定一条直线;(3)垂直平分线上一点到线段的两个端点距离相等;(4)在平面内,圆是到定点的距离等于定长的点的集合四、解答题(本题共22分,第24至25题,每小题5 第26至27题,每小题6分)24. 解:p =(x -20)(-3x +108)= -3x 2+168x -2160 ∵20<x <36,且a =-3<0,∴当x = 28时, y 最大= 192. -----4分答:销售单价定为28元时,每天获得的利润最大,最大利润是192元. -----5分 25. 解:(1)3;Rt △EPB ,Rt △PDF ,Rt △EAF . -----2分 (2)答案不唯一,如:∵四边形ABCD 是正方形,∴∠ABP +∠PBC =∠C =90°. ∵∠PBC +∠BPC =90°, ∴∠ABP =∠BPC .又∵∠BPE =∠C = 90°,∴Rt △BCP ∽Rt △EPB . -----5分26. 解:(1)x ≥-2且x ≠0. -----2分 (2)当x =2时,122=+=m . -----3分 (3-----5分 (4)当-2≤x <0或 -----6分 27.(1)证明:连接AD .∵ E 是弧BD 的中点,∴弧BE = 弧ED ,∴∠BAD =2∠BAE .∵2ACB BAE ∠=∠,∴∠ACB=∠BAD . -----1分 ∵AB 为⊙O 直径, ∴∠ADB =90°,∴∠DAC +∠ACB =90°.∴∠BAC =∠DAC +∠BAD =90°. -----2分 ∴AC 是⊙O 的切线. -----3分 (2)解:过点F 作FG ⊥AB 于点G .∵∠BAE =∠DAE ,∠ADB =90°,∴GF =DF . -----4分在Rt △BGF 中,∠BGF =90°,32==BF GF sinB , 设BF =x ,则GF =5-x ,∴325=x x -,x =3,即BF =3. -----6分 五、解答题(本题共15分,第28题7分,第29题8分) 28. 解:(1)∵抛物线G 1:()22+-=h x a y 的对称轴为x = -1,∴y =a (x +1)2+2.∵抛物线y =a (x +1)2+2经过原点,∴a (0+1)2+2=0.解得 a =-2.∴抛物线G 1的表达式为y = -2(x +1)2+2= -2x 2-4x . -----2分(2)由题意得,抛物线G 2的表达式为y =2(x +1+1)2﹣2=2x 2+8x +6.∴当y =0时,x = -1或-3.∴A (﹣3,0) -----4分 (3)由题意得,直线m :2-=kx y 交y 轴于点D (0,-2). 由抛物线G 2的解析式y =2x 2+8x +6,得到顶点E (-2,-2).当直线2-=kx y 过E (-2,-2)时与图象G 2只有一个公共点,此时t = -2. 当直线2-=kx y 过A (-3,0)时,把x = -3代入2-=kx y , k =32-,∴232--=x y .把x = -2代入232--=x y ,∴y =32-,即t =32-.∴结合图象可知2-=t 或32->t . -----729. 解:(1)○1D 、F ; -----2分 ○2以AB 为一边,在x 轴上方、下方分别构造等边△ABO 1和等边△ABO 2, 分别以点O 1,点O 2为圆心,线段AB ∵线段AB 关于y 轴对称,∴点O 1,点O 2都在y 轴上∵AB =AO 1=2,AO =1,∴OO 1∴O 1(0.同理O 2(0,.∵F (2,0),∴O 1F =22AB +==. ∴点F 在⊙1O 上.设直线AF 交⊙2O 于点C ,∴线段FC 上除点A 以外的点都是线段AB 的“伴随点”, ∴点P (m ,n )是线段FC 上除点A 以外的任意一点. 连接O 2C ,作CG ⊥y 轴于点G ,∵等边△O 1AB 和等边△O 2AB ,且y 轴垂直AB ,∴∠AO 1B =∠AO 2B =∠O 1AB =∠O 2AB = 60°, ∠AO 1O =∠AO 2O =30°.∵O 1A =O 1F ,∴∠AFO 1=∠FAO 1=15°.∴∠CAO 2=∠AFO 2+∠AO 2F =15°+30°=45°.∵O 2A =O 2C ,∴∠CAO 2=∠ACO 2=45°.∴∠O 2CG =180°-∠CFG -∠FGC -∠ACO 2=30°.∴CG =O 2C ·cos30°=3232=⨯.0m ≤≤ 且1m ≠-. -----6分(2)22≥a . -----8分。

北京市丰台区九年级上期末数学试题有答案

北京市丰台区九年级上期末数学试题有答案

丰台区2017~2018学年度第一学期期末练习初三数学2018. 01考 生 须 知1. 本试卷共6页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷和答题卡一并交回。

