任意角和弧度制
任意角与弧度制知识点汇总

任意角与弧度制知识梳理:一、任意角和弧度制1、角(de)概念(de)推广定义:一条射线OA由原来(de)位置,绕着它(de)端点O按一定(de)方向旋转到另一位置OB,就形成了角α,记作:角α或α∠可以简记成α.2、角(de)分类:由于用“旋转”定义角之后,角(de)范围大大地扩大了.可以将角分为正角、零角和负角.正角:按照逆时针方向转定(de)角.零角:没有发生任何旋转(de)角.负角:按照顺时针方向旋转(de)角.3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角(de)顶点合于坐标原点,角(de)始边合于x轴(de)正半轴.角(de)终边落在第几象限,我们就说这个角是第几象限(de)角角(de)终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角.例1、(1)A={小于90°(de)角},B={第一象限(de)角},则A∩B=(填序号).①{小于90°(de)角} ②{0°~90°(de)角}③ {第一象限(de)角} ④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°(de)角},那么A、B 、C 关系是( )A .B=A∩CB .B∪C=C C .A ⊂CD .A=B=C4、常用(de)角(de)集合表示方法 1、终边相同(de)角:(1)终边相同(de)角都可以表示成一个0 到360 (de)角与)(Z k k ∈个周角(de)和.(2)所有与 终边相同(de)角连同 在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角 终边相同(de)角,都可以表示成角 与整数个周角(de)和 注意:1、Z ∈k2、α是任意角3、终边相同(de)角不一定相等,但相等(de)角(de)终边一定相同.终边相同(de)角有无数个,它们相差360°(de)整数倍.4、一般(de),终边相同(de)角(de)表达形式不唯一. 例1、(1)若θ角(de)终边与58π角(de)终边相同,则在[]π2,0上终边与4θ(de)角终边相同(de)角为 .(2)若βα和是终边相同(de)角.那么βα-在例2、求所有与所给角终边相同(de)角(de)集合,并求出其中(de)最小正角,最大负角:(1) 210-; (2)731484'- .例3、求θ,使θ与 900-角(de)终边相同,且[] 1260180,-∈θ.2、终边在坐标轴上(de)点:终边在x 轴上(de)角(de)集合: {}Z k k ∈⨯=,180| ββ 终边在y 轴上(de)角(de)集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上(de)角(de)集合:{}Z k k ∈⨯=,90| ββ 3、终边共线且反向(de)角:终边在y =x 轴上(de)角(de)集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上(de)角(de)集合:{}Z k k ∈-⨯=,45180| ββ 4、终边互相对称(de)角:若角α与角β(de)终边关于x 轴对称,则角α与角β(de)关系:βα-=k 360若角α与角β(de)终边关于y 轴对称,则角α与角β(de)关系:βα-+= 180360k若角α与角β(de)终边在一条直线上,则角α与角β(de)关系:βα+=k 180角α与角β(de)终边互相垂直,则角α与角β(de)关系: 90360±+=βαk 例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β(de)中变得位置关系是( ).A.重合B.关于原点对称C.关于x 轴对称D.有关于y 轴对称二、弧度与弧度制 1、弧度与弧度制:弧度制—另一种度量角(de)单位制, 它(de)单位是rad 读作弧度定义:长度等于 (de)弧所对(de)圆心角称为1弧度(de)角.如图: AOB=1rad , AOC=2rad , 周角=2 rad 注意:1、正角(de)弧度数是正数,负角(de)弧度数是负数,零角(de)弧度数是02、角 (de)弧度数(de)绝对值 rl=α(l 为弧长,r 为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同. 4、在同一个式子中角度、弧度不可以混用. 2、角度制与弧度制(de)换算弧度定义:对应弧长等于半径所对应(de)圆心角大小叫一弧度 角度与弧度(de)互换关系:∵ 360 = rad 180 = rad∴ 1 =rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad注意:正角(de)弧度数为正数,负角(de)弧度数为负数,零角(de)弧度数为零.例1、 把'3067 化成弧度例 例2、 把rad π53化成度 例3、将下列各角从弧度化成角度 (1)36πrad (2) rad (3) rad π533、弧长公式和扇形面积公式or C 2rad1rad r l=2o A A Br l α= ; 22121r lR S α==练习题一、选择题1、下列角中终边与330°相同(de)角是( )A .30°B .-30°C .630°D .