一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如果32a b =(0ab ≠),那么下列比例式中正确的是 A .32a b = B .23b a = C .23a b = D .32a b = 2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为 A .22y x =+ B .22y x =- C .()22y x =+D .()22y x =-3.如图,在Rt △ABC 中,∠C = 90°,AB = 5,BC = 3,则tan A 的值为A .35B .34C .45D .434.“黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置 A .①B .②C .③D .④5.如图,点A 为函数ky x=(x > 0)图象上的一点,过点A 作x 轴的平行线交y轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为 A .1 B .2 C .3D .46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是A B CD7.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果CB AABCAB xOyO AB∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°8.已知抛物线2y ax bx c =++上部分点的横坐标x 与纵坐标y 的对应值如下表:x … 1- 0 1 2 3 … y…3 01-m3…①抛物线2y ax bx c =++的开口向下;②抛物线2y ax bx c =++的对称轴为直线1x =-; ③方程20ax bx c ++=的根为0和2; ④当y >0时,x 的取值范围是x <0或x > 2. 其中正确的是 A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分) 9.如果sin α =12,那么锐角α = .10.半径为2的圆中,60°的圆心角所对的弧的弧长为 . 11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为 cm. 12.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为 .13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式 .14.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为 .15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m 的正方形ABCD ,改建的绿地是矩形AEFG ,其中点E 在AB 上,点G 在AD 的延长线上,且DG = 2BE . 如果(单位:m )m 2),那么y 与x 的函数的表达式为 ;当= m 时,绿地AEFG16图1图2A B'A'BOO AC B请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是 ; (2)直线P A ,PB 是⊙O 的切线,依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)17.计算:2cos30sin 45tan60︒+︒-︒.18.如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4,求AC 的长.19.已知二次函数y = x 2 - 4x + 3.(1)用配方法将y = x 2 - 4x + 3化成y = a (x - h )2 + k(2)在平面直角坐标系xOy 中画出该函数的图象; (3)当0≤x ≤3时,y 的取值范围是.20锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE = 1寸,CD = 10寸,求直径AB 的长. 请你解答这个问题.21.在平面直角坐标系xOy 中,直线1y x =+与双曲线ky x=的一个交点为P (m ,2). (1)求k 的值;(2)M (2,a ),N (n ,b )是双曲线上的两点,直接写出当a > b 时,n 的取值范围.22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E . 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度. (参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)DCA EM23.如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2m ,喷出水流的运动路线是抛物线. 如果水流的最高点P 到喷水枪AB 所在直线的距离为1m ,且到地面的距离为3.6m ,求水流的落地点C 到水枪底部B 的距离.24.如图,AB 是⊙O 的直径,点C 是AB 的中点,连接AC 并延长至点D ,使CD AC =,点E 是OB上一点,且23OE EB =,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当2OB =时,求BH 的长.25.如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC 于点F ,连接DF .已知AB = 4cm ,AD = 2cm ,设A ,E 两点间的距离为x cm ,△DEF 面积为y cm 2. 小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.DC BAEF下面是小明的探究过程,请补充完整:(1)确定自变量x 的取值范围是 ;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:x /cm 0 0.5 1 1.5 2 2.5 3 3.5 … y /cm 24.03.73.93.83.32.0…(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;O AB CD H F EPC B A(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .26.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.27.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC .(1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ;(2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,2),P 2(0,-2),P 30)中,⊙O 的“离心点”是 ;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B . 如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.EMNFBA D CEMN FBADC图1图2丰台区2017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 30°; 10.2π3; 11. 10; 12. 1; 13. 2y x =或245y x x =-+等,答案不唯一;14.(2,0); 15.22864(08)y x x x =-++<<(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:45tan60︒-︒=2+……3分……4分……5分 18. 解:∵DE ∥BC , ∴AD AE DBEC=.……2分即243EC=. ∴EC =6.……4分∴AC =AE + EC =10. ……5分 其他证法相应给分.19.解:(1)2444+3y x x =-+-()221x =--. ……2分(2)如图: ….3分 (3)13y -≤≤ ….5分20.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E ,且CD =10,∴∠BEC =90°,152CE CD ==.……2分 设OC =r ,则OA =r ,∴OE =1r -. 在Rt OCE ∆中, ∵222OE CE OC +=,∴()22125r r -+=.∴=13r . …4分 ∴AB = 2r = 26(寸). 答:直径AB 的长26寸. …5分21. 解:(1)一次函数1y x =+的图象经过点(,2)P m ,∴1m =. ……… 1分∴点P 的坐标为(1,2). ……… 2分∵反比例函数ky x=的图象经过点P (1,2), ∴2k = ………3分 (2)0n <或2n > …………5分22.解:由题意得,四边形ACDB ,ACEN 为矩形,∴EN=AC=1.5.AB=CD=15.在Rt MED 中, ∠MED =90°,∠MDE =45°, ∴∠EMD =∠MDE =45°. ∴ME =DE . …2分设ME =DE =x ,则EC =x +15.在Rt MEC 中,∠MEC =90°, ∠MCE =35°,∵tan ME EC MCE =⋅∠,∴()0.715x x ≈+ .∴35x ≈ . ∴35ME ≈ . …4分 ∴36.5MN ME EN =+≈ .∴人民英雄纪念碑MN .的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P2),P (1,3.6). ……2分∵点P 为抛物线顶点, ∴1 3.6h k ==, . ∵点A 在抛物线上, ∴ 3.62a +=, 1.6a =-…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m. ……5分O EAB CDDMD CA Ex +324.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是AB 的中点,∴∠AOC =90°. ……1分 ∵OA OB =,CD AC =,∴OC 是ABD ∆的中位线. ∴OC ∥BD. ∴∠ABD =∠AOC =90°. ……2分 ∴AB BD ⊥.∴BD 是⊙O 的切线. ……3分 其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△BFE. ∴OC OEBF EB=. ∵OB = 2,∴OC = OB = 2,AB = 4,∵23OE EB =,∴223=,∴BF =3. ……4分 在Rt ABF ∆中,∠ABF =90°,5AF =.∵1122ABFSAB BF AF BH =⋅=⋅ ,∴AB BF AF BH ⋅=⋅.即435BH ⨯=. ∴BH =125. .……5分 其他方法相应给分.25.(1)04x ≤<;.……1分(2)3.8,4.0; ……3分(3)如图 ……4分 (4)0或2. ……6分 26. 解:(1)1,242 3.b bc ⎧=⎪⎨⎪-++=⎩ ……1分解得2,3.b c =⎧⎨=⎩. ……2分 ∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM = AM. …… 3分∴BC -AC = BM+MC -AC = AM+MC -AC= AC+CM+MC -AC =2 CM =2. ……5分其他方法相应给分.(3)点Q 的坐标为(12-)或(12-).……7分27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分∴ACAFAE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分28.解:(1)①2P ,3P ; ……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分。

2017-2018学年北京市丰台区九年级(上)期末数学试卷-含详细解析

2017-2018学年北京市丰台区九年级(上)期末数学试卷-含详细解析

2017-2018学年北京市丰台区九年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.如果3a=2b(ab≠0),那么比例式中正确的是()A. B. C. D.2.将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为()A. B. C. D.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值为()A.B.C.D.4.“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A. B. C. D.5.如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()A. 1B. 2C. 3D. 46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A. B. C.D.7.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点,如果∠AOB=140°,那么∠ACB的度数为()A. B. C. D. 或8.2有以下几个结论:抛物线y=ax2+bx+c的开口向下;抛物线y=ax2+bx+c的对称轴为直线x=-1;方程ax2+bx+c=0的根为0和2;当y>0时,x的取值范围是x<0或x>2;其中正确的是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)9.已知sinα=,那么锐角α的度数是______.10.半径为2的圆中,60°的圆心角所对的弧的弧长为______.11.如图1,物理课上学习过利用小孔成像说明光的直线传播,现将图1抽象为图2,其中线段AB为蜡烛的火焰,线段A′B′为其倒立的像,如果蜡烛火焰AB的高度为2cm,倒立的像A′B′的高度为5cm,点O到AB的距离为4cm,那么点O到A′B′的距离为______cm.12.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为______.13.已知函数的图象经过点(2,1),且与x轴没有交点,写出一个满足题意的函数的表达式______.14.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为______.15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地,如图,自建房占地是边长为8m的正方形ABCD,改建的绿地的矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE,如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的表达式为______;当BE=______m时,绿地AEFG的面积最大.16.下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P.求作:过点P的⊙O的切线.作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于OP的长为半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线.请回答以下问题:连接OA,OB,可证∠OAP=∠OBP=90°,理由是______;直线PA,PB是⊙O的切线,依据是______.三、计算题(本大题共2小题,共10.0分)17.如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线,如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.18.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.四、解答题(本大题共10小题,共58.0分)19.计算:2cos30°+sin45°-tan60°.20.如图,△ABC中,DE∥BC,如果AD=2,DB=3,AE=4,求AC的长.21.已知二次函数y=x2-4x+3.(1)用配方法将y=x2-4x+3化成y=a(x-h)2+k的形式;(2)在平面直角坐标系xOy中画出该函数的图象;(3)当0≤x≤3时,y的取值范围是______.22.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为⊙O的直径,弦CD⊥AB于点E,AE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.23.24.在平面直角坐标系xOy中,直线y=x+1于双曲线y=的一个交点为P(m,2).(1)求k的值;(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.25.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5米的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E,请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考依据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)26.如图,点E是矩形ABCD边AB上一动点(不与点B重合),过点E作EF⊥DE交BC于点F,连接DF,已知AB=4cm,AD=2cm,设A,E两点间的距离为xcm,△DEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是______;(2)通过取点、画图、测量、分析,得到了x与y的几组值,如表:(说明:补全表格时相关数值保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF面积最大时,AE的长度为______cm.27.在平面直角坐标系xOy中,抛物线经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y轴的直线l与抛物线交于两点A(,),B(,),其中,,与y轴交于点C,求BC-AC的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P 平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.28.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:如果⊙C的半径为r,⊙C外一点P到⊙C的切线长小于或等于2r,那么点P叫做⊙C的“离心点”.(1)当⊙O的半径为1时,在点P1(,),P2(0,-2),P3(,0)中,⊙O的“离心点”是______.点P(m,n)在直线y=-x+3上,且点P为⊙O的“离心点”,求点P的横坐标m 的取值范围.(2)⊙C的圆心在y轴上,半径为2,直线y=-x+1与x轴、y轴交于点A、B.如果线段AB上的所有点都是⊙C的“离心点”,请直接写出圆心C纵坐标的取值范围.答案和解析1.【答案】C【解析】解:∵3a=2b,∴a:b=2:3,b:a=3:2,即a:2=b:3,故A,B均错误,C正确,D错误.故选:C.先逆用比例的基本性质,把3a=2b改写成比例的形式,使相乘的两个数a和3做比例的外项,则相乘的另两个数b和2就做比例的内项;进而判断得解.本题主要考查了比例的性质,解答此题的关键是比例基本性质的逆运用,要注意:内项之积等于外项之积.本题也可以将各选项中的比例式化为等积式进行判断.2.【答案】A【解析】解:∵抛物线y=x2向上平移2个单位后的顶点坐标为(0,2),∴所得抛物线的解析式为y=x2+2.故选:A.求出平移后的抛物线的顶点坐标,然后利用顶点式形式写出即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.3.【答案】B【解析】解:∵∠ACB=90°,AB=5,BC=3,∴AC==4,∴tanA==.故选:B.先利用勾股定理计算出AC,然后根据正切的定义求解.本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义.4.【答案】B【解析】解:观察图象可知,AC≈0.618AB,DE≈0.618CD,∴按照黄金分割的原则,应该使小狗置于画面中的位置②,故选:B.关键黄金分割的比值是0.618,即可判断.本题考查黄金分割(0.618)的应用,解题的关键是记住黄金分割的比值是0.618.5.【答案】D【解析】解:根据题意可知:S△AOB=|k|=2,又反比例函数的图象位于第一象限,k>0,则k=4.故选:D.根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.6.【答案】A【解析】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.7.【答案】D【解析】解:如图1,∠ACB=∠AOB=70°;如图2,∠ADB=∠AOB=70°,∠ADB+∠ACB=180°,∴∠ACB=110°.故选:D.根据点C在优弧AB上和劣弧AB上两种情况画出图形,根据圆周角定理和圆内接四边形的性质进行计算即可.本题考查的是圆周角定理和圆内接四边形的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8.【答案】D【解析】解:设抛物线的解析式为y=ax2+bx+c,将(-1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2-2x=x(x-2)=(x-1)2-1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x-2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x-2)>0,解得x<0或x>2,故④正确;故选:D.根据表格中的x、y的对应值,利用待定系数法求出函数解析式,再根据二次函数的图形与性质求解可得.本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的图象和性质.9.【答案】30°【解析】解:∵角α是锐角,且sinα=,∴∠α=30°.故答案为:30°.根据特殊角的锐角三角函数值求解.本题主要考查的是特殊角的三角函数值.10.【答案】π【解析】解:l===π.故答案为π.将n=60,r=2代入弧长公式l=进行计算即可.本题考查了弧长的计算.熟记弧长公式l=(弧长为l,圆心角度数为n,圆的半径为r)是解题的关键.注意在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.11.【答案】10【解析】解:∵AB∥A'B',∴△ABO∽△A'B'O,∴=是相似比,∴点O到A′B′的距离=,故答案为:10由相似三角形判定可得△ABO∽△A'B'O,利用对应边成比例可得点O到A′B′的距离.考查相似三角形的应用;用到的知识点为:相似三角形的对应边成比例.12.【答案】1【解析】解:过点O作OH⊥AB与点H,∵△ABC是等边三角形,∴∠CAB=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OA=1,故答案为:1过点O作OH⊥AB与点H,则OH为内切圆的半径,根据等边三角形的性质即可求出OH的长.本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.13.【答案】y=或y=x2-4x+5【解析】解:∵函数的图象经过点(2,1),且与x轴没有交点,∴该函数可以是反比例函数,也可以是二次函数,∴符合题意的函数的表达式可以为y=或y=x2-4x+5.故答案是:y=或y=x2-4x+5.