-630°2、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )(de)形式是 ( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°3、终边在第二象限(de)角(de)集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 4、下列命题是真命题(de)是( )Α.三角形(de)内角必是一、二象限内(de)角 B .第一象限(de)角必是锐角 C .不相等(de)角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα 5、已知A={第一象限角},B={锐角},C={小于90°(de)角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限(de)角是( )A.①B.①②C.①②③D.①②③④7、若α是第一象限(de)角,则-2是( ) A.第一象限(de)角B.第一或第四象限(de)角C.第二或第三象限(de)角D.第二或第四象限(de)角8、下列结论中正确(de)是( )A.小于90°(de)角是锐角B.第二象限(de)角是钝角C.相等(de)角终边一定相同D.终边相同(de)角一定相等9、集合A={α|α=k ·90°,k ∈N +}中各角(de)终边都在( )轴(de)正半轴上轴(de)正半轴上轴或y 轴上轴(de)正半轴或y 轴(de)正半轴上10、α是一个任意角,则α与-α(de)终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11、集合X={x |x=(2n+1)·180°,n ∈Z},与集合Y={y |y=(4k ±1)·180°,k ∈Z}之间(de)关系是( )C.X=Y≠Y12、设α、β满足-180°<α<β<180°,则α-β(de)范围是( )°<α-β<0° °<α-β<180° °<α-β<0°°<α-β<360°13、下列命题中(de)真命题是( )A .三角形(de)内角是第一象限角或第二象限角B .第一象限(de)角是锐角C .第二象限(de)角比第一象限(de)角大D .角α是第四象限角(de)充要条件是2k π-2π<α<2k π(k ∈Z ) 14、设k ∈Z ,下列终边相同(de)角是( )A .(2k +1)·180°与(4k ±1)·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°15、已知弧度数为2(de)圆心角所对(de)弦长也是2,则这个圆心角所对(de)弧长是 ( ) A .2B .1sin 2C .1sin 2D .2sin16、设α角(de)终边上一点P(de)坐标是)5sin ,5(cos ππ,则α等于( )A .5πB .5cot πC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ17、若90°<-α<180°,则180°-α与α(de)终边( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对18、设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于( )A .{-105ππ3,}B .{-510ππ4,7} C .{-5-105ππππ4,107,3,}D .{07,031-1ππ }19、“21sin =A ”“A=30o”(de)( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20、中心角为60°(de)扇形,它(de)弧长为2π,则它(de)内切圆半径为 ( ) A .2B .3C . 1D .23 21、设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k6π,k ∈Z }那么下列结论中正确(de)是 ( )A .M =NB .M NC .N MD .M N 且N M二、填空题22、若角α是第三象限角,则2α角(de)终边在 . 23、与-1050°终边相同(de)最小正角是 .24、已知α是第二象限角,且,4|2|≤+α则α(de)范围是 .任意角(de)三角函数练习题一、选择题1. 设α角属于第二象限,且2cos2cosαα-=,则2α角属于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ. 其中符号为负(de)有( )A. ①B. ②C. ③D. ④3. 02120sin 等于( )A.23±B. 23C. 23-D. 214. 已知4sin 5α=,并且α是第二象限(de)角,那么tan α(de)值等于( )A. 43- B. 34- C. 43D. 345.若θ∈(5π4 ,3π2),则1-2sin θcos θ 等于θ-sin θθ+cos θθ-cos θD.-cos θ-sin θ6.若tan θ=13,则cos 2θ+sin θcos θ(de)值是A.-65B.-45C. 45D.65二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2. 设MP 和OM 分别是角1817π(de)正弦线和余弦线,则给出(de)以下不等式:①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确(de)是_____________________________. 3.若角α(de)终边在直线y =-x 上,则ααααcos cos 1sin 1sin 22-+-= .4.使tan x -xsin 1有意义(de)x (de)集合为 .5.已知α是第二象限(de)角,且cos α2 =-45 ,则α2 是第 象限(de)角.三、解答题 1. 已知1tan tan αα,是关于x (de)方程2230x kx k -+-=(de)两个实根,且παπ273<<,求ααsin cos +(de)值.2. 设cos θ=m -nm +n(m >n >0),求θ(de)其他三角函数值.3.证明(1)1+2sin θcos θcos 2θ-sin 2θ =1+tan θ1-tan θ(2)tan 2θ-sin 2θ=tan 2θsin 2θ4. 已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +(de)值.。