该函数图象与x轴没有交点,可以推知该函数可以是反比例函数,也可以是二次函数.利用函数是性质解答即可.考查了反比例函数,一次函数,正比例函数和二次函数的性质,根据“与x轴没有交点”推知该函数可以是反比例函数,也可以是二次函数是解题的关键.14.【答案】(2,0)【解析】解:已知A(0,0),B(2,2),C(4,0),如图:可设:AB的垂直平分线解析式为:y=kx+b,把(0,2),(2,0)代入解析式可得:,解得:,所以AB的垂直平分线解析式是y=-x+2,设AC的垂直平分线解析式为x=m,把(2,2)代入解析式,可得:x=2,所以AC的垂直平分线解析式是x=2,∴过A、B、C三点的圆的圆心坐标为(2,0).故答案为:(2,0).已知A(0,0),B(2,2),C(4,0),则过A、B、C三点的圆的圆心,就是弦的垂直平分线的交点,故求得AB的垂直平分线和AC的垂直平分线的交点即可.此题考查垂径定理,圆心是弦的垂直平分线的交点,理解圆心的作法是解决本题的关键.15.【答案】y=-2x2+8x+64(0<x<8), 2【解析】解:设BE的长为x,绿地AEFG的面积为y,由图形可得:y=-2x2+8x+64(0<x <8),解析式变形为:y=-2(x-2)2+72,所以当x=2时,y有最大值,故答案为:y=-2x2+8x+64(0<x<8),2.设BE的长为x,绿地AEFG的面积为y,根据题意得出函数解析式进行解答即可.此题考查二次函数的应用,关键是根据图形得出函数解析式.16.【答案】直径所对圆周角是直角经过半径的外端点,并且垂直于这条半径的直线是圆的切线【解析】解:①连接OA,OB,可证∠OAP=∠OBP=90°,理由是:直径所对圆周角是直角,故答案为:直径所对圆周角是直角;②直线PA,PB是⊙O的切线,依据是:经过半径的外端点,并且垂直于这条半径的直线是圆的切线,故答案为:经过半径的外端点,并且垂直于这条半径的直线是圆的切线.①根据“直径所对圆周角是直角”可得;②根据“经过半径的外端点,并且垂直于这条半径的直线是圆的切线”可得.本题主要考查作图-复杂作图,解题的关键是熟练掌握中垂线的尺规作图及圆周角定理、切线的判定.17.【答案】解:如图,以BC所在直线为x轴、AB所在直线为y轴建立直角坐标系,由题意知,抛物线的顶点P的坐标为(1,3.6)、点A(0,2),设抛物线的解析式为y=a(x-1)2+3.6,将点A(0,2)代入,得:a+3.6=2,解得:a=-1.6,则抛物线的解析式为y=-1.6(x-1)2+3.6,当y=0时,有-1.6(x-1)2+3.6=0,解得:x=-0.5(舍)或x=2.5,∴BC=2.5,答:水流的落地点C到水枪底部B的距离为2.5m.【解析】建立以BC所在直线为x轴、AB所在直线为y轴的直角坐标系,根据顶点P(1,3.6)设其解析式为y=a(x-1)2+3.6,把A(0,2)代入求得a的值,据此可得其函数解析式,再求得y=0时x的值可得答案.本题主要考查二次函数的应用,解题的关键是结合题意建立合适的平面直角坐标系,将实际问题转化为二次函数问题求解.18.【答案】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【解析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.19.【答案】解:原式=2×+-,=,=.【解析】首先代入特殊角的三角函数值,然后按实数的运算顺序计算即可.此题主要考查了特殊角的三角函数,关键是掌握30°、45°、60°角的各种三角函数值.20.【答案】解:∵DE∥BC,∴,即,解得:EC=6,∴AC=AE+EC=4+6=10;【解析】根据平行线分线段成比例求出EC,即可解答.本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理.21.【答案】-1≤y≤3【解析】解:(1)y=x2-4x+3=(x-2)2-1;(2)这个二次函数的图象如图:(3)当0≤x≤3时,-1≤y≤3.故答案为-1≤y≤3.(1)运用配方法把一般式化为顶点式;(2)根据函数图象的画法画出二次函数图象即可;(3)运用数形结合思想解答即可.本题考查的是二次函数的三种形式、二次函数的性质,掌握配方法把一般式化为顶点式是解题的关键.22.【答案】解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x-1)寸,由勾股定理得:OE2+CE2=OC2,即(x-1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.【解析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC=OA=x寸,则AB=2x寸,OE=(x-1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.此题考查了垂径定理,勾股定理;解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.23.【答案】解:(1)∵直线y=x+1于双曲线y=的一个交点为P(m,2),∴把P(m,2)代入一次函数解析式得:2=m+1,即m=1,∴P的坐标为(1,2),把P坐标代入反比例解析式得:k=2;(2)根据题意得:当a>b时,n的取值范围为n<0或n>2.【解析】(1)把P坐标代入一次函数解析式求出m的值,确定出P坐标,把P坐标代入反比例解析式求出k的值即可;(2)由题意,结合图象及反比例函数的增减性求出n的范围即可.此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.【答案】解:由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【解析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.25.【答案】0≤x <4 0或2【解析】解:(1)∵点E 在AB 上,∴0≤x <4,故答案为:0≤x <4;(2)∵四边形ABCD 是矩形,∴BC=AD=2,CD=AB=4,∠A=∠B=90°, ∴∠ADE+∠AED=90°, ∵EF ⊥DE ,∴∠AED+∠BEF=90°, ∴∠ADE=∠BEF ,∵∠A=∠B=90°, ∴△ADE ∽△BEF , ∴,∵AE=x ,∴BE=AB-AE=4-x , ∴,∴BF=,当x=1时,BF=,∴CF=BC-BF=2-=,y=S 矩形ABCD -S △ADE -S △BEF -S △CDF =8-×2×1-×3×-×4×=3.75≈3.8, 当x=2时,BF=2,∴CF=BC-BF=0,此时,点F 和点C 重合,y=S 矩形ABCD -S △ADE -S △BEF =8-×2×2-×2×2=4.0故答案为:3.8,4.0(3)描点,连线,画出如图所示的图象,(4)由图象可知,当x=0或2时,△DEF面积最大,即:当△DEF面积最大时,AE=0或2,故答案为0,2.(1)利用点E在线段AB上,即可得出结论;(2)先判断出△ADE∽△BEF,得出,进而表示出BF=,再取x=1和x=2求出y的即可;(3)利用画函数图象的方法即可得出结论;(4)由图象可知,即可得出结论.此题是四边形综合题,主要考查了矩形的性质,相似三角形的判定和性质,图形面积的计算方法,函数图象的画法,解本题的关键是用AE表示出BF.26.【答案】解:(1)∵抛物线y=-x2+bx+c经过点(2,3),对称轴为直线x=1,∴ ,解得,∴抛物线的表达式为y=-x2+2x+3;(2)如图,设直线l与对称轴交于点M,则BM=AM.∴BC-AC=BM+MC-AC=AM+MC-AC=2MC=2;(3)∵y=-x2+2x+3=-(x-1)2+4,∴顶点为(1,4),∵将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,∴新抛物线的顶点为(1,0),∴将原抛物线向下平移4个单位即可.设点P的坐标为(x,y),则y=-x2+2x+3,点Q的坐标为(x,y-4),则y>y-4.∵OP=OQ,∴x2+y2=x2+(y-4)2,∴y2=(y-4)2,∵y>y-4,∴y=-(y-4),∴y=2,∴y-4=-2,当y=2时,-x2+2x+3=2,解得x=1±,∴点Q的坐标为(1+,-2)或(1-,-2).【解析】(1)将点(2,3)代入y=-x2+bx+c,可得-4+2b+c=3,根据对称轴为直线x=1,得出=1,把两个方程联立得到二元一次方程组,求解得出抛物线的表达式;(2)设直线l与对称轴交于点M,根据抛物线的对称性得出BM=AM.那么BC-AC=BM+MC-AC=AM+MC-AC=2MC=2;(3)先利用配方法求出原抛物线的顶点为(1,4),根据上下平移横坐标不变,纵坐标相加减得出新抛物线的顶点为(1,0).再设点P的坐标为(x,y),则y=-x2+2x+3,点Q的坐标为(x,y-4),根据OP=OQ列出方程进而求解即可.本题是二次函数综合题,其中涉及到利用待定系数法求二次函数的解析式,抛物线的性质,二次函数图象与几何变换,函数图象上点的坐标特征,两点间的距离公式等知识,正确求出抛物线的解析式是解题的关键.27.【答案】(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC=45°,∴∠FAC=∠EAC=135°,∵∠FCA=∠ECA,∴△ACF≌△ACE(ASA),∴AE=AF.(2)证明:作CG⊥AB于G.∵BC=2,∠B=30°,∴CG=BC=1,∵AG=AC=1,∴AC=,∵∠FAC=∠EAC=135°,∴∠ACF+∠F=45°,∵∠ACF+∠ACE=45°,∴∠F=∠ACE,∴△ACF∽△AEC,∴=,∴AC2=AE•AF,∴AE•AF=2.【解析】(1)首先证明△ABC≌△ADC(SSS),推出∠BAC=∠DAC=45°,推出∠FAC=∠EAC=135°,再证明△ACF≌△ACE(ASA)即可解决问题;(2)由△ACF∽△AEC,推出=,可得AC2=AE•AF,求出AC即可解决问题;本题考查旋转变换、全等三角形的判定和性质、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.28.【答案】P2、P3【解析】解:(1)①∵P1(,),P2(0,-2),P3(,0),∴OP=1,OP2=2,OP3=,1∴点P1在⊙O上,不符合题意,∵过P2的切线长==,<2,∴P2是,⊙O的“离心点”,∵过P 3的切线长==2,2=2,∴P3是⊙O的“离心点”,故故答案为P2、P3.②如图1中,设P(m,-m+3).当过点P的切线长为2时,OP=5,∴m2+(-m+3)2=5,解得m=1或2.观察图象可知1≤m≤2.(2)①如图2中,当点C在y轴的正半轴上时,经过点B(0,1)时,A(2,0),当AC=2,点A是“离心点”,此时C(0,4),观察图象可知当⊙C的纵坐标y c满足3<y c≤4时,线段AB上的所有的点都是“离心点”;②如图3中,当点C在y轴的负半轴上时,BC=2时,点B是“离心点”,此时C(0.1-2).如图4中,当⊙C与直线y=-x+1相切时,设切点为N.由△CNB∽△AOB可得:=,∴=,∴OB=,∴C(0,1-),观察图象可知当⊙C的纵坐标y c满足1-2≤y c<1-时,线段AB上的所有的点都是“离心点”;综上所述,⊙C的纵坐标y c满足3<y c≤4或1-2≤y c<1-时,线段AB上的所有的点都是“离心点”;(1)①根据⊙C的“离心点”的定义即可判断;②根据⊙C的“离心点”的定义,构建方程即可解决问题;(2)分两种情形①如图2中,当点C在y轴的正半轴上时,经过点B(0,1)时,C(2,0),当AC=2,点A是“离心点”,此时C(0,4),观察图象可知当⊙C的纵坐标y c满足3<y c≤4时,线段AB上的所有的点都是“离心点”;②如图3中,当点C在y轴的负半轴上时,BC=2时,点B是“离心点”,此时C(0.1-2).如图4中,当⊙C与直线y=-x+1相切时,设切点为N.求出点C的坐标,即可判断;本题考查一次函数、直线与圆的位置关系、相似三角形的判定和性质、切线的性质、勾股定理、⊙C的“离心点”的定义等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