知识讲解_任意角和弧度制_基础

任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。
2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。
【要点梳理】 要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为{}|360k k Z βββα∈=+∈,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 3.常用的象限角α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈ α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈ α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈ α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈要点二:弧度制 1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:角的概念的理解例1.下列结论:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角。
1.1 任意角和弧度制

1.1 任意角和弧度制1、角的概念:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形。
如图1-1中,射线的端点O 叫做角的顶点,OA 叫做角的始边,OB 叫做角的终边。
2、在图1-1中,以OA 为始边、OB 为终边的角,记作AOB ∠;以OB 为始边、OA 为终边的角,记作BOA ∠。
3、任意角⎪⎩⎪⎨⎧零角:不旋转负角:顺时针旋转正角:逆时针旋转4、各角和的旋转量等于各角旋转量的和。
5、与任意角α终边相同的角有无数个,这无数个角可以构成一个集合,这个集合可记为 。
6、象限角:终边落在第几象限,这个角就是第几象限角。
象限间的角:终边落在坐标轴上的角,叫做象限间的角。
7、明确概念: (1)锐角是指︒<<︒900α的角。
所以,锐角都是第一象限角,而第一象限角不一定都是锐角。
例如︒390角是第一象限角,但它不是锐角。
(2)锐角肯定小于︒90,而小于︒90的角不一定都是锐角。
例如,︒-30角小于︒90,但它不是锐角。
(3)相等的角终边一定相同,而终边相同的角却不一定相等。
例如,︒30角与︒390角终边相同,但它们不相等。
(4)角α在︒︒360~0范围内是指︒<≤︒3600α。
8、(1)各象限角的集合 第一象限角:},222|{Z k k x k x ∈+⋅<<⋅πππ第二象限角:},222|{Z k k x k x ∈+⋅<<+⋅ππππ第三象限角:},2322|{Z k k x k x ∈+⋅<<+⋅ππππ 第四象限角:},22232|{Z k k x k x ∈+⋅<<+⋅ππππ(2)终边落在轴上的角的集合终边落在x 轴的非负半轴上:},2|{Z k k x x ∈⋅=π图1-1终边落在x 轴的非正半轴上:},2|{Z k k x x ∈+⋅=ππ终边落在x 轴上:},|{Z k k x x ∈⋅=π 终边落在y 轴的非负半轴上:},22|{Z k k x x ∈+⋅=ππ 终边落在y 轴的非正半轴上:},22|{Z k k x x ∈-⋅=ππ终边落在y 轴上:},2|{Z k k x x ∈+⋅=ππ终边落在坐标轴上:},2|{Z k k x x ∈⋅=π9、角度制与弧度制(1)1弧度角的规定:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
任意角和弧度制课件PPT

②任意角的弧度数与实数的对应关系 正角的弧度数是一个 正数 ;负角的弧度数是一个 负数 ;零角 的弧度数是 零 . ③角的弧度数的计算 如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数
l 的绝对值是|α|= r .
明目标、知重点
2.角度制与弧度制的换算 (1)
角度化弧度 360°= 2π rad 180°= π rad π 1°=180 rad≈0.017 45 rad
§1.1 任意角和弧度制
内容 索引
01 明目标
知重点
填要点 记疑点
02
03
探要点 究所然
当堂测 查疑缺
04
明目标、知重点
明目标、知重点
1.了解角的概念. 2.掌握正角、负角和零角的概念,理解任意角的意义. 3.熟练掌握象限角、终边相同的角的概念,会用集合 符号表示这些角.
明目标、知重点
填要点·记疑点
明目标、知重点
反思与感悟 当角的集合的表达式分两种或两种以上 情形时,能合并的尽量合并,注意把最后角的集合化 成最简的形式.
明目标、知重点
跟踪训练3 求终边在直线y=-x上的角的集合S. 解 由于直线y=-x是第二、四象限的角平分线,在0°~ 360°间所对应的两个角分别是135°和315°, 从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°, k∈Z} = {α|α = 2k·180° + 135° , k∈Z}∪{α|α = (2k + 1)·180° +135°,k∈Z}={α|α=n·180°+135°,n∈Z}.
明目标、知重点
1234
4.写出终边落在坐标轴上的角的集合S. 解 终边落在x轴上的角的集合: S1={β|β=k·180°,k∈Z}; 终边落在y轴上的角的集合: S2={β|β=k·180°+90°,k∈Z}; ∴终边落在坐标轴上的角的集合: S=S1∪S2={β|β=k·180°,k∈Z}∪{β|β=k·180°+90°,k∈Z}={β|β =2k·90°,k∈Z}∪{β|β=(2k+1)·90°,k∈Z}={β|β=n·90°,n∈Z}.
任意角和弧度制

2.终边相同的角 所有与角 α 终边相同的角,连同角 α 在内,可构成一个集合 S= {β|_β_=__α_+__k_·_3_6_0_°_,__k_∈__Z__},即任一与角 α 终边相同的角,都可 以表示成角 α 与整数个周角的和.
3.轴线角的集合 角 α 终边的位置
在 x 轴的非负半轴上 在 x 轴的非正半轴上 在 y 轴的非负半轴上 在 y 轴的非正半轴上
2100
6600
-1500
特别地,当一条射线没有作任何旋转时, 我们也认为这时形成了一个角,并把这个角 叫做零度角(0º).
角的记法:角α或可以简记成∠α.
⑶角的概念扩展的意义:
用“旋转”定义角之后,角的范围大大地扩大 了
① 角有正负之分; 如:=210, = 150, =660.
② 角可以任意大; 实例:体操动作:旋转2周(360×2=720)
内、向外转体1080º;
生活中很多实例会不在该范围。 经过1小时,时针、分针、秒针各转了多 少度? 这些例子不仅不在范围[0º, 360º) ,而且 方向不同,有必要将角的概念推广到任意角, 想想用什么办法才能推广到任意角? 关键是用运动的观点来看待角的变化。
2.角的概念的推广
⑴“旋转”形成角
一条射线由原来的位置OA,
2.将射线 OM 绕端点 O 按逆时针方向旋转 120°所得的角为( )
A.120°
B.-120°
C.240° 答案:A
D.-240°
3.时钟经过 1 小时,时针转动的角的大小是________. 解析:时钟是顺时针转,故形成的角是负角,又经过 12 个小时时针 转动一个周角,故经过 1 个小时时针转动周角的112,所以转动的角的 大小是-112×360°=-30°. 答案:-30°
任意角与弧度制 弧度制

.
24
1.弧度制下与角 α 终边相同的角的表示: 在弧度制下,与角 α 的终边相同的角可以表示为{β|β=2kπ+α,k∈Z}, 即与角 α 终边相同的角可以表示成 α 加上 2π 的整数倍. 2.根据已知图形写出区域角的集合的步骤: (1)仔细观察图形. (2)写出区域边界作为终边时角的表示. (3)用不等式表示区域范围内的角. 提醒:角度制与弧度制不能混用.
D.kπ+54π(k∈Z)
26
4.用弧度写出终边落在如图阴影部分(不包括边界)内的角的集合.
[解] 30°=π6 rad,150°=56π rad.
终边落在题干图中阴影区域内角的集合(不包括边界)是
βπ6+kπ<β<56π+kπ,k∈Z
.
27
弧长公式与扇形面积公式的应用
[探究问题]
1.用公式|α|=rl求圆心角时,应注意什么问题? 提示:应注意结果是圆心角的绝对值,具体应用时既要注意其大 小,又要注意其正负. 2.在使用弧度制下的弧长公式及面积公式时,若已知的角是以 “度”为单位,需注意什么问题? 提示:若已知的角是以“度”为单位,则必须先把它化成弧度后再 计算,否则结果易出错.