北京市丰台区2017届九年级上期末数学试卷含答案解析

北京市丰台区2017届九年级上期末数学试卷含答案解析

22.已知:如图,AB 为⊙O 的直径,PA、PC 是⊙O 的切线,A、C 为切点,∠ BAC=30°. (1)求∠P 的大小; (2)若 AB=6,求 PA 的长.
23.已知:△ABC. (1)求作:△ABC 的外接圆,请保留作图痕迹; (2)至少写出两条作图的依据.
四、解答题(本题共 22 分,第 24 至 25 题,每小题 5 分,第 26 至 27 题,每 小题 5 分) 24.青青书店购进了一批单价为 20 元的中华传统文化丛书.在销售的过程中发 现,这种图书每天的销售数量 y(本)与销售单价 x(元)满足一次函数关系: y=﹣3 x+108(20<x<36).如果销售这种图书每天的利润为 p(元),那么销售 单价定为多少元时,每天获得的利润最大?最大利润是多少? 25.如图,将一个 Rt△BPE 与正方形 ABCD 叠放在一起,并使其直角顶点 P 落
A.10 米 B.(10 +1.5)米 C.11.5 米 D.10 米 10.如图,在菱形 ABCD 中,AB=3,∠BAD=120°,点 E 从点 B 出发,沿 BC 和 CD 边移动,作 EF⊥直线 AB 于点 F,设点 E 移动的路程为 x,△DEF 的面积为 y,则 y 关于 x 的函数图象为( )
2016-2017 学年北京市丰台区九年级(上)期末数学试卷
一、选择题(本题共 30 分,每小题 3 分)下列各题均有四个选项,其中只有
一个是符合题意的.
1.如图,点 D,E 分别在△ABC
的 AB,AC 边上,且 DE∥BC,如果 AD:
AB=2:3,那么 DE:BC 等于( )
A.3:2 B.2:5 C.2:3 D.3:5 2.如果⊙O 的半径为 7cm,圆心 O 到直线 l 的距离为 d,且 d=5cm,那么⊙O 和直线 l 的位置关系是( ) A.相交 B.相切 C.相离 D.不确定 3.如果两个相似多边形的面积比为 4:9,那么它们的周长比为( ) A.4:9 B.2:3 C. : D.16:81 4.把二次函数 y=x2﹣2x+4 化为 y=a(x﹣2 h ) +k 的形式,下列变形正确的是 () A.y=(x+1)2+3 B.y=(x﹣2)2+3 C.y=(x﹣1 )2+5 D.y=(x﹣1 ) 25+.3如果某个斜坡的坡度是 1: ,那么这个斜坡的坡角为( ) A.30° B.45° C.60° D.90° 6.如图,AB 是⊙O 的直径,C,D 两点在⊙O 上,如果∠C=40°,那么∠ABD 的 度数为( )

2017-2018上学期九年级数学期末试卷

2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。

4.2018丰台第1学期初3期末考试数学题答案

丰台区2017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 30°;10. 2π3;11. 10;12. 1;13.2yx=或245y x x=-+等,答案不唯一;14.(2,0);15.22864(08)y x x x=-++<<(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:tan60︒-︒=2+……3分……4分……5分18. 解:∵DE∥BC,∴AD AEDB EC=.……2分即243EC=.∴EC=6.……4分∴AC=AE + EC=10.……5分其他证法相应给分.19.解:(1)2444+3y x x=-+-()221x=--. ……2分(2)如图:….3分(3)13y-≤≤….5分20.解:连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E,且CD=10,∴∠BEC =90°,152CE CD==.……2分设OC=r,则OA=r,∴OE=1r-.在Rt OCE∆中,∵222OE CE OC+=,∴()22125r r-+=.∴=13r. …4分∴AB = 2r= 26(寸).答:直径AB的长26寸.…5分21. 解:(1)一次函数1y x=+的图象经过点(,2)P m,∴1m=.……… 1分∴点P的坐标为(1,2). ……… 2分∵反比例函数kyx=的图象经过点P(1,2),∴2k=………3分(2)0n<或2n>…………5分22.解:由题意得,四边形ACDB,ACEN为矩形,∴EN=AC=1.5.AB=CD=15.在Rt MED中,∠MED=90°,∠MDE=45°,∴∠EMD=∠MDE=45°.OEABC DCDABNMEDCAEx+3∴ME =DE . …2分设ME =DE =x ,则EC =x +15. 在Rt MEC 中,∠MEC =90°, ∠MCE =35°,∵tan ME EC MCE =⋅∠, ∴()0.715x x ≈+ .∴35x ≈ . ∴35ME ≈ . …4分 ∴36.5MN ME EN =+≈ .∴人民英雄纪念碑MN .的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6). ……2分 ∵点P 为抛物线顶点, ∴1 3.6h k ==, . ∵点A 在抛物线上,∴ 3.62a +=, 1.6a =-…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m. ……5分24.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是»AB 的中点,∴∠AOC =90°. ……1分 ∵OA OB =,CD AC =,∴OC 是ABD ∆的中位线. ∴OC ∥BD. ∴∠ABD =∠AOC =90°. ……2分∴AB BD ⊥.∴BD 是⊙O 的切线. ……3分其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△BFE. ∴OC OEBF EB=. ∵OB = 2,∴OC = OB = 2,AB = 4,∵23OE EB =,∴223BF =,∴BF =3. ……4分 在Rt ABF ∆中,∠ABF =90°,5AF ==.∵1122ABFSAB BF AF BH =⋅=⋅ ,∴AB BF AF BH ⋅=⋅.即435BH ⨯=. ∴BH =125. .……5分 其他方法相应给分.25.(1)04x ≤<;.……1分 (2)3.8,4.0; ……3分(3)如图 ……4分(4)0或2. ……6分26. 解:(1)1,242 3.b bc ⎧=⎪⎨⎪-++=⎩ ……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM = AM. …… 3分∴BC -AC = BM+MC -AC = AM+MC -AC= AC+CM+MC -AC =2 CM =2. ……5分 其他方法相应给分.(3)点Q的坐标为(12-)或(12-).……7分27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠F AC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠F AC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAFAE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分28.解:(1)①2P ,3P ; ……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分。

2017丰台九上数学期末答案

丰台区2017-2018学年度第一学期期末练习初三数学参考答案二、填空题(本题共18分,每小题3分) 11. -5; 12.31;13. 12; 14.答案不唯一,如:xy 5-=;15.52; 16.45,300. 三、解答题(本题共35分,每小题5分)17.解:原式=23223362-⎪⎪⎭⎫ ⎝⎛+⨯-----3分 =232132-+=2133+-----5分18.解:∵∠C =90°,BC =12,43==AC BC A tan ,∴AC =16. -----3分 ∵AB 2=AC 2+BC 2,∴AB 2=162+122=400,AB =20. -----5分 19.解:(1)由题意得△=1+4c =0,∴41-=c . ∴412-+-=x x y . -----2分 ∵当212=-=a b x 时,0=y ,∴顶点坐标为⎪⎭⎫⎝⎛0,21.-----3分(2)∵01<-=a ,开口向下, ∴当21>x 时,y 随x 的增大而减小. -----5分 20.(1)证明:∵AE 平分∠BAC , ∴∠BAE =∠EAC .-----1分又∵AC AD AE AB =,得到ACAEAD AB = ∴△ABE ∽△ADC . -----2分 ∴∠E =∠C .-----3分(2)解:∵△ABE ∽△ADC ,∴DCBEAD AB =. -----4分 设BE =x ,∵359x =,∴527=x ,即BE =527.-----5分21.解:(1)∵点A 在一次函数1+-=x y 的图象上, ∴m =2. ∴A (-1,2).-----1分 ∵点A 在反比例函数xky =的图象上, ∴k = -2.∴xy 2-=.-----2分(2)令y = -x +1=0,x =1,∴B (1,0).∴当x = 1时,xy 2-== -2. 由图象可知,当x <1时,y >0或y <-2.-----5分 22.解:(1)∵P A 、PC 是⊙O 的切线,∴P A =PC ,∠P AB =90°. -----2分∵∠BAC =30°,∴∠P AC =60°.∴△ACP 为等边三角形.∴∠P =60°. -----3分 (2)连接BC ,∵AB 为⊙O 的直径,∴∠ACB =90°.-----4分∵∠BAC =30°,AB =6,23==∠AB AC CAB cos . ∴AC =33.∴P A =AC =33. -----5分23.解:作图正确-----3分 作图依据:(1(2)两点确定一条直线;(3)垂直平分线上一点到线段的两个端点距离相等;(4)在平面内,圆是到定点的距离等于定长的点的集合四、解答题(本题共22分,第24至25题,每小题5分,第26至27题,每小题6分)24.解:p =(x -20)(-3x +108)=-3x 2+168x -2160-----2分 ∵20<x <36,且a =-3<0, ∴当x = 28时,y 最大= 192.-----4分答:销售单价定为28元时,每天获得的利润最大,最大利润是192元. -----5分 25.解:(1)3;Rt △EPB ,Rt △PDF ,Rt △EAF . -----2分 (2)答案不唯一,如:∵四边形ABCD 是正方形,∴∠ABP +∠PBC =∠C =90°. ∵∠PBC +∠BPC =90°,∴∠ABP =∠BPC .又∵∠BPE =∠C = 90°,∴Rt △BCP ∽Rt △EPB . -----5分26.解:(1)x ≥-2且x ≠0. -----2分 (2)当x =2时,1222=+=m .-----3分 (3-----5分(4)当-2≤x <0或 -----6分 27.(1)证明:连接AD .∵E 是弧BD 的中点,∴弧BE =弧ED ,∴∠BAD =2∠BAE .∵2ACB BAE ∠=∠,∴∠ACB=∠BAD .-----1分∵AB 为⊙O 直径,∴∠ADB =90°,∴∠DAC +∠ACB =90°.∴∠BAC =∠DAC +∠BAD =90°. -----2分 ∴AC 是⊙O 的切线. -----3分 (2)解:过点F 作FG ⊥AB 于点G .∵∠BAE =∠DAE ,∠ADB =90°,∴GF =DF . -----4分在Rt △BGF 中,∠BGF =90°,32==BF GF sinB , 设BF =x ,则GF =5-x ,∴325=x x -,x =3,即BF =3. -----6分 五、解答题(本题共15分,第28题7分,第29题8分)28.解:(1)∵抛物线G 1:()22+-=h x a y 的对称轴为x =-1,∴y =a (x +1)2+2.∵抛物线y =a (x +1)2+2经过原点,∴a (0+1)2+2=0.解得a =-2.∴抛物线G 1的表达式为y = -2(x +1)2+2=-2x 2-4x .-----2分(2)由题意得,抛物线G 2的表达式为y =2(x +1+1)2﹣2=2x 2+8x +6.∴当y =0时,x = -1或-3.∴A (﹣3,0) -----4分 (3)由题意得,直线m :2-=kx y 交y 轴于点D (0,-2). 由抛物线G 2的解析式y =2x 2+8x +6,得到顶点E (-2,-2).当直线2-=kx y 过E (-2,-2)时与图象G 2只有一个公共点,此时t = -2. 当直线2-=kx y 过A (-3,0)时,把x = -3代入2-=kx y , k =32-,∴232--=x y .把x =-2代入232--=x y ,∴y =32-,即t =32-.∴结合图象可知2-=t 或32->t .-----7分29.解:(1)○1D 、F ;-----2分 ○2以AB 为一边,在x 轴上方、下方分别构造等边△ABO 1和等边△ABO 2, 分别以点O 1,点O 2为圆心,线段AB∵线段AB 关于y 轴对称,∴点O 1,点O 2都在y 轴上.∵AB =AO 1=2,AO =1,∴OO 1∴O 1(0.同理O 2(0,.∵F (2,0)+,∴O 1F =22AB ==. ∴点F 在⊙1O 上.设直线AF 交⊙2O 于点C ,∴线段FC 上除点A 以外的点都是线段AB 的“伴随点”, ∴点P (m ,n )是线段FC 上除点A 以外的任意一点. 连接O 2C ,作CG ⊥y 轴于点G ,∵等边△O 1AB 和等边△O 2AB ,且y 轴垂直AB ,∴∠AO 1B =∠AO 2B =∠O 1AB =∠O 2AB = 60°,∠AO 1O =∠AO 2O =30°.∵O 1A =O 1F ,∴∠AFO 1=∠F AO 1=15°.∴∠CAO 2=∠AFO 2+∠AO 2F =15°+30°=45°.∵O 2A =O 2C ,∴∠CAO 2=∠ACO 2=45°.∴∠O 2CG =180°-∠CFG -∠FGC -∠ACO 2=30°.∴CG =O 2C ·cos30°=3232=⨯.0m ≤≤且1m ≠-.-----6分(2)22≥a .-----8分。