18
角度制与弧度制互化的关键与方法 1关键:抓住互化公式 π rad=180°是关键; 2方法:度数×1π80=弧度数;弧度数×1π80°=度数; 3角度化弧度时,应先将分、秒化成度,再化成弧度.
1.(1)将-157°30′ 化成弧度为________.
(2)将-115π rad化为度 是________.
所以角α的集合是αα=π4+kπ,k∈Z
.]
(2)[解] 因为30°=π6 rad,210°=76π rad,
这两个角的终边所在的直线相同,因为终边在直线AB上的角为α=kπ
任意角和弧度制
终边在终边在射线 y = -x 上的角的集合是
B 2250 k 3600 , k Z
所以终边在Y=x上的角的集合是
S | 2250 k 3600 , k Z
0 0
| 45 k 360 , k Z
| 45 k 180 , k Z
-392° 328°
x o -32°
与-32°角终边相同的角有多少个? 32 0 k 360 0 , k Z 这些角与-32°角在数量上相差多少?
392 0 32 0 360 0
思考2:所有与-32°角终边相同的角, 连同-32°角在内,可构成一个集合S, 你能用描述法表示集合S吗?
{ 90 k 360 , k z}
180 360, k, 180 k k 360 k Z Z
0 0 0 0
90 270
0
k 360 , k Z
0
例4.用集合的形式表示象限角 第一象限的角表示为
32
0
k 360 0 , k Z
思考3:一般地,所有与角α 终边相同的 角,连同角α 在内所构成的集合S可以怎 样表示? S={β|β=α+k· 360°,k∈Z},即任 一与α终边相同的角,都可以表示成角 α与整数个周角的和.
例题分析
例1.在0°~360°范围内,找出与-950°12′角终边相同的角, 并判定它是第几象限角.
γ
α O β A
(3)再由角的绝对值大小确定角的旋转量,
B1
(4)画出角的终边,并用带箭头的螺旋线加以标注.
第1讲 任意角和弧度制、三角函数的概念
第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。
高中数学5.1任意角和弧度制
高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。
而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。
本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。
二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。
在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。
这意味着任意角可以包括整个360°的范围。
2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。
三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。
一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。
2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。
角度和弧度之间可以通过π进行转换。
3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。
四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。
我们可以根据1°等于π/180弧度的关系,进行计算转换。
30°对应的弧度是30°×π/180=π/6弧度。
2. 已知一个角的弧度,求其对应的度数。
同样可以根据π弧度等于180°进行转换计算。
π/3弧度对应的度数是π/3÷π×180°=60°。
五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。
在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。
2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。
了解弧度制可以为后续高等数学的学习奠定坚实基础。
六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。
任意角、弧度制及任意角的三角函数
任意角、弧度制及任意角的三角函数1.角的概念(1)任意角:①定义:角能够看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;假如角的终边在坐标轴上,那么这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表: 三角函数 定义域 第一象限符号第二象限符号 第三象限符号第四象限符号sin α R + + - - cos α R +--+tan α {α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下列图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限. 2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1 D .2 sin 1 答案 C解析 设圆的半径为r ,则sin 1=1r ,∴r =1sin 1,∴2弧度的圆心角所对弧长为2r =2sin 1.3.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =____________.答案 -8 解析 因为sin θ=y42+y 2=-255,所以y <0,且y 2=64,所以y =-8.4.函数y =2cos x -1的定义域为________. 