北京市丰台区初三上学期期末数学试卷含答案

2018-2018学年度第一学期期末练习丰台区学初三数考号学校姓名3分,)30一、选择题(本题共分,每小题A 下列各题均有四个选项,其中只有一个是符合题意的...的值是则cosB=90°1.如图,在Rt△ABC中,∠C,BC=3,AB=4,7437..BD.AC. CB 43342,∶DB=3∶边上,且DE∥BC,如果ADAC2.如图,在△ABC中,点D、E分别在AB、AC 等于那么AE∶A5.3∶∶3D3∶2B.∶1 C.23A.O=5cm,那么⊙到直线l的距离为d,且d3.⊙O的半径为3cm,如果圆心OE D和直线l的位置关系是CB .不确定C.相离DA.相交B.相切23?)?(x?2y)的顶点坐标是(4.抛物线),-3),.(A2,3)B.(-23)C.(2,-3 D.(-2DEFABC∽△△的面积为∶,相似比为215.如果,且△DEF的面积为4,那么△ABC16A.1B.4C.D.8ABAD的度数是,∠BCD=120°,则∠ABCD6.如图,四边形内接于⊙O O °C.8060 120 D.°.30°B.°A2?y BD 7.对于反比例函数,下列说法正确的是xC .图象位于第二、四象限B-1),A.图象经过点(2的增大而增大随时,x Dxy< 0.当Cx 时,随的增大而减小.当> 0yx1 / 128.如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m,与树相距10m,则树的高度为A. 5mB. 6mC. 7mD.8m9.小宏用直角三角板检查某些工件的弧形凹面是否是半圆,下列工件的弧形凹面一定是半圆的是AA B CD错误!未指定书签。

二、填空题(本题共22分,第11题3分,第12题3分,第13-16题,每小题4分)1∠A=∠A__________゜.是锐角,且sinA= 11.如果,那么2x y=5x2=__________.12.已知,则y13.圆心角是60°的扇形的半径为6,则这个扇形的面积是.O到水面5mO14.排水管的截面为如图所示的⊙,半径为,如果圆心2 / 12=AB__________ m的距离是3m,那么水面宽..请写出一个符合以下三个条件的二次函数的解读式:.15 );1,1①过点(的增大而减小;y 随x②当时,0 x 时,函数值小于30.③当自变量的值为16.阅读下面材料:在数学课上,老师请同学思考如下问题:所在圆的圆请利用直尺和圆规确定图中弧AB 心.A B“小亮的作法正确.”:老师说_________________________.请你回答:小亮的作图依据是6分)(本题共24分,每小题三、解答题.tan 45°+sin 60°-17.计算:2cos30°13m-5-4x+y=mx.函数是二次函数.18的值;)求m(1 )写出这个二次函数图象的对称轴:;(22.的形式为:h)+k将解读式化成y=a(x-ABC△. ∠ABCCD上一点,连接,且∠ACD =19.如图,在是中,DABA ABC∽△;1()求证:△ACD,求.AC的长=10,AD2()若=6AB DBC3 / 12k=y2x+y= 20.如图,直线B两点相交于A,与双曲线21x-1. B的纵坐标为其中点A的纵坐标为3,点的值;)求(1k x yy<,请你根据图象确定的取值范围.(2)若21分)四、解答题(本题共28分,每小题7水平距离AB21.如图,某小区在规划改造期间,欲拆除小区广场边的一根电线杆AB,已知距电线杆CFCDF的正切值为2,观景台的高=14M处是观景台,即BD14M,该观景台的坡面CD的坡角∠为2M的人行道,如果以点B的仰角为A30°,D、E之间是宽为2M,在坡顶C处测得电线杆顶端时,人行道是否AB长为半径的圆形区域为危险区域.请你通过计算说明在拆除电线杆AB圆心,以73.3≈12≈1.41,在危险区域内?()CCBD??CDA?O⊙在直径BA的延长线上,上一点,点.为22.如图,D CDO⊙1()求证:的切线;是2 E2BAB=6tan,)过点作的切线交,若(的延长线于点,??CDA CDO⊙3 DE的长依题意补全图形并求4 / 1223.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓x t y(秒),经多次测试),运行时间为((M),距桌面的高度为MA球与端点的水平距离为后,得到如下部分数据:tA …0.8 0.2 0.4 0.6 0.64 0 0.16 (秒)x…2 0.4 1.6 0.5 1.5 0 1 (M)y…0.250.3780.450.3780.250.40.4(M)(1)如果y是t的函数,①如下图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;t为何值时,乒乓球达到最大高度?②当x y的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?2)如果是关于(24.如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕.........迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.PlA OBC 5 / 12五、解答题(本题共16分,每小题8分)2b+.,1),-3)ax,且经过点(4x+c的顶点为(2y25.已知抛物线G:=1 G的解读式;(1)求抛物线1轴的负与x个单位后得到抛物线G,且抛物线G(2)将抛物线G先向左平移3个单位,再向下平移1221 A点的坐标;半轴相交于A点,求1上的一个点,且在对称轴右侧部分G 是(2)中抛物线(3)如果直线m的解读式为,点B3y=x+2 2 B.过点A和点(含顶点)上运动,直线n轴围成的三角形相似?若存在,求y、n、、n、x轴围成的三角形和直线mB问:是否存在点,使直线m 的坐标;若不存在,请说明理由.出点By y 5544332211O x O x 535–3–4––21–124541232––134–5––1–1–2–2–3–3–4–4–5–5–1备用图备用图26 / 12x-y) y)的变换点为P(x+y, 26.在平面直角坐标系xOy中,定义点P(x,22,的半径′.为(1)如图1,如果⊙O 的位置关系;(-2,-1)两个点的变换点与⊙O请你判断M (2,0),N①′.的内,求点OP横坐标的取值范围+2上,点P的变换点P在⊙②若点P在直线y=x 与⊙O上任意一点距离的=-2x+6上,求点P'如图2,如果⊙O的半径为1,且P的变换点P在直线y(2)最小值.yy5544332211OO xx5455–1–234413213––2135––4––2––1–1–22––33––4––45–5– 1图2图7 / 12丰台区2018-2018学年度第一学期期末练习初三数学参考答案分)330分,每小题一、选择题(本题共答案 C D C A D B C B A C ,13-16每小题4分)二、填空题(本题共22分,10、11每小题3分52;14. 8;15.如:;13.y11. 30; 12.= -x+2;216.不在同一条直线上的三个点确定一个圆;线段垂直平分线上的点到线段两个端点距离相等;两条直线交于一点.三、解答题(本题共24分,每小题6分)33 =17.解:原式分-----3?12??223 =-----4?分3?1233=?1-----6分2(1)由题意得:,解得. -----2分1m?21?3m?分)二次函数的对称轴为。

2017.1 丰台初三上 数学期末答案


四、解答题(本题共22分,第24至25题,每小题5分,第26至27题,每小题6分)
24. 【答案】销售单价定为28 元时,每天获得的利润最大,最大利润是192 元.
25. 【答案】(1)1.3 2.Rt△EP B ,Rt△P DF ,Rt△EAF (2)证明见解析.