答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示). ∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示例1 (1)终边在直线y =3x 上的角的集合是________. (2)假如α是第三象限角,那么角2α的终边落在________. 答案 (1){α|α=k π+π3,k ∈Z }(2)第一、二象限或y 轴的非负半轴上解析 (1)∵在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为{α|α=π3+k π,k ∈Z }.(2)∵2k π+π<α<2k π+32π,k ∈Z ,∴4k π+2π<2α<4k π+3π,k ∈Z .∴角2α的终边落在第一、二象限或y 轴的非负半轴上.思维升华 (1)利用终边相同的角的集合能够求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.题型二 三角函数的概念例2 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ等于( ) A .-45B .-35C.35D.45(2)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角思维点拨 (1)因为三角函数值与选择终边上的哪个点没相关系,所以知道了终边所在的直线,可在这个直线上任取一点,然后按照三角函数的定义来计算,最后用倍角公式求值.(2)能够根据各象限内三角函数值的符号判断. 答案 (1)B (2)C解析 (1)取终边上一点(a,2a ),a ≠0,根据任意角的三角函数定义,可得cos θ=±55, 故cos 2θ=2cos 2θ-1=-35.(2)由sin αtan α<0可知sin α,tan α异号,从而角α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而角α为第三或第四象限角,故角α为第三象限角. 思维升华 (1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(2)根据三角函数定义中x 、y 的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.题型三 弧度制的应用例3 已知一扇形的圆心角为α (α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 思维点拨 (1)弓形面积可用扇形面积与三角形面积相减得到;(2)建立关于α的函数. 解 (1)设弧长为l ,弓形面积为S 弓,则 α=60°=π3,R =10,l =π3×10=10π3 (cm),S 弓=S 扇-S △=12×10π3×10-12×102×sin π3=503π-5032=50⎝⎛⎭⎫π3-32 (cm 2). (2)扇形周长C =2R +l =2R +αR ,∴R =C 2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 22α·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216.思维升华 涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R 2.典例:(1)函数y =sin x -32的定义域为________. (2)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.思维点拨 (1)求函数定义域可转化为解不等式sin x ≥32,利用三角函数线可直观清晰地得出角x 的范围.(2)点P 转动的弧长是此题的关键,可在图中作三角形,寻找P 点坐标和三角形边长的关系. 解析 (1)∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影局部)即为角α的终边的范围,故满足条件的角α的集合为{x |2k π+π3≤x ≤2k π+2π3,k ∈Z }.(2)如下图,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2,则∠PCB =2-π2,所以|PB |=sin(2-π2)=-cos 2,|CB |=cos(2-π2)=sin 2,所以x P =2-|CB |=2-sin 2,yP =1+|PB |=1-cos 2, 所以OP →=(2-sin 2,1-cos 2). 答案 (1)[2k π+π3,2k π+23π] ,k ∈Z(2)(2-sin 2,1-cos 2)温馨提醒 (1)利用三角函数线解三角不等式要在单位圆中先作出临界情况,然后观察适合条件的角的位置;(2)解决和旋转相关的问题要抓住旋转过程中角的变化,结合弧长公式、三角函数定义寻找关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。
2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。
【要点梳理】 要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角 终边相同的角为{}|360k k Z βββα∈=+∈og ,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 3.常用的象限角α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈o o o g g α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈o o o o g g α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈o o o o g g α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈o o o o g g要点二:弧度制 1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:角的概念的理解例1.下列结论:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角。
其中正确的结论为________。
【思路点拨】比较锐角和第一象限角的关系,比较负角和第一象限角的关系,这种问题可以通过列举出特殊角来得到结论.【答案】②【解析】①390°角是第一象限角,可它不是锐角,所以①不正确。
②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确。
③-330°角是第一象限角,但它是负角,所以③不正确。
④480°角是第二象限角,但它不是钝角,所以④不正确。
⑤0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑤不正确。
【总结升华】正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可。
举一反三: 【变式1】(1)一个角为30°,其终边按逆时针方向旋转三周后的角度是多少?(2)时钟走了3小时20分,则分针所经过的角的度数为多少?时针所转过的角的度数是多少? 【答案】(1)1110°(2)-1200° -100° 【解析】(1)终边按逆时针方向旋转三周,转过的角为360°×3=1080°,再加上原来的角度30°,所以旋转后的角是1110°。
(2)时针、分针都是顺时针方向旋转,故所转过的角度数为负值。
3小时20分,分针转了133周,故转过的角度数为-360°×133=-1200°,时针转了518周,故转过的角度数为-360°×518=-100°。
类型二:终边相同的角的集合例2.在与10030°角终边相同的角中,求满足下列条件的角。
(1)最大的负角;(2)360°~720°内的角。
【思路点拨】根据终边相同的角之间相差周角的整数倍,我们可以表示出与10030°的角终边相同的角β的集合,找出满足条件的k 值,即可得到答案.【答案】(1)―50°(2)670°【解析】(1)与10030°角终边相同的角的一般形式为β=k ·360°+10030°(k ∈Z ),由-360°<k ·360°+10030°≤0°,得-10390°<k ·360°≤-10030°,解得k=―28,故所求的最大负角为β=―50°。
(2)由360°≤k ·360°+10030°<720°,得-9670°≤k ·360°<―9310°,解得k=―26。
故所求的角为β=670°。
【总结升华】把任意角化为α+k ·360°(k ∈Z 且0°≤α<360°)的形式,关键是确定k 。
可以用观察法(α的绝对值较小),也可用竖式除法。
举一反三:【变式1】已知α=-1910°。
(1)把α写成360k β+⋅︒(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角。
(2)求θ,使θ与α的终边相同,且-720°≤θ≤0°。
【答案】(1)-6×360°+250° 第三象限的角(2)-470° 【解析】(1)∵-1910°÷360°=-6余250°, ∴-1910°=-6×360°+250°,相应的β=250°,从而α=-6×360°+250°是第三象限的角。
(2)令θ=250°+k ·360°(k ∈Z ),取k=―1,―2就得到满足―720°≤θ≤0°的θ角; 250°-360°=-110°,250°-720°=-470°。
类型三:角nα所在象限的研究例3.若α是第二象限角,试分别确定2α,2α,3α的终边所在的位置。
【思路点拨】因为α是第二象限的角,所以k ·360°+90°<α<k ·360°+180°,把上式两边都乘以2、12、13,然后对k 进行讨论,就可得 2α,2α,3α的终边所在的位置。
【答案】第三、第四象限的角或角的终边在y 轴的负半轴上;第一或第三象限的角;第一或第二象限或第四象限的角【解析】因为α是第二象限的角,所以k ·360°+90°<α<k ·360°+180°(k ∈Z )。
(1)因为2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ),故2α是第三、第四象限的角或角的终边在y 轴的负半轴上。
(2)因为k ·180°+45°<2α<k ·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n ·360°+45°<2α<n ·360°+90°;当k=2n+1(n ∈Z )时,n ·360°+225°<2α<n ·360°+270°(k ∈Z ),所以2α是第一或第三象限的角。
(3)因为k ·120°+30°<3α<k ·120°+60°(k ∈Z )。
当k=3n (n ∈Z )时,n ·360°+30°<3α<n ·360°+60°;当k=3n+1(n ∈Z )时,n ·360°+150°<3α<n ·360°+180°;当k=3n+2(n ∈Z )时,n ·360°+270°<3α<n ·360°+300°,所以3α是第一或第二象限或第四象限的角。
【总结升华】已知α的范围,确定n α的范围,一般应先将α的范围用不等式表示,然后再两边同除以n ,根据k 的取值进行分类讨论,以确定nα的范围,讨论角的范围时要做到不重不漏,尤其对象限界角应引起注意。
举一反三:【变式1】(1)已知α是第三象限角,求2α是第几象限角; (2)已知α是第二象限角,求3α是第几象限角。
【答案】(1)第二或第四象限角(2)第一、第三或第四象限角 【解析】(1)由下图(左)可知2α是第二或第四象限角。
(2)由下图(右)可知3α是第一、第二或第四象限角。
类型四:弧度制与角度制的互化例4.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合,如图所示(不包括边界)。
【思路点拨】这类题只要找到两射线对应的角,然后写成22()k x k k z απβπ+<<+∈即可,注意αβ<。
【答案】(1)5|22,612k k k Z ππθπθπ⎧⎫-<<+∈⎨⎬⎩⎭(2)33|22,44k k k Z ππθπθπ⎧⎫-<<+∈⎨⎬⎩⎭ 【解析】(1)如下图①,以OB 为终边的角为330°,可看成是-30°,化为弧度,即6π-, 而5757518012ππ︒=⨯=rad ,∴所求集合为5|22,612k k k Z ππθπθπ⎧⎫-<<+∈⎨⎬⎩⎭。