26. 【答案】(1)x ⩾ −2 且x ≠ 0 (2)m = 1 . (3)图象见解析. (4)答案不唯一,符合函数性质即可
12. 【答案】
1 3
13. 【答案】12



14. 【答案】答案不唯一,如y = −
5 x
15. 【答案】2√5
16. 【答案】1.45 2.300
三、解答题(本题共35分,每小题5分)
3√3 + 1 2
17. 【答案】
18. 【答案】AB = 20 .
19. 【答案】(1)y = −x2 + x − (2)x >
1 2
1 4,顶点坐标为(1 2, 0).
20. 【答案】(1)证明见解析. (2)BE =
27 5
21. 【答案】(1)y = −
2 x

(2)y > 0 或y < −2 .
22. 【答案】(1)∠P = 60∘ . (2)P A = 3√3 .
23. 【答案】(1)作图见解析. (2)答案见解析.
2016~2017学年北京丰台区初三上学期期末数学试卷
一、选择题(本题共30分,每小题3分)
1. 【答案】C
2. 【答案】A
3. 【答案】B
4. 【答案】D
5. 【答案】A
6. 【答案】B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2017~2018学年度第一学期期末练习初三数学2018. 01考 生 须 知1. 本试卷共6页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2. 在试卷和答题卡上认真填写学校名称、姓名和考号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷和答题卡一并交回。

一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如果32a b =(0ab ≠),那么下列比例式中正确的是 A .32a b = B .23b a = C .23a b = D .32a b = 2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为 A .22y x =+ B .22y x =- C .()22y x =+D .()22y x =-3.如图,在Rt △ABC 中,∠C = 90°,AB = 5,BC = 3,则tan A 的值为A .35B .34C .45D .434.“黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置 A .①B .②C .③D .④5.如图,点A 为函数ky x=(x > 0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为 A .1 B .2 C .3D .46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是CB A②① ③ ④ ABxOyA B C D7.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°8.已知抛物线2y ax bx c =++上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-0 1 2 3 ... y (3)1-m3…有以下几个结论:①抛物线2y ax bx c =++的开口向下;②抛物线2y ax bx c =++的对称轴为直线1x =-; ③方程20ax bx c ++=的根为0和2; ④当y >0时,x 的取值范围是x <0或x >2. 其中正确的是 A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分) 9.如果sin α =12,那么锐角α = .10.半径为2的圆中,60°的圆心角所对的弧的弧长为 . 11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为 cm.12.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为 .13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式 .14.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为 .15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m 的正方形ABCD ,改建的绿地是矩形AEFG ,其中图1图2ABCDGAA B'A'BOO AC BOAB点E 在AB 上,点G 在AD 的延长线上,且DG = 2BE . 如果设BE 的长为x (单位:m ),绿地AEFG 的面积为y (单位:m 2),那么y 与x 的函数的表达式为 ;当BEAEFG 的面积最大. 16.下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是 ; (2)直线P A ,PB 是⊙O 的切线,依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分) 17.计算:2cos30sin 45tan60︒+︒-︒.18.如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4,求AC 的长.19.已知二次函数y = x 2 - 4x + 3.(1)用配方法将y = x 2 - 4x + 3化成y = a (x - h )2 + k 的形式; (2)在平面直角坐标系xOy 中画出该函数的图象; (3)当0≤x ≤3时,y 的取值范围是 .D CBA E20.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为⊙O的直径,弦CD⊥AB于点E,AE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.21.在平面直角坐标系xOy中,直线1y x=+与双曲线kyx=的一个交点为P(m,2).(1)求k的值;(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a > b时,n的取值范围.22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m 的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)23.如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2m ,喷出水流的运动路线是抛物线. 如果水流的最高点P 到喷水枪AB 所在直线的距离为1m ,且到地面的距离为3.6m ,求水流的落地点C 到水枪底部B 的距离.24.如图,AB 是⊙O 的直径,点C 是AB 的中点,连接AC 并延长至点D ,使CD AC =,点E 是OB 上一点,且23OE EB =,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线; (2)当2OB =时,求BH 的长.25.如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC于点F ,连接DF .已知AB = 4cm ,AD = 2cm ,设A ,E 两点间的距离为x cm ,△DEF 面积为y cm 2.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.OABCDH FE C D ABNME PC B AD C BAEF下面是小明的探究过程,请补充完整:(1)确定自变量x 的取值范围是 ;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .26.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.27.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC . (1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.E28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12),P 2(0,-2),P 30)中,⊙O 的“离心点”是 ; ②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B . 如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.丰台区2017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)EMNFA C图1图29. 30°; 10.2π3; 11. 10; 12. 1; 13. 2y x =或245y x x =-+等,答案不唯一;14.(2,0); 15.22864(08)y x x x =-++<<(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线. 三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:2cos30sin 45tan60︒+︒-︒=2+……3分……4分……5分 18. 解:∵DE ∥BC , ∴AD AE DBEC=.……2分即243EC=. ∴EC =6.……4分∴AC =AE + EC =10. ……5分 其他证法相应给分.19.解:(1)2444+3y x x =-+-()221x =--. ……2分(2)如图: ….3分 (3)13y -≤≤ ….5分20.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E ,且CD =10,∴∠BEC =90°,152CE CD ==.……2分设OC =r ,则OA =r ,∴OE =1r -. 在Rt OCE ∆中, ∵222OE CE OC +=,∴()22125r r -+=.∴=13r . …4分 ∴AB = 2r = 26(寸).答:直径AB 的长26寸. …5分21. 解:(1)一次函数1y x =+的图象经过点(,2)P m ,∴1m =. ……… 1分∴点P 的坐标为(1,2). ……… 2分∵反比例函数ky x=的图象经过点P (1,2), ∴2k = ………3分(2)0n <或2n > …………5分22.解:由题意得,四边形ACDB ,ACEN 为矩形,∴EN=AC=1.5. AB=CD=15.在Rt MED 中, ∠MED =90°,∠MDE =45°, ∴∠EMD =∠MDE =45°. ∴ME =DE . …2分设ME =DE =x ,则EC =x +15. 在Rt MEC 中,∠MEC =90°, ∠MCE =35°,∵tan ME EC MCE =⋅∠, ∴()0.715x x ≈+ .∴35x ≈ . ∴35ME ≈ . …4分CD ABNMED CBAEx +3∴36.5MN ME EN =+≈ .∴人民英雄纪念碑MN .的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6). ……2分 ∵点P 为抛物线顶点, ∴1 3.6h k ==, . ∵点A 在抛物线上, ∴ 3.62a +=, 1.6a =-…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m. ……5分24.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是AB∵OA OB =,CD AC =,∴OC 是ABD ∆∴∠ABD =∠AOC =90°. ∴AB BD ⊥.∴BD 是⊙O 的切线. 其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△∵OB = 2,∴OC = OB = 2,AB = 4在Rt ABF ∆中,∠ABF =90°,AF ∵1122ABFSAB BF AF BH =⋅=⋅ ∴BH =125. 其他方法相应给分.25.(1)04x ≤<;.……1分 (2)3.8,4.0; ……3分 (3)如图 ……4分 (4)0或2. ……6分26. 解:(1)1,242 3.bb c ⎧=⎪⎨⎪-++=⎩ ……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ∴BC -AC = BM+MC -AC = AM+MC -其他方法相应给分.(3)点Q 的坐标为(12-)或(12-).……7分27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAFAE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分28.解:(1)①2P ,3P ; ……2分 ②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分。

相关文档
最新文档